
  

  

Abstract— No two wolves are the same. Some of the 
variations between individuals such as variation in mass and 
age have major implications on their hunting abilities. The 
predatory success of a wolf pack has been found to depend on 
its composition of individuals along these dimensions. Building 
from a system for simulating wolf hunting behavior in earlier 
work [1], this paper explores the effects of heterogeneity among 
individuals in a team and the utility of these variations for the 
team as a whole.  The implications for robot team control and 
organization are presented. 

I. INTRODUCTION 
The Office of Naval Research has taken interest in 

studying heterogeneous unmanned network teams (HUNT) 
of robots, which has led to a project that attempts to draw 
ideas and models through the study of biological systems. 
This project has explored many species as diverse as 
dolphins [2] and prairie chickens [3] and this is the second 
paper from our group that explores the hunting behavior of 
the gray wolf as a model for robotic teams [1]. The previous 
work demonstrated that wolf pack hunting behavior could be 
simulated with relatively high fidelity to what is observed in 
nature by using a system of releasers and a weighted roulette 
wheel of probabilities using a finite state acceptor (FSA) 
plan representation. This work diverged from other work 
using wolf packs as models for robot behaviors, (e.g., 
Weitzenfeld et al. [4]), as it did not assume tight structures 
or roles for individuals (e.g., alpha male) but rather followed 
a specific and contemporary biological model [5,6]. 
Specifically, the model utilized in our earlier work [1] 
assumed that wolves employed no obvious pattern of 
coordinated hunting behavior, drawn directly from 
ethological observations of wolves hunting in Yellowstone 
National Park (YNP) [5]. 

Our previous work on wolf hunting behavior assumed 
complete homogeneity among the simulated wolves, both 
physically and behaviorally. In nature, no two wolves are the 
same. Individuals vary on dimensions such as age, mass, 
sex, experience, and personality. This variation is outwardly 
apparent from the different coloring of wolves even from the 
same litter (Figure 1). Any given wolf pack may vary in its 
structure on any of these dimensions; namely, the age 
structure could vary from one extreme of a pack of primarily 
older wolves to the other of a pack of wolves yet to reach 
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their prime, and any combination in between. In two 
separate projects, MacNulty et al. explored the affects of 
mass and aging on predatory performance and the success of 
wolf packs [7]. Here, these findings are used to explore the 
effects of simulated aging and difference in mass of robots 
on the overall success of the robot team. 
 

 
Figure 1. Dark and light wolves approaching American bison [16]. 
Differences in color provide visible evidence of variability in wolves. 

II. WOLF BEHAVIOR AND HETEROGENEITY 
Details about a generic wolf’s physical properties and 

particulars about the hunt were presented in [1] as were the 
mechanics of the hunt itself. In this paper, the focus is on the 
effects of heterogeneity among individual wolves and thus 
only the basics needed to understand the discussion are 
reprised from [1]. For the discussion below, it may be 
assumed that the location is YNP and the prey animal or 
animals are all elk or herds of elk. Data used for this project 
were specifically gathered by biologists situated in YNP, as 
evidenced from the interactions of wolves and elk. 

A. Wolf Hunting Behavior 
Wolves were chosen as a species of interest for the HUNT 

project due to their success as a large predator. They have 
found considerable success across the northern hemisphere 
in a variety of dissimilar ecosystems. The robustness of this 
species appears to be due to their having a generalized 
physical structure and hunting behavior rather than being 
tailored to specific purposes. Notably, the hunting behavior 
of wolves does not appear to employ a well-structured set of 
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strategies but rather generalized ‘rules of thumb’ that are 
used to react to the prey’s escape behavior [5]. 

