
Creating and Using Matrix Representations of Social
Interaction

 Alan R. Wagner
Georgia Institute of Technology

85 Fifth Street NW
Atlanta, GA 30308
1-404-894-9311

alan.wagner@cc.gatech.edu

ABSTRACT
This paper explores the use of an outcome matrix as a
computational representation of social interaction suitable for
implementation on a robot. An outcome matrix expresses the
reward afforded to each interacting individual with respect to
pairs of potential behaviors. We detail the use of the outcome
matrix as a representation of interaction in social psychology and
game theory, discuss the need for modeling the robot’s interactive
partner, and contribute an algorithm for creating outcome matrices
from perceptual information. Experimental results explore the use
of the algorithm with different types of partners and in different
environments.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics – autonomous vehicles,
operator interfaces

General Terms
Algorithms, Human Factors.

Keywords
Mental model, interaction, Interdependence theory.

1. INTRODUCTION
Many scientists have recently come to recognize the social aspects
of intelligence [1]. In contrast to purely cognitive intelligence,
which is most often described by problem solving ability and/or
declarative knowledge acquisition and usage, social intellect
revolves around an individual’s ability to effectively understand
and respond in social situations [2]. Neuroscientific evidence is
beginning to emerge supporting theories of social intelligence [3].
From a roboticist’s perspective, it then becomes natural to ask
how this form of intelligence could play a role in the development
of an artificially intelligent robot. As an initial step, one must first
consider which concepts are most important to social intelligence.

Social interaction is one fundamental concept [4]. Social
psychologists define social interaction as influence—verbal,
physical, or emotional—by one individual on another [5]. If a

goal of artificial intelligence is to understand, imitate, and interact
with humans then researchers must develop computational
representations for interaction that will allow an artificial system
to: (1) use perceptual information to generate its representation
for interaction; (2) represent its interactions with a variety of
human partners in numerous different social environments; and
(3) afford the robot guidance in selecting interactive actions.

This paper presents a representation that allows a robot to manage
these challenges. A general, established, computational
representation for social interaction that is not tied to specific
social environments or paradigms is presented [4]. Moreover, we
contribute a preliminary algorithm that allows a robot to create
representations of its social interactions from direct verbal
communication. Simulation results demonstrate our algorithm in
several different domains and with numerous different types of
partners. The purpose of this paper is to introduce the outcome
matrix as an important potential representation of social
interaction in artificial systems and demonstrate a method for
generating outcome matrices. This paper begins by first
summarizing relevant research.

2. RELATED WORK
Representations for interaction have a long history in social
psychology and game theory [4, 6]. Interdependence theory, a
type of social exchange theory, is a psychological theory
developed as a means for understanding and analyzing
interpersonal situations and interaction [4]. The term
interdependence specifies the extent to which one individual of a
dyad influences the other. Interdependence theory is based on the
claim that people adjust their interactive behavior in response to
their perception of a social situation’s pattern of rewards and
costs. Thus, each choice of interactive behavior by an individual
offers the possibility of specific rewards and costs—also known as
outcomes—after the interaction. Interdependence theory
represents interaction and social situations computationally as an
outcome matrix (figure 1). An outcome matrix represents an
interaction by expressing the outcomes afforded to each
interacting individual with respect each pair of potential behaviors
chosen by the individuals.

Game theory also explores interaction. Moreover, game theory has
been described as “a bag of analytical tools” to aid one’s
understanding of strategic interaction [6]. As a branch of applied
mathematics, game theory thus focuses on the formal
consideration of strategic interactions, such as the existence of
equilibriums and economic applications [6]. Game theory and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HRI’09, March 11–13, 2009, La Jolla, CA, USA.
Copyright 2009 ACM 978-60558-404-1/09/03…$5.00.

interdependence theory both use the outcome matrix to represent
interaction [4, 6]. Game theory, however, is limited by several
assumptions, namely: both individuals are assumed to be outcome
maximizing; to have complete knowledge of the game including
the numbers and types of individuals and each individual’s
payoffs; and each individual’s payoffs are assumed to be fixed
throughout the game. Because it assumes that individuals are
outcome maximizing, game theory can be used to determine
which actions are optimal and will result in an equilibrium of
outcome. Interdependence theory does not make these
assumptions and does not lend itself to analysis by equilibrium of
outcomes. Numerous researchers have used game theory to
control the behavior of artificial agents in multi-agent
environments (e.g. [7]). We do not know of any that have used
interdependence theory. The use of interdependence theory is a
crucial difference between this work and previous investigations
by other researchers using game theory to control the social
behavior of an agent.

