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ABSTRACT  
This paper explores the use of an outcome matrix as a 
computational representation of social interaction suitable for 
implementation on a robot. An outcome matrix expresses the 
reward afforded to each interacting individual with respect to 
pairs of potential behaviors. We detail the use of the outcome 
matrix as a representation of interaction in social psychology and 
game theory, discuss the need for modeling the robot’s interactive 
partner, and contribute an algorithm for creating outcome matrices 
from perceptual information. Experimental results explore the use 
of the algorithm with different types of partners and in different 
environments.  

Categories and Subject Descriptors 
I.2.9 [Artificial Intelligence ]: Robotics – autonomous vehicles, 
operator interfaces 

General Terms 
Algorithms, Human Factors. 

Keywords 
Mental model, interaction, Interdependence theory. 

1. INTRODUCTION 
Many scientists have recently come to recognize the social aspects 
of intelligence [1]. In contrast to purely cognitive intelligence, 
which is most often described by problem solving ability and/or 
declarative knowledge acquisition and usage, social intellect 
revolves around an individual’s ability to effectively understand 
and respond in social situations [2]. Neuroscientific evidence is 
beginning to emerge supporting theories of social intelligence [3]. 
From a roboticist’s perspective, it then becomes natural to ask 
how this form of intelligence could play a role in the development 
of an artificially intelligent robot. As an initial step, one must first 
consider which concepts are most important to social intelligence.  

Social interaction is one fundamental concept [4]. Social 
psychologists define social interaction as influence—verbal, 
physical, or emotional—by one individual on another [5]. If a 

goal of artificial intelligence is to understand, imitate, and interact 
with humans then researchers must develop computational 
representations for interaction that will allow an artificial system 
to: (1) use perceptual information to generate its representation 
for interaction; (2) represent its interactions with a variety of 
human partners in numerous different social environments; and 
(3) afford the robot guidance in selecting interactive actions.  

This paper presents a representation that allows a robot to manage 
these challenges. A general, established, computational 
representation for social interaction that is not tied to specific 
social environments or paradigms is presented [4]. Moreover, we 
contribute a preliminary algorithm that allows a robot to create 
representations of its social interactions from direct verbal 
communication. Simulation results demonstrate our algorithm in 
several different domains and with numerous different types of 
partners. The purpose of this paper is to introduce the outcome 
matrix as an important potential representation of social 
interaction in artificial systems and demonstrate a method for 
generating outcome matrices. This paper begins by first 
summarizing relevant research.    

2. RELATED WORK 
Representations for interaction have a long history in social 
psychology and game theory [4, 6]. Interdependence theory, a 
type of social exchange theory, is a psychological theory 
developed as a means for understanding and analyzing 
interpersonal situations and interaction [4]. The term 
interdependence specifies the extent to which one individual of a 
dyad influences the other. Interdependence theory is based on the 
claim that people adjust their interactive behavior in response to 
their perception of a social situation’s pattern of rewards and 
costs. Thus, each choice of interactive behavior by an individual 
offers the possibility of specific rewards and costs—also known as 
outcomes—after the interaction. Interdependence theory 
represents interaction and social situations computationally as an 
outcome matrix (figure 1). An outcome matrix represents an 
interaction by expressing the outcomes afforded to each 
interacting individual with respect each pair of potential behaviors 
chosen by the individuals.  

Game theory also explores interaction. Moreover, game theory has 
been described as “a bag of analytical tools” to aid one’s 
understanding of strategic interaction [6]. As a branch of applied 
mathematics, game theory thus focuses on the formal 
consideration of strategic interactions, such as the existence of 
equilibriums and economic applications [6]. Game theory and 
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interdependence theory both use the outcome matrix to represent 
interaction [4, 6]. Game theory, however, is limited by several 
assumptions, namely: both individuals are assumed to be outcome 
maximizing; to have complete knowledge of the game including 
the numbers and types of individuals and each individual’s 
payoffs; and each individual’s payoffs are assumed to be fixed 
throughout the game. Because it assumes that individuals are 
outcome maximizing, game theory can be used to determine 
which actions are optimal and will result in an equilibrium of 
outcome. Interdependence theory does not make these 
assumptions and does not lend itself to analysis by equilibrium of 
outcomes. Numerous researchers have used game theory to 
control the behavior of artificial agents in multi-agent 
environments (e.g. [7]). We do not know of any that have used 
interdependence theory. The use of interdependence theory is a 
crucial difference between this work and previous investigations 
by other researchers using game theory to control the social 
behavior of an agent.  
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Figure 1. Example outcome matrices are depicted above. 
The right hand side depicts an outcome matrix representing an 
actual interaction encountered by the robot in the 
experiments. The left hand side depicts a social situation. 
Social situations abstractly represent interactions. A 
dependent situation is depicted on the left and an independent 
situation is depicted on the right. 