The wolf hunt can be reduced into an ethogram of five 
foraging states: search, approach, attack group, attack 
individual, and capture [1] (Table 1). In a prototypical 
progression of a hunt, the wolf pack transitions through 
these states as follows: The wolf begins in the search state; 
in this state it travels somewhat at random, searching for 
prey. Upon discovery of prey, the wolves transitions to the 
approach state. In this state the wolf pack orients itself 
directly toward the prey and moves toward them at moderate 
speed, not yet running. This allows the wolves to close their 
distance with the prey before the chase begins. As soon as 
the first prey animal spooks and begins to run away, the wolf 
pack transitions to attack group, assuming multiple prey 
animals are present, and begins the chase. The prey will 
usually split into groups running in all directions to generate 
confusion and force the wolves to choose which animals to 
follow. At this point in the hunt the wolves are scanning the 
herd for weak individuals to single out. Once such an 
individual has been selected, the wolf discovering it 
transitions to the attack individual state which is 
characterized by intensified pursuit and greater focus on the 
targeted prey individual. Other wolves may see this pursuit 
and join in, but this is not necessarily the case as explained 
later. The goal of this behavioral state is for the wolf to get 
close enough to the prey to begin biting it. Whether it is a 
single wolf or many, biting the prey signifies a transition to 
the capture state. The ultimate goal of the capture state is 
killing the prey. If the wolf is successful in this last state, the 
result is a kill; otherwise, the hunt may end in failure. This 
typical progression of a wolf hunt is presented in Figure 2. 

TABLE 1 
Foraging States for Wolf Hunting Behavior 

Foraging State Description 
 
Search (S) 

 
Moving throughout the environment, searching 
for prey 
 

Approach (A) Closing distance on prey  
 

Attack Group (G) Scanning the herd for weak individuals 
 

Attack Individual (I) Focused pursuit of weak individual targeted for 
potential kill 
 

Capture (C) Grabbing and killing prey 
 
It should be observed that these transitions do not 
necessarily occur in this order during a particular hunt, and 
many other transitions are possible between these foraging 
states, and the progression is often not linear and 
straightforward. In most cases, wolves primarily attacked 
groups after approaching, but “they also sometimes attacked 
elk groups immediately after discovering or watching the 
group” [6]. MacNulty et al. compiled statistical 
observational data regarding wolf hunt state transitions 
(Table 2) where the tabular values represent the probability 
of transition between states. Note that the transitions chosen 
for the description of the linear hunt above match those of 
highest probability in the table. 

 

 
Figure 2. The progression of transitions between states seen in a 
prototypical successful hunt with wolves and elk. 
 

TABLE 2 
Probabilities of Transitions Between States (From [6]) 

 
  Following State 

Preceding 
State Search Approach Watch Attack 

Group 
Attack 

Individual Capture 

Search .00 .68 .00 .31 .01 .00 
Approach .09 .00 .12 .69 .09 .01 

Watch .32 .35 .00 .27 .06 .00 
Attack 
Group .24 .09 .03 .13 .51 .00 

Attack 
Individual .16 .06 .02 .16 .08 .52 

 
 As mentioned earlier, when a wolf transitions to attack 
individual, other wolves may not necessarily join in the 
attack. Over two thousand hours of observed wolf behavior 
in Yellowstone Park seemed to prove that wolves do not 
coordinate their attacks, but rather act as individuals. The 
apparent coordination of their hunts is a result of byproduct 
mutualism [8], where multiple agents working toward the 
same goal at the same time appear to be helping each other 
and may in fact benefit from each other but not as a result of 
intentional assistance. Due to this, individual wolves 
progress through the foraging states on their own, where one 
wolf’s transition does not cause the transition of others, and 
disparity between states of wolves in the same hunt can be as 
far as one being in the Capture state while others are still in 
Search. The notion of an alpha wolf has been largely 
discredited [9]. 
 

B. Heterogeneity in Age and Mass 
As stated earlier, no two wolves are identical. Wolves 

differ over a number of dimensions such as age, mass, sex, 
experience, and personality, among others. The 
characteristics of these properties can either help or hinder a 
wolf’s hunting performance. Further, as the wolf hunt is 
broken down into a series of transitions between foraging 



  

states, these different hunting tasks place different demands 
on a wolf’s individual capabilities and yield different factors 
defining success or failure. As such, a variation in one of the 
above properties could cause a wolf to be weak at one 
hunting task while the same variation causes it to be strong 
for another.  