Example Interaction

0

8 5

5

0

8 5

5
2
1a

2
2a In

d
iv

id
u

al
 2

Individual 1

0

0 5

5

8

8 0

0

perform-
CPR

fight-fire

guide-to-
victim

H
u

m
a

n
P

a
rt

n
e

r

Robot

observe-
victims

Example Social Situation

1
1a 1

2a

Example Outcome Matrices

Figure 1. Example outcome matrices are depicted above.
The right hand side depicts an outcome matrix representing an
actual interaction encountered by the robot in the
experiments. The left hand side depicts a social situation.
Social situations abstractly represent interactions. A
dependent situation is depicted on the left and an independent
situation is depicted on the right.

This work differs from much of current human-robot interaction
research in that our work investigates theoretical aspects of
human-robot interaction. Typically, HRI research explores the
mechanisms for interaction, such as gaze following, smooth
pursuit, face detection, and affect characterization [8].

3. REPRESENTING INTERACTION
The outcome matrix is a standard computational representation for
interaction [4]. It is composed of information about the
individuals interacting, including their identity, the interactive
actions they are deliberating over, and scalar outcome values
representing the reward minus the cost, or the outcomes, for each
individual. Thus, an outcome matrix explicitly represents
information that is critical to interaction. Typically, the identity of
the interacting individuals is listed along the dimensions of the
matrix. Figure 1 depicts an interaction involving two individuals.
In this article the term individual is used to indicate either a
human or a social robot or agent. We will focus on interaction
involving two individuals—dyadic interaction. An outcome
matrix can, however, represent interaction involving more than
two individuals. The rows and columns of the matrix consist of a

list of actions available to each individual during the interaction.
Finally, a scalar outcome is associated with each action pair for
each individual. Outcomes represent unitless changes in the robot,
agent, or human’s utility. Thus, for example, an outcome of zero
reflects the fact that no change in the individual’s utility will
result from the mutual selection of that action pair.

Because outcome matrices are computational representations, it is
possible to describe them formally. Doing so allows for powerful
and general descriptions of interaction. The notation presented
here draws heavily from game theory [6]. A representation of
interaction consists of 1) a finite set N of interacting individuals;

2) for each individual Ni ∈ a nonempty set
i

A of actions; 3)
the utility obtained by each individual for each combination of

actions that could have been selected [4]. Let
i

A
i
j

a ∈ be an

arbitrary action j from individual i’s set of actions. Let

()N
kaja ,,

1
K denote a combination of actions, one for each

individual, and let
i

u denote individual i’s utility function:

() ℜ→N
kaja

i
u ,,

1
K is the utility received by individual i if the

individuals choose the actions ()N
kaja ,,

1
K . The term O is

used to denote an outcome matrix. The superscript -i is used to

express individual i 's partner. Thus, for example,
i

A denotes the

action set of individual i and
i

A
−

 denotes the action set of
individual i’s interactive partner.

3.1 Representing Social Situations
The term interaction describes a discrete event in which two or
more individuals select interactive behaviors as part of a social
situation or social environment. Interaction has been defined as
influence—verbal, physical, or emotional—by one individual on
another [5]. The term situation has several definitions. The most
apropos for this work is “a particular set of circumstances existing
in a particular place or at a particular time [9].” A social situation,
then, characterizes the environmental factors, outside of the
individuals themselves, which influence interactive behavior. A
social situation is abstract, describing the general pattern of
outcome values in an interaction. An interaction, on the other
hand, is concrete with respect to the two or more individuals and
the social actions available to each individual. For example, the
prisoner’s dilemma describes a particular type of social situation.
As such, it can, and has been, instantiated in numerous different
particular social environments ranging from bank robberies to the
trenches of World War I [10]. Interdependence theorists state that
interaction is a function of the individuals interacting and of the
social situation [4]. A dependent situation, for example, is a social
situation in which each partner’s outcome depends on the other
partner’s action (Figure 1 left). An independent situation, on the
other hand, is a social situation in which each partner’s outcome
does not depend on the partner’s action (Figure 1 right).
Although a social situation may not afford interaction, all
interactions occur within some social situation. Interdependence
theory represents social situations involving interpersonal
interaction as outcome matrices (see figure 1 for a graphical
depiction of the difference).

In previous work, we presented a situation analysis algorithm that
calculated characteristics of the social situation or interaction
(such as interdependence) when presented with an outcome matrix
[11]. The interdependence space is a four dimensional space
which maps the location of all interpersonal social situations [4].
A matrix’s location in interdependence space provides important
information relating to the interaction. Information such as the
level of interdependence can indicate to the robot the sensitivity
of the partner’s outcomes to the robot’s actions. In assistive
therapy domains, for example, the outcomes of the patient may
rely on the action selection of the robot. Our results showed that
by analyzing the interaction, the robot could better select
interactive actions. Thus, using an outcome matrix as a
representation of interaction can benefit the robot in terms of
selecting the best action.