This work differs from much of current human-robot interaction 
research in that our work investigates theoretical aspects of 
human-robot interaction. Typically, HRI research explores the 
mechanisms for interaction, such as gaze following, smooth 
pursuit, face detection, and affect characterization [8]. 

3. REPRESENTING INTERACTION 
The outcome matrix is a standard computational representation for 
interaction [4]. It is composed of information about the 
individuals interacting, including their identity, the interactive 
actions they are deliberating over, and scalar outcome values 
representing the reward minus the cost, or the outcomes, for each 
individual. Thus, an outcome matrix explicitly represents 
information that is critical to interaction. Typically, the identity of 
the interacting individuals is listed along the dimensions of the 
matrix. Figure 1 depicts an interaction involving two individuals. 
In this article the term individual is used to indicate either a 
human or a social robot or agent. We will focus on interaction 
involving two individuals—dyadic interaction. An outcome 
matrix can, however, represent interaction involving more than 
two individuals. The rows and columns of the matrix consist of a 

list of actions available to each individual during the interaction. 
Finally, a scalar outcome is associated with each action pair for 
each individual. Outcomes represent unitless changes in the robot, 
agent, or human’s utility. Thus, for example, an outcome of zero 
reflects the fact that no change in the individual’s utility will 
result from the mutual selection of that action pair.    

Because outcome matrices are computational representations, it is 
possible to describe them formally. Doing so allows for powerful 
and general descriptions of interaction. The notation presented 
here draws heavily from game theory [6]. A representation of 
interaction consists of 1) a finite set N of interacting individuals; 

2) for each individual Ni ∈  a nonempty set 
i

A  of actions; 3) 
the utility obtained by each individual for each combination of 

actions that could have been selected [4]. Let  
i

A
i
j

a ∈  be an 

arbitrary action j from individual i’s set of actions. Let 

( )N
kaja ,,

1
K  denote a combination of actions, one for each 

individual, and let 
i

u  denote individual i’s utility function: 

( ) ℜ→N
kaja

i
u ,,

1
K  is the utility received by individual i if the 

individuals choose the actions ( )N
kaja ,,

1
K . The term O  is 

used to denote an outcome matrix. The superscript -i is used to 

express individual i 's partner. Thus, for example, 
i

A  denotes the 

action set of individual i and 
i

A
−

 denotes the action set of 
individual i’s interactive partner.  

3.1 Representing Social Situations 
The term interaction describes a discrete event in which two or 
more individuals select interactive behaviors as part of a social 
situation or social environment. Interaction has been defined as 
influence—verbal, physical, or emotional—by one individual on 
another [5]. The term situation has several definitions. The most 
apropos for this work is “a particular set of circumstances existing 
in a particular place or at a particular time [9].” A social situation, 
then, characterizes the environmental factors, outside of the 
individuals themselves, which influence interactive behavior. A 
social situation is abstract, describing the general pattern of 
outcome values in an interaction. An interaction, on the other 
hand, is concrete with respect to the two or more individuals and 
the social actions available to each individual. For example, the 
prisoner’s dilemma describes a particular type of social situation. 
As such, it can, and has been, instantiated in numerous different 
particular social environments ranging from bank robberies to the 
trenches of World War I [10]. Interdependence theorists state that 
interaction is a function of the individuals interacting and of the 
social situation [4]. A dependent situation, for example, is a social 
situation in which each partner’s outcome depends on the other 
partner’s action (Figure 1 left). An independent situation, on the 
other hand, is a social situation in which each partner’s outcome 
does not depend on the partner’s action (Figure 1 right).  
Although a social situation may not afford interaction, all 
interactions occur within some social situation. Interdependence 
theory represents social situations involving interpersonal 
interaction as outcome matrices (see figure 1 for a graphical 
depiction of the difference).  