Exit from each hunting task corresponds to a state 
transition. The transition from search is omitted in our 
design and implementation is omitted as we assume that 
individual variation will not cause a healthy wolf to miss the 
overall detection of prey in the presence of other wolves. 
The remaining hunting task transitions are labeled as 
follows:  attacking (A  G), selecting (G  I), and killing 
(I  C). 

Considering the possible dimensions of variation among 
wolves, this research explores the effects of variation with 
respect to age and mass only. Experience and personality 
appear to have an effect on a wolf’s performance but they 
are difficult to quantify and to our knowledge no data exists 
to date on the effects of either of these. In fact, the data used 
for capturing the variations in age and mass is new [7,10] 
and represents some of the relatively few studies conducted 
to measure the effects of these variations on the predatory 
performance of large carnivores in general. Further, the 
gender of the animal is not considered as differences in 
performance based on sex appear to be completely explained 
by differences in mass between males and females [10]. 
Thus, only variation in mass and age of males is considered. 

The prevailing view on variation in mass for large 
predators is simply that bigger is better [11]. A recent study 
challenged this view with the hypothesis that increasing 
predator size hinders foraging ability, stating that the bigger-
is-better view did not consider the selecting task of the hunt, 
only the killing task [10]. Although the newer hypothesis 
was ultimately disproved in favor of the prevailing view 
[10], it did point out that heavier individuals showed a 
decrease in performance of the selecting task with an 
increase in size. This is due to the selecting task’s demand 
on an individual’s speed and agility which are hindered with 
increased mass. The heavier individuals had a slight 
advantage over their lighter counterparts in the task of 
attacking and a marked advantage in killing as their greater 
mass was essential for bringing down large prey. The 
improved performance in these other two tasks gave larger 
individuals the edge with an overall improvement in 
performance [10]. 

Age is also an important factor in a wolf’s performance as 
a hunter and for the overall success of a wolf pack. In fact, 
the age structure of a wolf pack (i.e., the ratio of older to 
younger wolves) was found to be a top predictor of kill rate 
[7]. As with mass, variation in age has been found to affect 
wolves’ performance differently for the different hunting 
tasks. However, according to studies by MacNulty et al. [7], 
for all tasks there was a peak age beyond which performance 
declined. The selecting task (G  I), which is considered the 
most strenuous task, is also the most sensitive to aging as it 
showed a sharp decline in performance for wolves aging 
beyond 3 years old. The peak ages for attacking and killing 
were found to be 1 year old and 2 year old, respectively, 

with an aggregate peak age of 3 years old [7]. All wolves 
over this age are referred to as senescent while those 
between the ages of 2 and 3 will be referred to as peak 
wolves. 

 Even more interesting than the effect of age on individual 
wolf performance is the strong correlation between the age 
structure of a pack of wolves and the predatory performance 
of that pack. The greater the number of senescent 
individuals, the lower the overall performance of the pack. 
This is an interesting observation given the interplay 
between mass and age in wolves. To estimate the mass of 
the wolves being observed, MacNulty et al. [10] used the 
chart in Figure 3 that was created from measurements taken 
on the same wolves in YNP used in their other studies (only 
for males). This chart shows that a wolf’s mass grows as it 
ages to a certain point and then begins to decline. This 
would suggest that if mass were the sole determinant of a 
wolf’s predatory performance, older wolves would have 
higher performance until age 4 years of age and then decline. 
As described earlier, this is not the case and age itself has an 
effect on both the performance of an individual and the pack 
as a whole. 

 
Figure 3. Trend line of observed body mass for male wolves versus age 
with population-averaged fitted value lines (derived from [10]). 