A computational representation for interaction should afford the
robot guidance in selecting interactive actions. Outcome matrices
afford several simple action selection strategies. The most obvious
method is to choose the action that maximizes the robot’s
outcome. This strategy is termed max_own. An individual’s use
of the max_own strategy results in egoistic interactive behavior.
Alternatively, the robot may select the action that maximizes its
partner’s outcome, a strategy termed max_other. An individual’s
use of the max_other strategy results in altruistic behavior. Yet
another action selection strategy is for the robot to select the
action that maximizes the sum of its and its partner’s outcome.
The use of this strategy results in a cooperative style of behavior.
Outcome matrices afford many other simple action selection
strategies (see [11] for other examples). Previous work in robotics
and planning which employ a similar representation for
controlling a robot or agent generally focus on a max_own, game
theoretic action selection strategy. To the best of our knowledge
action selection strategies such as max_other have not been
investigated.

3.2 Partner Modeling
Several researchers have explored how humans develop mental
models of robots (e.g. [12]). A mental model is a term used to
describe a person’s concept of how something in the world works

[13]. We use the term partner model (denoted
i

m
−

) to describe a
robot’s mental model of its interactive human partner. We use the

term self model (denoted
i

m) to describe the robot’s mental
model of itself. Again, the superscript -i is used to express
individual i 's partner [6].

An exploration of how a robot could model its human partner
should begin by considering what information will be collected in
this model. Our partner model contains three types of information:

1) a set of partner features ()i
nf

i
f

−−
,,1 K ; 2) an action model,

i
A

−
; and 3) a utility function

i
u

−
. We use the notation

i
A

i
m

−−
. and

i
u

i
m

−−
. to denote the action model and utility

function within a partner model.

Partner features are used for partner recognition. Partner features
allow the robot to recognize the partner in subsequent
interactions. The partner’s action model contains a list of actions
available to that individual. The partner’s utility function includes
information about the outcomes obtained by the partner when the

robot and the partner select a pair of actions. The information
encompassed within our partner models does not represent the
final word on what types of information should be included in
such models. Information about the partner’s beliefs, knowledge,
personality, etc. could conceivable be included in these models.

Figure 2. Algorithms for creating and using outcome matrices.
The algorithm successively updates the partner models
achieving greater outcome matrix creation accuracy. The
function x maps partner features to a partner ID, y maps
situation features to the robot’s self model, and z maps partner
features to a partner model.

Outcome Matrix Creation Algorithm
Input : Self Model

i
m , Partner Model

i
m

−
.

Output : Outcome matrix O.

1. Create empty outcome matrix O

2. Set O.partner = (.
i

mx
−

features) , O.robot =

“robot”, O.columns =
i

A
i

m . , O.rows =
i

A
i

m
−−

.

2. For each pair ()i
ka

i
ja

−
, in all rows and columns

3. () ()i
ka

i
ja

i
u

i
m

i
ka

i
ja

i
O

−←−
,., ,

4. () ()i
ka

i
ja

i
u

i
m

i
ka

i
ja

i
O

−−−←−−
,.,

5. Return O

Interact-and-update Algorithm

Input : partner
i

nf
i

f
−−

,,1 K , situation nee ,,1 K

features

Pre-interaction

1. Set),,1(neey
i

m K= , ()i
nf

i
fz

i
m

−−=−
,,1 K

2. OutcomeMatrixCreationAlgorithm()i
m

i
m

−
,

3. Set =i
a max_own(

i
O), ()i

a
i

a
i

O
i

o
−= ,

*
,

=−i
a

*
max_own(

i
O

−
), ()i

a
i

a
i

O
i

o
−−=−

,
*

Interact

4. Perform
i

a
Update

5. Perceive value
i

a
−

,
i

o ,
i

o
−

6. If
i

a
i

a
−≠− *

7. update
i

A
i

m
−−

.
i

a
−= , () i

o
i

au
i

m
−=−−

.

8. else if
i

o
i

o
−≠− *

9. update () i
o

i
a

i
au

i
m

−=−−
,.

10. If
i

o
i

o
*≠ then update () i

o
i

a
i

au
i

m =−
,.

12. for all
i

a
−

 in
i

m
−

13. if () kiap <− then delete
i

a
−

The self model also contains an action model and a utility
function. The action model contains a list of actions available to
the robot. Similarly the robot’s utility function includes
information about the robot’s outcomes.

3.3 From Interaction to Outcome Matrix
The proposed representation has the following elements which
must be filled in: the identity of the individuals interacting, the
actions for each individual, and the outcomes available for each
pair of actions and each individual. The robot must fill in this
information in the order listed because, for example, the identity
of the robot’s partner could influence which actions are available
to the partner.