In previous work, we presented a situation analysis algorithm that 
calculated characteristics of the social situation or interaction 
(such as interdependence) when presented with an outcome matrix 
[11]. The interdependence space is a four dimensional space 
which maps the location of all interpersonal social situations [4]. 
A matrix’s location in interdependence space provides important 
information relating to the interaction. Information such as the 
level of interdependence can indicate to the robot the sensitivity 
of the partner’s outcomes to the robot’s actions. In assistive 
therapy domains, for example, the outcomes of the patient may 
rely on the action selection of the robot. Our results showed that 
by analyzing the interaction, the robot could better select 
interactive actions. Thus, using an outcome matrix as a 
representation of interaction can benefit the robot in terms of 
selecting the best action.     

A computational representation for interaction should afford the 
robot guidance in selecting interactive actions. Outcome matrices 
afford several simple action selection strategies. The most obvious 
method is to choose the action that maximizes the robot’s 
outcome. This strategy is termed  max_own. An individual’s use 
of the max_own strategy results in egoistic interactive behavior. 
Alternatively, the robot may select the action that maximizes its 
partner’s outcome, a strategy termed max_other. An individual’s 
use of the max_other strategy results in altruistic behavior. Yet 
another action selection strategy is for the robot to select the 
action that maximizes the sum of its and its partner’s outcome. 
The use of this strategy results in a cooperative style of behavior. 
Outcome matrices afford many other simple action selection 
strategies (see [11] for other examples). Previous work in robotics 
and planning which employ a similar representation for 
controlling a robot or agent generally focus on a max_own, game 
theoretic action selection strategy. To the best of our knowledge 
action selection strategies such as max_other have not been 
investigated.     

3.2 Partner Modeling 
Several researchers have explored how humans develop mental 
models of robots (e.g. [12]). A mental model is a term used to 
describe a person’s concept of how something in the world works 

[13]. We use the term partner model (denoted 
i

m
−

) to describe a 
robot’s mental model of its interactive human partner. We use the 

term self model (denoted 
i

m ) to describe the robot’s mental 
model of itself. Again, the superscript -i is used to express 
individual i 's partner [6].  

An exploration of how a robot could model its human partner 
should begin by considering what information will be collected in 
this model. Our partner model contains three types of information: 

1) a set of partner features ( )i
nf

i
f

−−
,,1 K ; 2) an action model,  

i
A

−
; and 3) a utility function 

i
u

−
. We use the notation 

i
A

i
m

−−
.  and 

i
u

i
m

−−
.  to denote the action model and utility 

function within a partner model.   

Partner features are used for partner recognition. Partner features 
allow the robot to recognize the partner in subsequent 
interactions. The partner’s action model contains a list of actions 
available to that individual. The partner’s utility function includes 
information about the outcomes obtained by the partner when the 

robot and the partner select a pair of actions. The information 
encompassed within our partner models does not represent the 
final word on what types of information should be included in 
such models. Information about the partner’s beliefs, knowledge, 
personality, etc. could conceivable be included in these models.  

 

Figure 2.  Algorithms for creating and using outcome matrices. 
The algorithm successively updates the partner models 
achieving greater outcome matrix creation accuracy. The 
function x maps partner features to a partner ID, y maps 
situation features to the robot’s self model, and z maps partner 
features to a partner model. 
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The self model also contains an action model and a utility 
function. The action model contains a list of actions available to 
the robot. Similarly the robot’s utility function includes 
information about the robot’s outcomes. 

3.3 From Interaction to Outcome Matrix  
The proposed representation has the following elements which 
must be filled in: the identity of the individuals interacting, the 
actions for each individual, and the outcomes available for each 
pair of actions and each individual. The robot must fill in this 
information in the order listed because, for example, the identity 
of the robot’s partner could influence which actions are available 
to the partner. 