III. IMPLEMENTATION OF WOLF BEHAVIOR AND 
HETEROGENEITY 

MissionLab1, a software package developed by the Mobile 
Robotics Laboratory at Georgia Tech [12,13], is used as the 
experimental infrastructure for the simulation results 
presented in this paper. MissionLab provides a graphical 
user interface where the user specifies behavioral states that 
control each robot’s actions, and perceptual triggers that 
control the transitions between states, visualizing a finite 
state acceptor (FSA). The specific hunting behaviors 
described in this paper are compatible with MissionLab’s 
pre-existing behaviors, e.g., obstacle avoidance, wandering, 
or goal attraction. Combinations of behaviors (assemblages) 
can be created as part of the FSA, creating arbitrarily 
complex missions [14,15]. 

 
1 MissionLab is freely available for research and educational purposes at: 

http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/ 



  

Figure 4. Finite State Acceptor for wolf hunting behavior with five foraging states (watch state removed) as well as initial and final states for 
experimentation purposes. The stop states connected to each foraging state are dummy states to facilitate the use of probabilistic triggers. 
 

MissionLab’s use of FSAs facilitated the implementation 
of wolf hunting behavior as it was from the onset 
conceptualized as a set of states with various possible 
transitions. The FSA created in our earlier wolf behavior 
work [1] is depicted in Figure 4. Note that this FSA is a 
completely connected graph, although many transitions are 
not accessible to a wolf in a given situation. The availability 
of these transitions is handled by a system of releasers that 
depends on the presence of certain perceptual stimuli. For 
instance, the presence of prey is a releaser for the wolf to 
transition from search to any other state, as it would be 
impossible for the wolf to approach, attack, or capture prey 
without having detected a prey animal. Thus if this releaser 
is satisfied, transitions from S to A, G, I, C may be possible, 
otherwise they are not. Further, although this is the only 
releaser needed for S  A, other transitions such as S  G 
also require additional releasers to be present, namely, ‘prey 
running’ for S  G.  
     In this manner, the releasers permit some transitions to 
occur and block others, but what happens when multiple 
transitions are simultaneously available? This is where the 
probability table related earlier becomes necessary. To 
decide which transition to take, a weighted roulette wheel is 
employed using the probabilities in Table 2 as the weights 
for all possible transitions. The details of this system and 
how it uses probabilities to trigger different state transitions 
is explained further in [1]. For the current discussion, it 
suffices to state that altering the probability table used in the 
weighted roulette wheel will alter the probability of a robot 
manifesting a specific behavior in a given situation. 
Heterogeneity was thus introduced to the robots by altering  

the set of input probabilities for each individual. 
 It was decided that the effects of heterogeneity would best 
be explored by choosing a few wolf exemplars possessing 
the greatest variance in mass and age and then comparing 
the performance of each. The exemplars chosen were a 
heavy senescent male (60 kg, 5 years old) and a light young 
male (38 kg, 3 years old). The probability of transitions for 
these exemplar wolves were generated by the product of the 
original properties in [6] and a multiplier. The multiplier was 
created as the product of the ratio of successful transitions 
for the exemplar to that of the average wolf. Thus, a wolf of 
average mass and age would have a multiplier of 1.0 for all 
transitions, while the senescent male (5yo, 60kg) had a 
multiplier of 0.48 for selecting (GI). Comparing transition 
success for an average wolf to that of the exemplars was 
facilitated from data obtained from Figure 2 in [10] and 
Figure 1 in [7]. Tables for these two classes of individuals 
are given in Table 3.  
     Although the elk being preyed upon may have defensive 
behavioral strategies and coordination, the focus of the 
research to date has been on the hunting behavior of wolves. 
Therefore, the elk’s behavior was greatly simplified, i.e., 
their reaction to approaching wolves is simply either 
stopping or running away in a direction opposite to the 
wolves’ approach. The elks’ state before the approach of 
wolves was varied to simulate situations where the elk either 
are initially stationary, moving back and forth between 
multiple grazing areas, or wandering around. Figure 5 
illustrates an FSA representing the elk behavior for moving 
back and forth between two grazing areas, including a 
simple modification that switches between the elk stopping 
upon seeing wolves, or running away. 