We have thus sketched the outline of an algorithm for creating
outcome matrices from the robot’s model of itself and its partner.
Figure 2 (top) depicts the algorithm. The algorithm takes as input
the self model and the partner model and produces an outcome
matrix as output. The first step of the algorithm creates an empty
outcome matrix. The second step of the algorithm sets the
partner’s ID and both the robot’s and the partner’s actions. This
step uses the function x to map perceptual features to a unique
label or ID. ID creation provides a means of attaching the
perception of an individual to what is learned from interacting
with that individual. In theory, any method that provides a unique
ID from perceptual features should work in this algorithm. We
have not, however, explored this claim experimentally. Finally,
for each pair of actions in the action models, we use each

individual’s utility function (
i

u and
i

u
−

) to assign an outcome
for the pair of actions.

It should be apparent that the Outcome Matrix Creation algorithm
simply fills in the matrix with missing information. Moreover, the
accuracy of the outcome matrices created by the algorithm
depends entirely on the accuracy of the information contained in
the self and partner models. This begs the question, where does
the information for the models come from? The interact-and-
update algorithm serves this purpose.

The Interact-and-update algorithm uses information learned
during an interaction to revise its partner and robot models.
Norman notes that humans continually revise their mental models
with additional interaction [13]. Our algorithm employs a similar
strategy, updating its representation of its human partner with
each additional interaction. The algorithm works by first
predicting the action the partner will select and the outcomes the
robot and the partner will obtain. Then, in the update phase, the
algorithm adjusts the partner model.

Figure 2 (bottom) depicts the algorithm. For clarity, the algorithm
is divided into three phases: pre-interaction, interact, and update.
During the pre-interaction phase the robot selects models, calls
the Outcome Matrix Creation algorithm constructing the matrix,
selects an action and sets its predictions for the interaction.
During the interact phase the robot performs the action. Finally, in
the update phase, the robot adjusts its partner model to account
for the actual outcome obtained and actions performed.

The interact-and-update algorithm takes as input the partner
features and situation features. Partner features are used to
recognize and/or characterize the robot’s interactive partner.
Similarly, situation features are perceptual features used to
characterize the environment. The algorithm begins by using the

situation features to retrieve a self model. The function y maps
situation features to subsets of the robot’s action set and utility
values. Thus the robot’s model of itself depends on the type of
environment in which it is interacting. The partner’s features are
used to retrieve a model of the partner. The function z selects the
partner model from a database of partner models with the greatest
number of equivalent features. During initialization, the partner
model database is seeded with a model of the robot. Thus the
database always contains at least one model. During the
interaction phase the robot performs the action. During the update
phase of the algorithm, the robot first perceives the action
performed by its partner and the outcome both it and the partner
obtain. Next, if the partner action does not match the prediction,
then the action is added to the model if it did not exist and the
outcome for the action pair is updated. If, on the other hand, the
robot predicted the correct action but did not predict the correct
outcome then the outcome is updated in the partner model. Next,
if the outcome the robot obtained differed from the robot’s
prediction then the robot updates its own model to reflect the
received outcome. Finally actions and associated outcome values
which have less than k probability of usage based on previous
experience are removed. This prevents the model from becoming
filled with rarely used actions. Successive matrices can be created
by looping to line 3.

Line 7 updates the outcome value to match the perceived outcome
value when an unexpected action is encountered. If the action is
unknown, then robot does not yet have information about the
outcome values of all action pairs. In this case it must make an
assumption as to their value. As currently presented the algorithm
assigns a single outcome value to all action pairs irrespective of
the robot’s action. This assignment results in what we call an
action independence assumption. The robot is assuming that, for
the unknown action pairs, the partner receives the same outcome
regardless of the robot’s choice of action. Alternatively, we could
have assumed that for unknown action pairs the human receives
the same outcome as the robot. Either of these assumptions is
equally valid as the values simply serve as placeholders and allude
to the robot’s current ignorance of the human’s action preference.

Intuitively the algorithm directly updates the outcome values and
actions. Hence the algorithm is susceptible to noise. Machine
learning algorithms could be used to reduce this susceptibility.
Ng, for example, describes inverse reinforcement learning as the
problem of learning a task’s reward function. He has also
developed techniques for learning from a teacher [14]. We have
begun to explore the use of clustering techniques to aid in partner
model learning and our development of methods for matrix
creation is ongoing research. Numerous game theoretic methods,
such as Bayesian games, also exist for handling uncertainty [6].
Unfortunately space limitations prevent a detailed examination of
error reduction techniques.

3.4 Determining Model Accuracy
The preceding discussion raises an important question: how do we
measure partner model accuracy? For example, given a particular

human partner with action set
i

A
i

m
−−

. and utility function
i

u
i

m
−−

. , how close is the robot’s partner model
i

m
−

 to the

actual model
i

m
−*

? We address this problem by viewing action
models and utility functions as sets. The action model is a set of

actions and a utility function is a set of triplets contains the action
of each individual and a utility value. We can then do set
comparisons to determine the accuracy of the robot’s partner

model
i

m
−

.