We have thus sketched the outline of an algorithm for creating 
outcome matrices from the robot’s model of itself and its partner.       
Figure 2 (top) depicts the algorithm. The algorithm takes as input 
the self model and the partner model and produces an outcome 
matrix as output. The first step of the algorithm creates an empty 
outcome matrix. The second step of the algorithm sets the 
partner’s ID and both the robot’s and the partner’s actions. This 
step uses the function x to map perceptual features to a unique 
label or ID. ID creation provides a means of attaching the 
perception of an individual to what is learned from interacting 
with that individual. In theory, any method that provides a unique 
ID from perceptual features should work in this algorithm. We 
have not, however, explored this claim experimentally. Finally, 
for each pair of actions in the action models, we use each 

individual’s utility function (
i

u  and 
i

u
−

) to assign an outcome 
for the pair of actions. 

It should be apparent that the Outcome Matrix Creation algorithm 
simply fills in the matrix with missing information. Moreover, the 
accuracy of the outcome matrices created by the algorithm 
depends entirely on the accuracy of the information contained in 
the self and partner models. This begs the question, where does 
the information for the models come from? The interact-and-
update algorithm serves this purpose.  

The Interact-and-update algorithm uses information learned 
during an interaction to revise its partner and robot models. 
Norman notes that humans continually revise their mental models 
with additional interaction [13]. Our algorithm employs a similar 
strategy, updating its representation of its human partner with 
each additional interaction. The algorithm works by first 
predicting the action the partner will select and the outcomes the 
robot and the partner will obtain. Then, in the update phase, the 
algorithm adjusts the partner model.  

Figure 2 (bottom) depicts the algorithm. For clarity, the algorithm 
is divided into three phases: pre-interaction, interact, and update. 
During the pre-interaction phase the robot selects models, calls 
the Outcome Matrix Creation algorithm constructing the matrix, 
selects an action and sets its predictions for the interaction. 
During the interact phase the robot performs the action. Finally, in 
the update phase, the robot adjusts its partner model to account 
for the actual outcome obtained and actions performed.  

The interact-and-update algorithm takes as input the partner 
features and situation features. Partner features are used to 
recognize and/or characterize the robot’s interactive partner. 
Similarly, situation features are perceptual features used to 
characterize the environment. The algorithm begins by using the 

situation features to retrieve a self model. The function y maps 
situation features to subsets of the robot’s action set and utility 
values. Thus the robot’s model of itself depends on the type of 
environment in which it is interacting. The partner’s features are 
used to retrieve a model of the partner. The function z selects the 
partner model from a database of partner models with the greatest 
number of equivalent features. During initialization, the partner 
model database is seeded with a model of the robot. Thus the 
database always contains at least one model. During the 
interaction phase the robot performs the action. During the update 
phase of the algorithm, the robot first perceives the action 
performed by its partner and the outcome both it and the partner 
obtain. Next, if the partner action does not match the prediction, 
then the action is added to the model if it did not exist and the 
outcome for the action pair is updated. If, on the other hand, the 
robot predicted the correct action but did not predict the correct 
outcome then the outcome is updated in the partner model. Next, 
if the outcome the robot obtained differed from the robot’s 
prediction then the robot updates its own model to reflect the 
received outcome. Finally actions and associated outcome values 
which have less than k probability of usage based on previous 
experience are removed. This prevents the model from becoming 
filled with rarely used actions. Successive matrices can be created 
by looping to line 3. 

Line 7 updates the outcome value to match the perceived outcome 
value when an unexpected action is encountered. If the action is 
unknown, then robot does not yet have information about the 
outcome values of all action pairs. In this case it must make an 
assumption as to their value. As currently presented the algorithm 
assigns a single outcome value to all action pairs irrespective of 
the robot’s action. This assignment results in what we call an 
action independence assumption. The robot is assuming that, for 
the unknown action pairs, the partner receives the same outcome 
regardless of the robot’s choice of action. Alternatively, we could 
have assumed that for unknown action pairs the human receives 
the same outcome as the robot. Either of these assumptions is 
equally valid as the values simply serve as placeholders and allude 
to the robot’s current ignorance of the human’s action preference.  

Intuitively the algorithm directly updates the outcome values and 
actions. Hence the algorithm is susceptible to noise. Machine 
learning algorithms could be used to reduce this susceptibility. 
Ng, for example, describes inverse reinforcement learning as the 
problem of learning a task’s reward function. He has also 
developed techniques for learning from a teacher [14]. We have 
begun to explore the use of clustering techniques to aid in partner 
model learning and our development of methods for matrix 
creation is ongoing research. Numerous game theoretic methods, 
such as Bayesian games, also exist for handling uncertainty [6]. 
Unfortunately space limitations prevent a detailed examination of 
error reduction techniques.             