  

 

TABLE 3 
Probabilities of Transitions Between States For Heavy 

Senescent Male (60 kg, 5 years old) 
  Following State 

Preceding 
State Search Approach Attack 

Group 
Attack 

Individual Capture 

Search .00 .66 .33 .01 .00 
Approach .07 .00 .74 .06 .01 

Attack 
Group .36 .14 .20 .25 .00 

Attack 
Individual .10 .03 .10 .03 .74 

Probabilities of Transitions Between States For Light 
Peak Male (38 kg, 3 years old) 

  Following State 
Preceding 

State Search Approach Attack 
Group 

Attack 
Individual Capture 

Search .00 .70 .29 .01 .00 
Approach .10 .00 .64 .10 .01 

Attack 
Group .21 .08 .11 .60 .00 

Attack 
Individual .21 .08 .21 .10 .40 

      
 

 
Figure 5. A Finite State Acceptor representing simplified Elk behavior. 
If the ‘run away’ behavior is desired, the dotted trigger to the final stop 
state is removed. 

 
The quantitative results in this paper were obtained 

entirely using simulated robots; however, the wolf hunting 
behavior has been successfully implemented on the pioneer 
platform and demonstrated in our laboratory. To date, up to 
four real robot pioneers have been used to emulate hunting 
scenarios involving two wolves and two elk. The physical 
experiments displayed behavior that qualitatively matched 
the behavior of the simulated robots, scaled down and better 
suited to an indoor lab environment, rather than a large 
outdoor area. An example of such an experiment using the 
pioneer robots appears in Figure 6.  

 
Figure 6a. This sequence of photos provides an example of a wolf hunt 
on the pioneer platform. This photo shows the starting location for a 
hunt. 

 
Figure 6b. The elk robots initially head toward the first of two ‘grazing 
areas’ which they will move back and forth between until attacked by 
the wolves. 

 
Figure 6c. As the elk robots head toward the second grazing area, the 
wolves attack. 

 
Figure 6d. The elk robots run away from the wolves in an attempt to 
evade them. The wolves are both focused on the elk robot on the right. 



  

 
Figure 6e. The elk robots ‘run’ in different directions and the wolves 
split up to chase both. The hunt ends with the wolf on the right ‘killing’ 
the elk it was chasing. 

IV. SIMULATION RESULTS 
Two phases of experiments were run, the first using two 

wolves and three elk while the second used six wolves and 
eleven elk. The goal of the first phase was to compare 
individual differences between the peak and senescent 
wolves whereas the goal of the second phase was to find an 
optimal pack composition.  

The first phase had three scenarios: two peak wolves, two 
senescent wolves, and one of each with three elk included in 
each of these scenarios. The success of each scenario was 
defined by whether or not the wolves could make a 
successful kill in a reasonable amount of time. This time 
could be taken as the time to exhaustion for real wolves and 
was determined to be the time it took for elk to reach the far 
boundary of the MissionLab map. Beyond this time the 
success of the hunt would be drastically affected by the elk’s 
escape being thwarted by the boundaries of the map. Indeed, 
this boundary effect was seen to cause difficulties in the 
experiments of our previous work on wolf behavior [1]. 
Twenty runs were conducted for each scenario. The results 
of these experiments are shown in Table 4 below. Note that 
the pair of peak wolves performed better than the pair of 
senescent wolves and better than the mixed team. Further, in 
the runs with the mixed team, the peak wolf made 70% of 
the kills for that team. 