Two types of error are possible. Type I error (false positive)
occurs if an action or utility is added to the robot’s partner model

(
i

m
−

) which is not in the actual model (
i

m
−∗

). Type II error
(false negative) occurs if an action or utility in the actual model

(
i

m
−∗

) is not included in robot’s partner model (
i

m
−

). Both of
these types of error must be included in a measure of action model
or utility function accuracy. Moreover, a utility function value
was not considered present in the model if the value differed from
the actual value by an amount greater than one. To determine
Type I error we calculate the number of actions or utilities in

i
m

−
 which are not in

i
m

−∗
 as a percent of the number of

actions or utilities in
i

m
−

. Thus, i
m

i
m

i
m

−

−−− *

, is the number of

actions in the robot’s model that are not in the actual model
divided by the number of actions in the robot’s model. Model
accuracy, as oppose to inaccuracy, is calculated as

i
m

i
m

i
m

−

−−−

−

*

1 . Type II error can be calculated as the number

of actions or utilities in both
i

m
−

 and
i

m
−∗

 as a percent of

i
m

−∗
. Thus,

i
m

i
m

i
m

−∗

−∩−∗

, is the number of actions in both

models divided by the number of actions in the actual model.
Finally, the two types of errors are averaged in the equation,

−∗

−∩−∗

+−

−−−

−=
i

m

i
m

i
m

i
m

i
m

i
m

d 5.0

*

15.0 (1)

to create d, an overall measure of model accuracy for either an

action model (
a

d) or a utility function (
u

d). To determine
overall model accuracy we average the error from both
components of the partner model,

2

udadi
d

+
=−

 (2)

4. EXPERIMENTAL METHODOLOGY
Three components make up a human robot interaction—the robot,
the human, and the environment. This research explores the
robot’s social behavior. Thus, we must control for the behavior of
the human and the environment. In the section that follows we
present a method to control for the human’s behavior.

4.1 Controlling Human Behavior
Evaluating the robot’s ability to model its interactive partner
requires control over its interactive partner’s behavior. In essence,
we need the human partner to act in a predefined manner.
Laboratory experiments involving controlled human behavior are
standard in many psychology experiments [5]. These experiments
typically require that the experimenter’s confederate follow a
predefined script often acting the part of a fellow subject. This
script explains how the person should behave in all of the
situations he or she will face in the experiment. In much the same
way, our evaluation of the robot’s ability to model its partner
requires that the human partner act in a scripted manner. We use
the term actor script to describe a predefined set of interactive
instructions that the human will follow when interacting with the
robot. Actor scripts are used in the experiments presented in this
work.

An actor script is created by first delineating the situations that the
human-robot dyad will encounter. Once the situations have been
determined, the human’s actions can be dictated in several
different ways. One method is to assign the human a social
character and to then select actions in accordance with the
assigned character. For example, if the human is assigned the
social character of altruist then the human will select the outcome
matrix action that most favors the robot’s outcomes. To complete
the actor script, actions are determined for each interaction,
possibly being contingent on the robot’s prior behavior, and a list
or flowchart is created that the human follows when interacting
with the robot.

In our experiments, the robot’s human partner was assigned a
predetermined list of perceptual features that were used by the
robot for identification or as evidence of the partner’s type.
Moreover, the human’s actions were scripted. In other words, the
human selected a predefined series of actions that were contingent
on the robot’s prior actions and the experimental condition.
Because the experiments controlled for the human’s features and
actions, all experiments could be conducted by a single human
partner. Still, a pilot study involving three different humans (a 20
year old American woman, a 20 year old Indian-American
woman, and a 33 year old American male) was conducted to rule
out the possibility of experimenter bias. The study compared the
outcome matrices created by the robot when interacting in the
same environment with each different human. No difference was
found.

4.2 Controlling the Environment
The use of predefined social situations as a method for exploring
human interactive behavior has become a common
methodological tool for psychologists, economists and
neuroscientists [15]. We control the environment by using
predefined, arbitrary social situations. These social situations
determined the pattern of outcome values received by the robot
and the human. Each partner type was assigned an arbitrary
preference over his/her actions. These actions were assigned
utilities in a top down fashion. For instance, the police officer in
the search and rescue environment might be assigned a utility
function of limit-access=1, direct-traffic=0,
search-for-victim=-1. Keep in mind that our goal is to
determine if, and how well the robot can learn a model of its
partner. Hence it suffices to create an arbitrary utility function for

the robot’s partner to gauge if the robot can learn the model. We
tested also the algorithm on dependent and independent situations
(figure 1).

4.3 Experimental Setup
We conducted both simulation experiments and real world
experiments to test the proposed algorithm. Our simulation
experiments utilized USARSim, a collection of robot models,
tools, and environments for developing and testing search and
rescue algorithms in high-fidelity simulations.