3.4 Determining Model Accuracy 
The preceding discussion raises an important question: how do we 
measure partner model accuracy? For example, given a particular 

human partner with action set 
i

A
i

m
−−

.  and utility function 
i

u
i

m
−−

. , how close is the robot’s partner model 
i

m
−

 to the 

actual model 
i

m
−*

? We address this problem by viewing action 
models and utility functions as sets. The action model is a set of 



actions and a utility function is a set of triplets contains the action 
of each individual and a utility value. We can then do set 
comparisons to determine the accuracy of the robot’s partner 

model 
i

m
−

. 

Two types of error are possible. Type I error (false positive) 
occurs if an action or utility is added to the robot’s partner model 

(
i

m
−

) which is not in the actual model (
i

m
−∗

). Type II error 
(false negative) occurs if an action or utility in the actual model 

(
i

m
−∗

) is not included in robot’s partner model (
i

m
−

). Both of 
these types of error must be included in a measure of action model 
or utility function accuracy. Moreover, a utility function value 
was not considered present in the model if the value differed from 
the actual value by an amount greater than one. To determine 
Type I error we calculate the number of actions or utilities in 

i
m

−
 which are not in 

i
m

−∗
 as a percent of the number of 

actions or utilities in 
i

m
−

. Thus, i
m

i
m

i
m

−

−−− *

, is the number of 

actions in the robot’s model that are not in the actual model 
divided by the number of actions in the robot’s model. Model 
accuracy, as oppose to inaccuracy, is calculated as 

i
m

i
m

i
m

−

−−−

−

*

1 . Type II error can be calculated as the number 

of actions or utilities in both 
i

m
−

 and 
i

m
−∗

 as a percent of 

i
m

−∗
. Thus, 

i
m

i
m

i
m

−∗

−∩−∗

, is the number of actions in both 

models divided by the number of actions in the actual model.  
Finally, the two types of errors are averaged in the equation,
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15.0  (1) 

to create d, an overall measure of model accuracy for either an 

action model (
a

d ) or a utility function (
u

d ). To determine 
overall model accuracy we average the error from both 
components of the partner model,  

  
2

udadi
d

+
=−

    (2) 

4. EXPERIMENTAL METHODOLOGY 
Three components make up a human robot interaction—the robot, 
the human, and the environment. This research explores the 
robot’s social behavior. Thus, we must control for the behavior of 
the human and the environment. In the section that follows we 
present a method to control for the human’s behavior. 

4.1 Controlling Human Behavior  
Evaluating the robot’s ability to model its interactive partner 
requires control over its interactive partner’s behavior. In essence, 
we need the human partner to act in a predefined manner. 
Laboratory experiments involving controlled human behavior are 
standard in many psychology experiments [5]. These experiments 
typically require that the experimenter’s confederate follow a 
predefined script often acting the part of a fellow subject. This 
script explains how the person should behave in all of the 
situations he or she will face in the experiment. In much the same 
way, our evaluation of the robot’s ability to model its partner 
requires that the human partner act in a scripted manner. We use 
the term actor script to describe a predefined set of interactive 
instructions that the human will follow when interacting with the 
robot. Actor scripts are used in the experiments presented in this 
work.  

An actor script is created by first delineating the situations that the 
human-robot dyad will encounter. Once the situations have been 
determined, the human’s actions can be dictated in several 
different ways. One method is to assign the human a social 
character and to then select actions in accordance with the 
assigned character. For example, if the human is assigned the 
social character of altruist then the human will select the outcome 
matrix action that most favors the robot’s outcomes. To complete 
the actor script, actions are determined for each interaction, 
possibly being contingent on the robot’s prior behavior, and a list 
or flowchart is created that the human follows when interacting 
with the robot. 

In our experiments, the robot’s human partner was assigned a 
predetermined list of perceptual features that were used by the 
robot for identification or as evidence of the partner’s type. 
Moreover, the human’s actions were scripted. In other words, the 
human selected a predefined series of actions that were contingent 
on the robot’s prior actions and the experimental condition. 
Because the experiments controlled for the human’s features and 
actions, all experiments could be conducted by a single human 
partner. Still, a pilot study involving three different humans (a 20 
year old American woman, a 20 year old Indian-American 
woman, and a 33 year old American male) was conducted to rule 
out the possibility of experimenter bias. The study compared the 
outcome matrices created by the robot when interacting in the 
same environment with each different human. No difference was 
found. 