 
TABLE 4 

Results From Phase One Simulations 
Pack Success 
Scenario 1: All heavy (60kg), senescent (5yo) 30% 
Scenario 2: All light (38kg), peak (3yo) 45% 
Scenario 3: Half senescent, half peak 40% 
                    Kills by peak wolf 75% 
  

 
     The second phase of experiments was conducted with six 
wolves and eleven elk using five different compositions of 
wolf packs: all heavy, senescent wolves (pack A), all light, 
peak wolves (pack B), half peak, half senescent (pack C), 
four senescent, two peak (pack D), and four peak, two 
senescent (pack E). Due to the increased number of robots in 
these experiments, the success or failure of the pack to make 

a kill before a given exhaustion time was no longer a good 
metric by which to compare the predatory performance of 
packs. Instead, the map was made large enough to 
effectively be infinite and the experiments ran until a kill 
was made. Thus, the success of each pack was compared by 
means of the time to kill, taken to be from when the wolves 
began searching for the elk until any one of the elk was 
killed. Twenty runs were conducted for each of these packs. 
The results are given below in Table 5. If the order of the 
packs are rearranged to be in order of increasing numbers of 
peak individuals (decreasing number of senescent wolves), 
then the chart in Figure 7 to the right shows a chart of time 
to kill with an optimal performance observed with a 
composition of four peak wolves and two senescent wolves. 
Screenshots from exemplar experimental runs are also given 
in Figures 8 through 11 below where blue circles represent 
wolves, red circles represent elk, and the black lines trace 
the movements of both. 
 

TABLE 5 
Results From Phase Two Simulations 

Pack Time to Kill 
(Average) 

Pack A: All heavy (60kg), senescent (5yo) 1:06.6 
Pack B: All light (38kg), peak (3yo) 1:00.6 
Pack C: Half senescent, half peak 1:02.4 
Pack D: Four senescent, two peak 1:03.5 
Pack E: Four peak, two senescent 0:58.3 
 
 

 
Figure 7. Comparison of time to kill for all five pack compositions 

V. DISCUSSION 
The first set of experiments demonstrated a general 
advantage of the younger, lighter wolves over their more 
mature counterparts. The younger group was 15% more 
likely to make a successful kill on any given run, a 50% 
improvement over the senescent wolves. From the transition 
probability tables for each class it is apparent that the largest 
disparity between the two groups involves the much higher 
probability for the peak wolves to complete the G  I 
transition: 60% compared to 25%, and a much higher 
probability for the senescent wolves to complete the I  C 
transition: 74% compared to 40%. The magnitude of these 
differences is nearly the same so it would be reasonable to 
assume that the two classes of wolves should perform 



  

somewhat equally if these transitions are equally important. 
Thus, given the disparity in performance, it appears the two 
transitions are not equal in importance; namely, it appears 
the G  I transition is more critical than I  C. These two 
transitions correspond to the selecting and killing tasks, 
respectively, and the disparity in their importance has been 
noted in nature. The selecting task has been considered the 
most demanding and critical of the hunting tasks in a wolf 
hunt [7]. In nature, this is due to the speed and agility 
required of the wolves; in the simulations presented here, all 
robots essentially have the same speed and agility and thus 
should not be affected by this fact. The source of this 
disparity is then, rather, due to the parameters of the 
simulation detracting from the importance of the killing task. 
This task has less of an effect on the overall performance of 
the wolves because of two reasons: killing in simulation 
simply involved a successful transition based on probability 
rather than the often complicated dynamics of multiple 
wolves simultaneously biting at the prey animal. This 
simplification was necessary for the simulation as modeling 
the mechanics of the final stages of a wolf hunt, namely 
taking down the prey, was beyond the scope of this project. 
Second, the simulated wolves did not need to concern 
themselves with their own safety. In nature, the guiding 
principle behind a wolf’s hunting behavior is to kill without 
being killed. More importantly, in the simulation the robot 
wolves do not need to concern themselves with this. These 
two differences between simulated and real world hunts led 
to the devaluation of the senescent wolves’ advantage in the 
final transition of the hunt. Nonetheless the value of 
heterogeneity in robot packs is in evidence, but this research 
should not be construed as an attempted validation of the 
underlying biological model but rather as having a goal to 
provide guidelines for the design of heterogeneous robot 
teams. 