We created five different environments in USASim to test the
generality of our algorithm. The household environment modeled
a small studio apartment and contained couches, a bed, a
television, etc. (Figure 3 top left). The museum environment
modeled a small art and sculpture gallery and contained paintings,
statues, and exhibits (Figure 3 top right). The assistive
environment modeled a rehabilitation suite (Figure 3 bottom left).
The prison environment modeled a small prison and contained
weapons, visiting areas, and a guard station (Figure 3 bottom
right). The search and rescue environment (not shown) modeled a
disaster area and contained debris fields, small fires, victims, and
a triage area.

Figure 3. Four of the USARSim environments used in the
simulation experiments.

The USARSim model of the Pioneer DX robot was used in all
experiments. The robot had both a camera and a laser range
finder. The robot used speech synthesis to communicate questions
and information to the human partner. Speech recognition
translated the spoken information provided by the human.
Microsoft’s Speech SDK provided the speech synthesis and
recognition capabilities.

Table 1. Partner features and feature values

The real world environment was 5x5 meter maze in the shape of a
cross (Figure 6). One branch of the cross contained victims from a
notional disaster (babies) and the other branch contained hazard
items such as a biohazard.

5. EXPERIMENTS
Simulation experiments were conducted to gather accuracy data.
Real robot experiments were conducted to demonstrate the
feasibility of this approach on real-world situated embodied
systems. We will describe the simulation experiments first.

We hypothesized that continued interaction would result in
improved partner model accuracy—both accuracy of the partner’s
action model and of the partner’s utility function. Two simulation
experiments were conducted to test this hypothesis. The first
experiment examined interaction with a single partner type
(doctor) in each different environment. Each environment resulted
in a different action model and utility function for the robot. In the
search and rescue environment, for example, the robot helped to
locate trapped victims. In the museum environment, on the other
hand, the robot acted as a security guard patrolling the museum. A
second simulation experiment explored interaction in a single
environment (search and rescue) with four different types of
individuals: policeman, firefighter, doctor, and citizen. Each
different type of partner had a unique action model and utility
function. For example, the firefighter preferred to search for
hazards and the doctor preferred to save victims.

Table 2. A list of actions for each type of partner

Partner Type Actions
Robot SearchFor-x, Observe-x, Light-

x, GuideTo-x
Policeman limit-access, direct-traffic,

search-for-victim
Firefighter remove-toxic-material, fight-

fire, rescue-victim, move-
debris

Doctor startIV, intobate, peformCPR

Citizen run, cry, scream

Random Any of the above non-robot actions.
Each human partner type possessed particular values for all of the
partner features (Table 1 and Table 2). The values for Tool 1 and
Tool 2 were type specific the other values were selected at
random. For example, a firefighter might have the following
partner features: woman, short, young, thin, red, green, axe,
oxygen-mask. Action models consisted of three or four actions
and were also type specific. Similarly, utility values were action
and type specific. Table 2 depicts the action models for each type
of partner and the robot. Ground truth consisted of predefined sets
of actions and outcome values for a specific partner type. For
example, a citizen partner was produced by 1) randomly selecting
the values for the partner features (except tools which are set to
baseball-cap and backpack for this type) 2) setting the action
model to that from Table 2 for citizen creating and 3) creating
arbitrary utility values for the utility function.

Both simulation experiments involved 20 interactions with a
partner. Prior to interacting, the robot used OpenCV to detect
objects in the environment and create the situation features. Next
the robot used synthesized speech and speech recognition to query
the partner for their features. Once the robot had gathered the
information necessary to run the Interact-and-update algorithm,
the algorithm was run, creating an outcome matrix and then
selecting an action from the matrix. Both the robot and its human
partner performed actions in simulation. The action performed by
the human was dictated by the actor script. If the situation was
independent then the robot received the outcome regardless of the

Feature Name Values
Gender <man,woman>
Height <tall,medium,short>
Age <young,middling,old>

Weight <heavy,average,thin>
Hair color <blonde,black,brown,red>
Eye color <blue,green,brown>

Tool 1 <axe,gun,stethoscope,baseball-cap>
Tool 2 <oxygen-mask,badge,medical-kit,backpack>

action selected by the human. If the situation was dependent, the
robot’s outcome depended on the human’s action. Finally the
robot queries the human for the action it performed and outcome
received.

Model accuracy in different environments for a
single partner type

1.0

0.54

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Interaction number

P
er

ce
n

t (
%

)

Action Model Accuracy Utility Value Accuracy

Partner Model Accuracy Utility Values - Dep. Sit

Figure 4. The graph depicts the results from the first
simulation experiment involving different environments. The
results show that model accuracy increases with continued
interaction, eventually matching the ground truth.

