To appear in the Proceedings of the World Multiconference on Systemics, Cybernetics, and Informatics (CSI’97), Caracas, Venezuela, July 1997.

Learning of Parameter-Adaptive Reactive Controllers for Robotic
Navigation

Juan C. Santamaria and Ashwin Ram
Georgia Institute of Technology
Atlanta, GA 30332-0280

{carlos — ashwin }@cc.gatech.edu

Abstract

Reactive controllers are widely used in mobile robots be-
cause they are able to achieve successful performance in
real-time. However, the configuration of a reactive con-
troller depends highly on the operating conditions of the
robot and the environment; thus, a reactive controller con-
figured for one class of environments may not perform ad-
equately in another. This paper presents a formulation
of parameter-adaptive reactive controllers. Parameter-
adaptive reactive controllers inherit all the advantages of
traditional reactive controllers, but in addition they are
able to adjust themselves to the current operating con-
ditions of the robot and the environment in order to im-
prove task performance. Additionally, the paper describes
a multistrategy learning algorithm that combines ideas
from case-based reasoning and reinforcement learning to
construct a mapping between the operating conditions of
the mobile robot and the appropriate controller configura-
tion; this mapping is in turn used to adapt the controller
configuration dynamically. The algorithm is implemented
and evaluated in a robotic navigation system that controls

a Denning MRV-III mobile robot.

Keywords: robotic navigation, reactive control, rein-
forcement learning, adaptive control.

INTRODUCTION

Autonomous mobile robots must perform many complex
information processing tasks in real-time. Furthermore,
they must operate successfully under changing environ-
ments. These requirements impose several challenges on
their control systems. To be successful, an autonomous
robotic control system must be able to process incoming
sensory information, decide what action to execute next,
and carry out that action without missing any time dead-
lines. Reactive controllers has been widely used in mobile
robots since they are able to achieve successful perfor-
mance in real-time (e.g., [1, 2, 8, 9, 12, 16]).

Reactive controllers typically rely on a combination of
several task-achieving modules, behaviors, or schemas to
perform a mobile robotic task (e.g., [8, 10, 13]). That is, a
robotic task is decomposed into several subtasks that the
robot must accomplish and execute concurrently. Typi-
cally, the system designer programs specific modules that
accomplish each subtask by considering relevant informa-
tion from the robot’s sensors to control the robot’s actu-
ators. Each module has a stimulus-response type of re-

lationship with the world. The response of the robot is
the result of the interaction of all the responses in the sys-
tem and can be computed according to different schemes,
such as subsumption (e.g., [8]), weighted summation (e.g.,
[2]), or voting (e.g., [10]). There are many advantages of
such controllers. Reactive controllers are able to execute
actions in real-time since the modules act like quick “re-
flexes” to environmental inputs. This allows mobile robots
to react to sudden changes in the environment. Reactive
controllers do not use complex internal representations to
keep an accurate model of the world, nor do they rely on
executing expensive planning processes operating on that
model, which may consume important resources and de-
teriorate the response time of the robot. Instead, each
module in a reactive controller extracts only the relevant
information required to execute its particular task. For
example, a robot does not need to recognize that a partic-
ular object is a chair in order to avoid it. For this task, an
avoid-obstacle module only needs to know at what dis-
tance an obstacle is located from the robot to suggest
an appropriate response (e.g., the “avoid-static-obstacle”
motor schema of [2]). Thus, reactive controllers are char-
acterized by having robust navigational capabilities and
rapid, real-time response to the environment.
Nevertheless, there is much room for improvement in
reactive controllers. Like classical controllers (see, e.g.,
[15]), reactive controllers have several parameters that af-
fect the performance of the controlled process. Thus, the
performance of any given task executed by a controller
will depend highly on the parameters of the controller and
on the operating conditions of the robot (or plant). For
example, a reactive controller may guide a mobile robot
successfully through areas with different number of ob-
stacles. However, if the robot is to accomplish the task
at high performance levels, then different controller pa-
rameters will be required for operating on areas with dif-
ferent numbers or configurations of obstacles (e.g., [17]).
The problem of designing classical controllers that adapt
themselves dynamically has been addressed by researchers
in the subarea of control theory known as adaptive control
(see, e.g., [14]). Adaptive control refers to the control of
partially known systems in which designers know enough
about a system to select a particular class of controllers,
but an efficient configuration of the controller is impos-
sible to determine since there is not enough knowledge
about the dynamics of the system to be controlled. Thus,