4.2 Controlling the Environment   
The use of predefined social situations as a method for exploring 
human interactive behavior has become a common 
methodological tool for psychologists, economists and 
neuroscientists [15]. We control the environment by using 
predefined, arbitrary social situations. These social situations 
determined the pattern of outcome values received by the robot 
and the human. Each partner type was assigned an arbitrary 
preference over his/her actions. These actions were assigned 
utilities in a top down fashion. For instance, the police officer in 
the search and rescue environment might be assigned a utility 
function of limit-access=1, direct-traffic=0, 
search-for-victim=-1. Keep in mind that our goal is to 
determine if, and how well the robot can learn a model of its 
partner. Hence it suffices to create an arbitrary utility function for 



the robot’s partner to gauge if the robot can learn the model. We 
tested also the algorithm on dependent and independent situations 
(figure 1).  

4.3 Experimental Setup  
We conducted both simulation experiments and real world 
experiments to test the proposed algorithm. Our simulation 
experiments utilized USARSim, a collection of robot models, 
tools, and environments for developing and testing search and 
rescue algorithms in high-fidelity simulations.  

We created five different environments in USASim to test the 
generality of our algorithm. The household environment modeled 
a small studio apartment and contained couches, a bed, a 
television, etc. (Figure 3 top left). The museum environment 
modeled a small art and sculpture gallery and contained paintings, 
statues, and exhibits (Figure 3 top right). The assistive 
environment modeled a rehabilitation suite (Figure 3 bottom left). 
The prison environment modeled a small prison and contained 
weapons, visiting areas, and a guard station (Figure 3 bottom 
right). The search and rescue environment (not shown) modeled a 
disaster area and contained debris fields, small fires, victims, and 
a triage area.  

 
Figure 3. Four of the USARSim environments used in the 
simulation experiments.   

The USARSim model of the Pioneer DX robot was used in all 
experiments. The robot had both a camera and a laser range 
finder. The robot used speech synthesis to communicate questions 
and information to the human partner. Speech recognition 
translated the spoken information provided by the human. 
Microsoft’s Speech SDK provided the speech synthesis and 
recognition capabilities. 

Table 1. Partner features and feature values 

The real world environment was 5x5 meter maze in the shape of a 
cross (Figure 6). One branch of the cross contained victims from a 
notional disaster (babies) and the other branch contained hazard 
items such as a biohazard.   

5. EXPERIMENTS 
Simulation experiments were conducted to gather accuracy data. 
Real robot experiments were conducted to demonstrate the 
feasibility of this approach on real-world situated embodied 
systems. We will describe the simulation experiments first. 

We hypothesized that continued interaction would result in 
improved partner model accuracy—both accuracy of the partner’s 
action model and of the partner’s utility function. Two simulation 
experiments were conducted to test this hypothesis. The first 
experiment examined interaction with a single partner type 
(doctor) in each different environment. Each environment resulted 
in a different action model and utility function for the robot. In the 
search and rescue environment, for example, the robot helped to 
locate trapped victims. In the museum environment, on the other 
hand, the robot acted as a security guard patrolling the museum. A 
second simulation experiment explored interaction in a single 
environment (search and rescue) with four different types of 
individuals: policeman, firefighter, doctor, and citizen. Each 
different type of partner had a unique action model and utility 
function. For example, the firefighter preferred to search for 
hazards and the doctor preferred to save victims.  

Table 2. A list of actions for each type of partner 

Partner Type Actions 
Robot SearchFor-x, Observe-x, Light-

x, GuideTo-x  
Policeman limit-access, direct-traffic, 

search-for-victim 
Firefighter remove-toxic-material, fight-

fire, rescue-victim, move-
debris 

Doctor startIV, intobate, peformCPR 

Citizen run, cry, scream 

Random Any of the above non-robot actions.  
Each human partner type possessed particular values for all of the 
partner features (Table 1 and Table 2). The values for Tool 1 and 
Tool 2 were type specific the other values were selected at 
random. For example, a firefighter might have the following 
partner features: woman, short, young, thin, red, green, axe, 
oxygen-mask. Action models consisted of three or four actions 
and were also type specific. Similarly, utility values were action 
and type specific. Table 2 depicts the action models for each type 
of partner and the robot. Ground truth consisted of predefined sets 
of actions and outcome values for a specific partner type. For 
example, a citizen partner was produced by 1) randomly selecting 
the values for the partner features (except tools which are set to 
baseball-cap and backpack for this type) 2) setting the action 
model to that from Table 2 for citizen creating and 3) creating 
arbitrary utility values for the utility function.   