Model accuracy for different partner types in single
environment

0.68

1.0

0.63

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Interaction number

P
er

ce
n

t
(%

)

Action Model Accuracy Action Model - Random
Utility Values Partner Model Accuracy
Utility Values - Dep. Situation

Figure 5. The graph depicts the results from the second
simulation experiment involving different partner types. The
results again show that model accuracy increases with
continued interaction, eventually matching the ground truth.

During the experiment, we recorded the robot’s model of its
partner after each interaction. Equation (1) from section 3.2 was
used to calculate the accuracy with respect to the individual
components of the partner model. Equation (2) was used to
calculate the overall accuracy of the partner model. The
independent variable in the first experiment was the type of
environment the robot encountered. The independent variable in
the second experiment was the type of partner the robot
encountered. The dependent variable for both simulation
experiments was model accuracy. Figure 4 depicts the results for
the first simulation experiment. The graph shows that with
continued interaction the accuracy of the action model, utility
function, and partner model increase, eventually matching the
ground truth. After the eleventh interaction, the accuracy of all
models increases dramatically. This is because the algorithm
purges the models of seldom used actions and utilities reducing
Type I error. In the dependent situation we see that accuracy of
the utility values only reaches 64% after 20 interactions. This is

because the dependent situation violates the action independence
assumption discussed in section 3.3. Although less accurate, the
partner model in this case still contains all of the information
experienced during interaction with partner. We have found that
machine learning techniques can improve this result.

Figure 5 depicts the results for the second simulation. Again the
graph shows that the accuracy of all models increases with
continued interaction, eventually matching the ground truth.
Violating the action independence assumption again results in
decreased utility accuracy (63 percent). A random partner type is
also included for comparison. The random partner selected any
action available to any partner type at random. The graph only
depicts action model accuracy for the random partner type. An
accuracy of 68 percent is achieved for the random partner type.

Figure 6. Photos from the robot experiment. The robot
initially moves to observe the victim. After learning the model
of its partner the robot moves to observe the hazard. The
leftmost four photos depict the robot as it moves through the
maze and selects actions. The fifth photo depicts video that the
robot sends to its human partner.

A demonstration experiment involving a real robot was also
conducted. In this experiment the robot was tasked with assisting
in a notional search and rescue environment. The robot was
capable of two actions: 1) moving to and observing a victim and
2) moving to and observing a hazard. The robot interacted with a
person acting as a firefighter. The firefighter was also capable of
two actions: containing the hazard or rescuing the victims. The
firefighter arbitrarily preferred to contain hazards. The robot
received more outcome if the victims survived. The victims
survived only if the robot and the firefighter work together
observing and containing the hazard or rescuing the victims
(Figure 1 left side depicts the outcome matrix for this situation).
Initially the robot has no knowledge of the utility functions or a
model of its partner. The robot therefore sets its partner model to
the robot’s self model. In other words the robot assumes that its
unknown partner has the same actions and preferences as it does.
During the first interaction the robot moves to observe the
victims. After the interaction, the robot receives feedback relating
to the partner’s choice of action and outcomes. It updates its
partner model accordingly and during the next interaction it
correctly moves to observe the hazard. The results demonstrate
the potential feasibility of this approach on a robotic platform. In
depth experimentation on a fielded system is an area of future
work. Figure 6 shows the robot moving to observe the victim in
the first interaction and the hazard in the second interaction.

6. SUMMARY AND CONCLUSIONS
This paper has introduced a computational representation for
interactions and social situations suitable for implementation on a
robot or software agent. We have discussed the composition of

this representation, its ability to represent both interactions and
social situations, and formal operations related to the
representation. Moreover, we have presented a preliminary
algorithm for the creation of the representation.

The algorithm we present assumes perceptual competencies which
are difficult to achieve. It assumes that the robot can perceive 1)
the partner’s action, 2) the partner’s outcome value, and 3) the
outcome obtained by the robot itself. These assumptions may limit
the current applicability of the algorithm. Nonetheless, as
demonstrated by the experiments, the perceptual limitations of
this algorithm can be overcome. Moreover, activity recognition
and affect detection are current areas of active research [16, 17].
Finally, it is important that the HRI community recognize the
importance of activity recognition and state detection. This
research provides a theoretical motivation for these research
topics. It may well be that the challenge of recognizing how a
robot’s behavior has impacted the humans interacting with it is a
critical question facing the HRI community.

We have also assumed that the robot knows what actions are
available to it. We believe that this is a reasonable assumption.
We have not assumed that the robot has accurate knowledge of
the outcomes values resulting from the selection of an action pair.
We have simply assigned arbitrary initial values for the outcomes
and then the robot learns the true values through interactive
experience with the partner.