the controller is designed in such a way that it improves
its performance by observing the outputs of the process
and choosing the appropriate configuration accordingly.
As the process unfolds, additional information becomes
available and improved configurations become possible [6].

During the design of adaptive controllers, the available
knowledge about the dynamics of the system is used to
design an adaptive policy that the controller can use at
run-time to configure itself and improve task performance.
However, such an approach is not always directly appli-
cable in the design of reactive controllers. In order to be
flexible, mobile robots must be designed to interact with
unknown environments. Since the dynamics of the pro-
cess to be controlled is composed from the dynamics of
the robots and the environment, the amount of informa-
tion known in advance is usually not enough to use the
traditional design tools from adaptive control theory. In
particular, it may not be possible to determine an adap-
tive policy in advance; instead, the system would have
to learn an appropriate adaptive policy through its own
experience.

In this paper we present a formulation of learning adap-
tive reactive controllers for mobile robots. An adaptive
reactive controller is a controller that inherits all the ad-
vantages of traditional reactive controllers, but also it is
able to adjust itself dynamically to the current operating
conditions of the robot and the environment to improve
task performance. Furthermore, a learning adaptive re-
active controller is one which is able to learn an efficient
adaptive policy through its own experiences, and use it to
adjust the controller dynamically. Such a controller is an
improvement over an adaptive reactive controller, which
can only use a predefined adaptive policy to configure the
controller at run time. Combining ideas from adaptive
control theory and machine learning, we propose an al-
gorithm for a learning adaptive reactive controller. The
algorithm is implemented in an autonomous navigational
system for a Denning MRV-III mobile robot.

This paper is organized in four sections. The first sec-
tion formally defines the concept of adaptive reactive con-
trollers and formulates the learning task. The second sec-
tion presents an algorithm that can be used to implement
a learning adaptive reactive controller for autonomous
robotic navigation. The third section describes the appli-
cation of the proposed algorithm in a schema-based reac-
tive controller for a Denning MRV-III robot and presents
the results of a navigation task in an indoors environment.
The fourth section concludes the contents of the paper.

PROBLEM FORMULATION

The objective of this section is to formulate a theory of
adaptive reactive control and to express the autonomous
robotic navigation task in terms of that theory. Au-
tonomous robotic navigation is defined as the task of mov-
ing a robot safely from an initial location to a destination
location in an obstacle-ridden terrain. In most real-world
applications, designers do not have complete knowledge
about the environment in which the robot is to navigate;
in addition, the robot must often operate in many differ-
ent environments. Both situations require that a reactive

controller be able to adapt itself to the particular operat-
ing conditions in order to achieve effective performance.
Thus, being able to design and implement adaptive re-
active controllers is essential for building mobile robots
that can perform effectively and flexibly in real-world en-
vironments. An adaptive reactive controller would have a
significant advantage over a traditional one since it would
not only be able to respond in a rapid and robust manner
but would also be able to regulate itself to different oper-
ating conditions, thus improving the performance of the
navigation task.