Both simulation experiments involved 20 interactions with a 
partner. Prior to interacting, the robot used OpenCV to detect 
objects in the environment and create the situation features. Next 
the robot used synthesized speech and speech recognition to query 
the partner for their features. Once the robot had gathered the 
information necessary to run the Interact-and-update algorithm, 
the algorithm was run, creating an outcome matrix and then 
selecting an action from the matrix. Both the robot and its human 
partner performed actions in simulation. The action performed by 
the human was dictated by the actor script. If the situation was 
independent then the robot received the outcome regardless of the 

Feature Name Values 
Gender <man,woman> 
Height <tall,medium,short> 
Age <young,middling,old> 

Weight <heavy,average,thin> 
Hair color <blonde,black,brown,red> 
Eye color <blue,green,brown> 

Tool 1 <axe,gun,stethoscope,baseball-cap> 
Tool 2 <oxygen-mask,badge,medical-kit,backpack> 



action selected by the human. If the situation was dependent, the 
robot’s outcome depended on the human’s action. Finally the 
robot queries the human for the action it performed and outcome 
received.    

Model accuracy in different environments for a 
single partner type
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Figure 4. The graph depicts the results from the first 
simulation experiment involving different environments. The 
results show that model accuracy increases with continued 
interaction, eventually matching the ground truth.  

Model accuracy for different partner types in single 
environment
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Figure 5. The graph depicts the results from the second 
simulation experiment involving different partner types. The 
results again show that model accuracy increases with 
continued interaction, eventually matching the ground truth. 

During the experiment, we recorded the robot’s model of its 
partner after each interaction. Equation (1) from section 3.2 was 
used to calculate the accuracy with respect to the individual 
components of the partner model. Equation (2) was used to 
calculate the overall accuracy of the partner model. The 
independent variable in the first experiment was the type of 
environment the robot encountered. The independent variable in 
the second experiment was the type of partner the robot 
encountered. The dependent variable for both simulation 
experiments was model accuracy. Figure 4 depicts the results for 
the first simulation experiment. The graph shows that with 
continued interaction the accuracy of the action model, utility 
function, and partner model increase, eventually matching the 
ground truth. After the eleventh interaction, the accuracy of all 
models increases dramatically. This is because the algorithm 
purges the models of seldom used actions and utilities reducing 
Type I error. In the dependent situation we see that accuracy of 
the utility values only reaches 64% after 20 interactions. This is 

because the dependent situation violates the action independence 
assumption discussed in section 3.3. Although less accurate, the 
partner model in this case still contains all of the information 
experienced during interaction with partner. We have found that 
machine learning techniques can improve this result.  

Figure 5 depicts the results for the second simulation. Again the 
graph shows that the accuracy of all models increases with 
continued interaction, eventually matching the ground truth. 
Violating the action independence assumption again results in 
decreased utility accuracy (63 percent). A random partner type is 
also included for comparison. The random partner selected any 
action available to any partner type at random. The graph only 
depicts action model accuracy for the random partner type. An 
accuracy of 68 percent is achieved for the random partner type. 

 
Figure 6. Photos from the robot experiment. The robot 
initially moves to observe the victim. After learning the model  
of its partner the robot moves to observe the hazard. The 
leftmost four photos depict the robot as it moves through the 
maze and selects actions. The fifth photo depicts video that the 
robot sends to its human partner.  