Although our results show that interactive experience creates
increasingly accurate partner models, the actions and utilities of
the robot’s partner were static, did not change, and contained no
noise. Because the models were static they could be modeled.
Alternatively, as demonstrated in the random partner type, the
partner could have continually selected random actions or
received random utilities. Clearly in this case less can be learned
about the partner. In a sense, the robot cannot know what to
expect next from its partner. In normal interpersonal interaction
there are times when humans randomize their interactive actions,
such as in some competitive games. This algorithm will have
limited success in these situations. Noise in the form of inaccurate
perception of the human’s outcome values and actions is another
potential challenge. Fortunately, game theory provides numerous
tools for managing outcome uncertainty [6]. Moreover, our own
results have demonstrated that outcome matrices degrade
gracefully with increased error [18]. Future work will employ
machine learning techniques to reduce overfitting.

Near-term practical applications of this work would likely focus
on environments where the outcomes of the robot’s partner are
readily available. In assistive therapy environments, for example,
the robot could ask the patient if an exercise was causing pain. An
entertainment robot, on the other hand, might gauge user outcome
in terms of amount of time spent interacting with the robot.
Applications in areas such as autism are more difficult because the
nature of the disease may limit the human’s outcome expression
capabilities.

Neuroscientists have shown that humans actively model their
interactive partners [15]. Certainly the interpersonal mental
models maintained by humans are more complex and rich than the
models used here. Our purpose is not to claim that the partner
models discussed here are the same as those formulated by
humans, but rather to explore what minimal modeling of its
interactive partner a robot must perform in order to interact

successfully with the partner and to present a method for
achieving this modeling. Future work may add additional
complexity and richness to the partner model. We firmly believe
that accurate modeling of one’s interactive partner is an important
component of social intelligence and hence a critical skill for a
robot to successfully operate in a dynamic social environment.

7. ACKNOWLEDGMENTS
The author would like to thank Zsolt Kira for his comments.

8. REFERENCES
[1] R. W. Byrne and A. Whiten, "Machiavellian intelligence," in

Machiavellian Intelligence II: Extensions and Evaluations, A.
Whiten and R. W. Byrne, Eds. Cambridge: Cambridge University
Press, 1997, pp. 1-23.

[2] N. K. Humphrey, "The social function of intellect," in Growing
Points in Ethology, P. P. G. Bateson and R. A. Hinde, Eds., 1976,
pp. 303-317.

[3] R. Bar-On, D. Tranel, N. L. Denburg, and A. Bechara, "Exploring
the neurological substrate of emotional and social intelligence,"
Brain, vol. 126, pp. 1790-1800, 2003.

[4] H. H. Kelley and J. W. Thibaut, Interpersonal Relations: A Theory
of Interdependence. New York, NY: John Wiley & Sons, 1978.

[5] D. O. Sears, L. A. Peplau, and S. E. Taylor, Social Psychology.
Englewood Cliffs, New Jersey: Prentice Hall, 1991.

[6] M. J. Osborne and A. Rubinstein, A Course in Game Theory.
Cambridge, MA: MIT Press., 1994.

[7] R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun,
"Game Theoretic Control for Robot Teams," in Proceedings of
International Conference on Robotics and Automation (ICRA),
2005.

[8] T. Fong, I. Nourbakhsh, and K. Dautenhahn, "A survey of socially
interactive robots," Robotics and Autonomous Systems, vol. 42, pp.
143-166, 2003.

[9] Situation, in Encarta World English Dictionary, North American
Edition, 2007.

[10] R. Axelrod, The Evolution of Cooperation. New York: Basic Books,
1984.

[11] A. R. Wagner and R. C. Arkin, "Representing and analyzing social
situations for human-robot interaction," Interaction Studies, vol. 10,
2008.

[12] A. Powers and S. Kiesler, "The advisor robot: tracing people's
mental model from a robot's physical attributes," in Proceedings of
the 1st ACM SIGCHI/SIGART conference on Human-robot
interaction. Salt Lake City, UT, USA, 2006.

[13] D. Norman, "Some Observations on Mental Models," in Mental
Models, D. Gentner and A. Stevens, Eds. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1983.

[14] P. Abbeel and A. Ng, "Apprenticeship Learning via Inverse
Reinforcement Learning," in International Conference on Machine
Learning. Banff, Canada, 2004.

[15] J. K. Rilling, A. G. Sanfey, J. A. Aronson, L. E. Nystrom, and J. D.
Cohen, "The neural correlates of theory of mind within interpersonal
interactions," NeuroImage, vol. 22, pp. 1694-1703, 2004.

[16] R. Picard, Affective Computing. Cambridge, MA: The MIT Press,
2000.

[17] M. Philipose, K. P. Fishkin, M. Perkowitz, D. J. Patterson, D. Fox,
H. Kautz, and D. Hähnel, "Inferring activities from interactions with
objects," IEEE Pervasive Computing, pp. 50–57, 2004.

[18] A. R. Wagner, "A Representation for Interaction," in Proceedings of
the ICRA 2008 Workshop: Social Interaction with Intelligent Indoor
Robots (SI3R). Pasadena, CA, USA, 2008.