Overview

The learning task of an adaptive reactive controller con-
sists of building a mapping function between the current
operating conditions of the mobile robot and an efficient
configuration of the reactive controller. We call this map-
ping the adaptive policy, which a mobile robot can use to
continuously adapt the reactive controller to the particular
situation at hand in order to improve performance. Our
fundamental assumption is that learning the adaptive pol-
icy is simpler than learning the entire control policy (see
[13]). This is usually the case because the learning task
occurs at a higher level of abstraction than the operating
level of the reactive controller. For example, consider the
following two different configurations for a reactive con-
troller: “hurried” and “patient”. Both configurations are
able to take the robot to the destination; however, the for-
mer gives less importance to avoiding obstacles and more
importance to approaching the goal. The later does just
the opposite. An efficient adaptive policy would map the
“patient” configuration to highly cluttered environments
and the “hurried” one to loosely cluttered environments.
Learning this kind of mapping is easier and more efficient
than learning the actual movements the robot should take
at every step considering the current sensory information.

The learning capability of an adaptive reactive con-
troller provides a significant advantage; designers do not
need to specify an adaptive policy since the system can
synthesize one using its own experience.

Parameter-Adaptive Reactive Controllers

Reactive controllers must perform the same function of
standard controllers, namely to implement a control pol-
tcy which is a mapping between sensory information and
output commands designed to accomplish the robot’s task.
However, reactive controllers have two major differences
from standard controllers. First, a purely reactive con-
troller does not use sensory information to update inter-
nal models of the world that then guide action; instead,
it directly uses current sensory information to select the
control commands to execute next. Second, reactive con-
trollers are usually designed as a combination of modules
that interact, each module being responsible for imple-
menting a specific subtask such as avoiding collisions or
moving towards a goal. These two characteristics allow re-
active controllers to perform robustly in real-time since the
mapping between sensors and actuators is implemented as
quick reflexes without the reasoning necessary to update
detailed world models (e.g., [2, 4, 8, 10, 13]).

ROBOT
Situation Assesment s Adaptive Policy
s =H(z, ...z) 0=p(s)
J 6
z Controller u A
Sensors u=m@) ctuators
4

ENVIRONMENT

Figure 1: Adaptive Reactive Control.

Mathematically, we can represent the control policy of a
reactive controller as a function mapping the set of inputs
z delivered by the robot’s sensors to the set of outputs u
sent to the robot’s actuators:

u=m(z) (1)
where u = (ul, -+, u™) and z = (2%, -+, 2").

We define a parameter-adaptive reactive controller as
a reactive controller that can modify its control policy
through a control parameter vector 6 = (61, --,67). That
is u = mg(z). The adaptive controller uses a situation as-
sessment function s = H(z1, -, 2;) to extract the cur-
rent situation s from the last k sensations z1,---, zx, and
an adaptive policy function 6 = p(s) to obtain the set of
control parameters the reactive controller should use at
any given situation. Thus, at every stage ¢, the adap-
tive controller uses the adaptive policy to select a new
parameterization #; = u(s;) for the control policy. Then,
the controller executes the control policy for k consecutive
steps and uses the situation assessment function to deter-
mine the new environment situation for the next stage
Sty1 = H(z1, -+, 2;). At the next stage, the entire cy-
cle repeats when the controller uses the adaptive policy
to select a new parameterization based on the new envi-
ronment situation. Figure 1 shows this formulation of the
adaptive reactive control problem.

The adaptive policy can be hand-designed when enough
knowledge about the robot, the environment, and their
interaction is known in advance [17]. However, an alter-
native approach is to incorporate learning algorithms into
the controller and let the robot learn an appropriate adap-
tive policy with its own experience. In this way, the system
will be capable of dealing with situations not foreseen by
its designers. This is discussed next.