 

 
Figure 8. By increasing the number of simulated wolves and elk to six 
and eleven, respectively, the added chaos of the many simultaneous 
interactions required the expansion of the map to a virtually infinite 
space. The straight line is the initial migration of the prey between two 
grazing areas before the wolf encounter. 
 

 
Figure 9. Example of run with pack E. This shows a peak wolf off in 
pursuit of an elk on its own towards the top (a) and another driving elk 
back toward senescent wolves in the middle (b). 

 
Figure 10. Continuing from the previous figure, a senescent wolf has 
joined a peak wolf near the top (a) in pursuit of a singled out elk while 
another peak wolf has begun pursuit of another elk to the left (b). 

 
Figure 11. The peak wolf that had originally been leading the pursuit of 
the elk closest to the top failed, the senescent wolf that joined him is 
now leading the pursuit of that elk. 
 



  

The results from the first phase of the experiment are 
enough to demonstrate the overall advantage of the peak 
wolves in the simulation environment. The second phase 
was intended to compare the effects of different 
compositions of wolf packs. The results show that packs 
with more peak wolves generally outperformed those with 
greater numbers of senescent wolves; however, pack E 
indicated an anomaly. The results show that this pack 
composition with four peak and two senescent wolves 
provided the best performance of the pack compositions 
evaluated. This was not entirely unexpected as there are a 
number of possible explanations for this. One is that the 
improved selecting task performance of the lighter peak 
wolves allowed them to succeed in situations where this task 
was difficult (i.e., pursuit of tightly grouped prey) and the 
improved killing performance of senescent wolves allowed 
them to quickly take advantage of opportunities for quick 
kills (i.e., the prey is driven to one wolf by another wolf). If 
the pack were entirely composed of one class of wolf it 
would only be able to take advantage of one of these 
situations, but not both. The superior performance of pack E 
over the other mixed packs (pack C and D) could possibly be 
explained by the greater prevalence of the former situation 
over the later. This could mean that pack E was able to take 
advantage of some relatively rare, yet greatly beneficial 
situations that pack B could not. Indeed, when the situation 
of senescent wolves making quick kills of elk driven towards 
them by other wolves did occur, the result was usually a 
quick kill which greatly helped drop the average time to kill 
for pack E. As this driving act by one wolf to another is 
believed unintentional, it exploits the notion of byproduct 
mutualism [8] discussed earlier.  

Another, more general explanation is that having two 
different classes of wolves allows the pack to take advantage 
of the benefits of each. This would also explain why pack E 
outperformed pack B. Potentially pack E outperformed the 
other heterogeneous packs simply because it had more peak 
wolves. Nonetheless, more experimentation is required, over 
a broader range of pack sizes, to confirm this as a more 
general result. 

VI. SUMMARY AND CONCLUSIONS 
Using a software implementation of wolf hunting 

behavior developed in previous work [1], the effects of 
heterogeneity among agents operating as a team was 
observed. The results demonstrated the expected result that 
simulated wolves configured to represent light, peak 
individuals would outperform their heavy, senescent 
counterparts. However, the results also demonstrated the 
somewhat unexpected result that a mixed team could 
outperform a team comprised of purely the superior class of 
peak wolf under certain circumstances. These results both 
demonstrate the relative fidelity of the system with what has 
been observed in nature as well as provide insight to purely 
hypothetical comparisons (e.g., packs of purely peak wolves 
do not exist). The results also demonstrate that by 
incrementally varying the composition of a heterogeneous 

team, a high performing composition can be found without 
understanding the exact reasoning behind the underlying 
optimality. This has significant implications for the design 
choices for teams of robots operating in unstructured and 
dynamic environments. 
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