A demonstration experiment involving a real robot was also 
conducted. In this experiment the robot was tasked with assisting 
in a notional search and rescue environment. The robot was 
capable of two actions: 1) moving to and observing a victim and 
2) moving to and observing a hazard. The robot interacted with a 
person acting as a firefighter. The firefighter was also capable of 
two actions: containing the hazard or rescuing the victims. The 
firefighter arbitrarily preferred to contain hazards. The robot 
received more outcome if the victims survived. The victims 
survived only if the robot and the firefighter work together 
observing and containing the hazard or rescuing the victims 
(Figure 1 left side depicts the outcome matrix for this situation). 
Initially the robot has no knowledge of the utility functions or a 
model of its partner. The robot therefore sets its partner model to 
the robot’s self model. In other words the robot assumes that its 
unknown partner has the same actions and preferences as it does. 
During the first interaction the robot moves to observe the 
victims. After the interaction, the robot receives feedback relating 
to the partner’s choice of action and outcomes. It updates its 
partner model accordingly and during the next interaction it 
correctly moves to observe the hazard. The results demonstrate 
the potential feasibility of this approach on a robotic platform. In 
depth experimentation on a fielded system is an area of future 
work. Figure 6 shows the robot moving to observe the victim in 
the first interaction and the hazard in the second interaction.     

6. SUMMARY AND CONCLUSIONS 
This paper has introduced a computational representation for 
interactions and social situations suitable for implementation on a 
robot or software agent. We have discussed the composition of 



this representation, its ability to represent both interactions and 
social situations, and formal operations related to the 
representation. Moreover, we have presented a preliminary 
algorithm for the creation of the representation.  

The algorithm we present assumes perceptual competencies which 
are difficult to achieve. It assumes that the robot can perceive 1) 
the partner’s action, 2) the partner’s outcome value, and 3) the 
outcome obtained by the robot itself. These assumptions may limit 
the current applicability of the algorithm. Nonetheless, as 
demonstrated by the experiments, the perceptual limitations of 
this algorithm can be overcome. Moreover, activity recognition 
and affect detection are current areas of active research [16, 17]. 
Finally, it is important that the HRI community recognize the 
importance of activity recognition and state detection. This 
research provides a theoretical motivation for these research 
topics. It may well be that the challenge of recognizing how a 
robot’s behavior has impacted the humans interacting with it is a 
critical question facing the HRI community.  

We have also assumed that the robot knows what actions are 
available to it. We believe that this is a reasonable assumption. 
We have not assumed that the robot has accurate knowledge of 
the outcomes values resulting from the selection of an action pair. 
We have simply assigned arbitrary initial values for the outcomes 
and then the robot learns the true values through interactive 
experience with the partner.   

Although our results show that interactive experience creates 
increasingly accurate partner models, the actions and utilities of 
the robot’s partner were static, did not change, and contained no 
noise. Because the models were static they could be modeled. 
Alternatively, as demonstrated in the random partner type, the 
partner could have continually selected random actions or 
received random utilities. Clearly in this case less can be learned 
about the partner. In a sense, the robot cannot know what to 
expect next from its partner. In normal interpersonal interaction 
there are times when humans randomize their interactive actions, 
such as in some competitive games. This algorithm will have 
limited success in these situations. Noise in the form of inaccurate 
perception of the human’s outcome values and actions is another 
potential challenge. Fortunately, game theory provides numerous 
tools for managing outcome uncertainty [6]. Moreover, our own 
results have demonstrated that outcome matrices degrade 
gracefully with increased error [18]. Future work will employ 
machine learning techniques to reduce overfitting.      

Near-term practical applications of this work would likely focus 
on environments where the outcomes of the robot’s partner are 
readily available. In assistive therapy environments, for example, 
the robot could ask the patient if an exercise was causing pain. An 
entertainment robot, on the other hand, might gauge user outcome 
in terms of amount of time spent interacting with the robot. 
Applications in areas such as autism are more difficult because the 
nature of the disease may limit the human’s outcome expression 
capabilities.   

Neuroscientists have shown that humans actively model their 
interactive partners [15]. Certainly the interpersonal mental 
models maintained by humans are more complex and rich than the 
models used here. Our purpose is not to claim that the partner 
models discussed here are the same as those formulated by 
humans, but rather to explore what minimal modeling of its 
interactive partner a robot must perform in order to interact 

successfully with the partner and to present a method for 
achieving this modeling. Future work may add additional 
complexity and richness to the partner model. We firmly believe 
that accurate modeling of one’s interactive partner is an important 
component of social intelligence and hence a critical skill for a 
robot to successfully operate in a dynamic social environment.      
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