Learning Task

The learning task of the autonomous navigation control
problem can be stated as follows: Given a parameter-
adaptive controller with a control policy u = my(z), a
situation assessment function s = H(zy, -, 2g), and
a desired performance reference or scalar reward r =
R(z1,- -+, zg,u1, - -, uy) associated to the last k sensation-
action pairs of the controller, determine the control pa-
rameter vectors @; for all ¢ > 0 such that the expected

(possibly discounted) sum of rewards is maximized (Equa-
tion 2).

o0
V=E> y'n (2)
t=0

Environment situations s’s and control parameters #’s
are usually represented using real-valued variables. Thus,
the problem of learning an adaptive policy can be thought
of as function synthesis. Let § = u(s) denote the adaptive
policy function and let S denote the domain under which
this function is applicable. If s € S, then the expression
0 = p(s) represents the parameter § “recalled” in “situ-
ation” s according to u(-). Thus, u(-) can be thought of
as representing a mapping from s € S, where s represents
the input description of the current situation as described
by H(-), to appropriate controller parameters f for this
situation. Note that s may include the input informa-
tion z from the sensors of the robot as well as internal
“observations” about the state of the robot (say, the cur-
rent energy level), since the appropriate parameterization
may in general depend on both kinds of information.

The ultimate goal of the controller is to learn an adap-
tive policy for selecting control parameters given the envi-
ronment situations that maximizes the performance mea-
sure (i.e., discounted sum of rewards) subject to the con-
straints of the reactive controller. Thus, the reward func-
tion is a declarative description of the desired behavior of
the mobile robot. The rewards defines “what” the con-
troller should do but it is the controller’s responsibility
to find out “how”. This formulation is similar to the one
used in reinforcement learning problems [21, 23]; however,
a fundamental difference is that in reinforcement learning
the controller learns the actions it should execute given
any sensory information (i.e., the control policy), whereas
in here the controller is given a parameterized control pol-
icy and it must learn the control parameters it should use
given any environment situation as described by the situ-
ation assessment function (i.e., the adaptive policy).

The ideal mapping p*(-) is such that when the robot is
in situation s, then 0* = u*(s) is the optimal parameter-
ization of the reactive controller for that situation. The
exact solution of the optimal adaptive policy can be found
using dynamic programming [5]; however, its computation
is very expensive and requires detailed knowledge of the
environment and/or the dynamics of the robot. We pro-
posed a heuristic method inspired by the derivation of the
optimal solution that is computationally efficient and does
not require detailed knowledge.

HEURISTIC APPROACH

This section presents a machine learning algorithm called
LARC! that learns the adaptive policy for a parameter-
adaptive reactive controller. The algorithm is fully im-
plemented in SINS?, a learning system for an adaptive
schema-based reactive controller implemented in a Den-
ning MRV-III mobile robot, and evaluated through em-
pirical studies.

'Learning Adaptive Reactive Control.
2Self-Improving Navigational System.

1. Initially:
Set the initial estimate of the value function: wg
Set the initial control parameter vector: 8o

2. Perform:
At each stage t =1,2,---

(a) Control:
Select best parameterization at stage ¢:
8¢, (Equation 3).
Use the control policy: u = m4.(2) for k steps.
t
(b) Perception:
Observe the resulting reward and sensation for & steps:

Te41 = R(Zh"'7Zk77réj(zl)7"'7ﬂ'é;‘(zk))
se41 = H(z1, -+, 2n)
(c) Update:

Update the parameter-value function using TD(X):

wit1, (Equation 5).

Figure 2: LARC Algorithm.

The main concept in the the derivation of the LARC
algorithm is the parameter-value function approrimator.
This function maps every environment situation and con-
trol parameter combination to an estimate of the best per-
formance measure or long-term benefit the controller can
receive from such situation when it applies the given pa-
rameterization. Thus, the idea consists of letting the con-
troller perform a computationally inexpensive search to
select the parameterization leading to the best long-term
benefit estimate according to the function approximator,
and then use the outcome of each action to asymptotically
improve the estimates by adjusting the function approx-
imator. Figure 2 shows the LARC algorithm. The tech-
nical details of the LARC algorithm are discussed next.

Parameter-Value Function Approximators

The objective of the optimal parameter-value function is
to map any environment situation and control parameter
combination to the best expected performance measure
the controller can receive from such situation using the
given parameterization. An explicit representation of the
parameter-value function is important because it enables
the controller to search and select the best control param-
eter at any given stage. However, a closed-form solution
of the optimal parameter-value function is rarely available
in most problems and its computation is very expensive
(see [11]). A reasonable approach for explicitly represent-
ing the parameter-value function is to use a function ap-
proximator. Function approximators have been used suc-
cessfully in the past in other reinforcement learning tasks
(e.g.,[19, 22, 3, 18]). They use finite resources to repre-
sent the value of continuous real-valued variables. Addi-
tionally, they have weights that the controller can use to
adjust the value estimates. Another advantage of func-
tion approximators is that they can generalize the perfor-
mance measure associated with situations the controller
actually experiences to other regions of the input space.

In this way, the controller can estimate the performance
measure of situations that it has never experienced be-
fore. Also, function approximators are able to represent
the parameter-value function even when the variables in
the environment situation and control parameters are con-
tinuous (i.e., real-valued variables).

The parameter-value function approximator, Qw (s,0),
is defined as

(o]
Qu(st, b)) = max F Z YTk
Oig1,0042, b0

E {rt+1 + 'VQw (St+1,9:+1)}

where s; is the environment situation, ¢; is a control pa-
rameter vector, 07, is the best control parameter vector
at stage t + 1, and w is a set of weights. This function
maps every environment situation and control parameter
combination to an estimate of the best performance mea-
sure the controller can receive from such situation when it
applies the given parameterization. The parameter-value
function approximator is important because it is used to
represent and implement the adaptive policy. Specifically,
the controller can find the best control parameter é;‘ for
any given situation s; by performing the following one-
stage lookahead search

0; = argmax B { Qu(s:.01) } (3)

Equation 3 is simple: the parameter-value function mea-
sures an estimate of the best long-term benefit the con-
troller can get for every situation-parameter pair. Thus,
the best parameter vector HA;‘ the controller can use at
the current situation s; 1s the one that maximizes the
parameter-value function approximator at the given sit-

uation. The control parameter #* represent the best pa-
rameterization for situation s; given the current estimates
of the parameter-value function approximator. Such es-
timates may be initially wrong and 0 may not produce
good performance; however, as it will be described later,
the controller will asymptotically improve the estimates
of the parameter-value function approximator with the
outcome of every action. In this way, the controller uses
its own experience to improve the long-term benefit esti-
mates, which in turn lead to better parameterizations of
the reactive controller.

In summary, function approximators can be used to ex-
plicitly represent the optimal parameter-value function.
They use finite resources to represent an estimate of the
performance measure the controller can achieve from any
given environment situation. The initial estimates of the
function approximator may not be the optimal ones, but
the controller can use the outcome of each action it exe-
cutes to asymptotically improve the estimates toward their
optimal values. The controller is able to accomplish this
by adjusting a set of weights associated with the func-
tion approximator. Additionally, the controller can use
the one-stage lookahead search to select the best control
parameter it can use next. The next subsection discusses
the topic of improving the estimates of the parameter-
value function approximator.

Improving Estimates

Finding the optimal parameter-value function is a compu-
tationally expensive process. A reasonable approach is use
some stochastic approximation procedure (e.g., temporal
difference methods [21]) to asymptotically improve the es-
timates towards their optimal values. The main idea con-
sists of using the controller’s experience to progressively
learn the optimal parameter-value function. More specif-
ically, the controller can incrementally learn the optimal
long-term benefit values by continually exercising the cur-
rent, non-optimal estimates of the parameter-value func-
tion and improving such estimates after every experience.
This approach has been extensively and successfully used
in reinforcement learning [22, 19, 23, 18].

At any given stage, the parameter-value function follows
a recursive relation (so called the Bellman’s Equation, e.g.

(7))
Qw@mgﬂ::E{H+1+7Qw(&+h9h0} (4)

where s; and 0; are the environment situation and the
control parameter vectors at stage ¢. Stochastic approxi-
mation procedures exploit this recursive relation to create
an update formula the controller can use to adapt the
weights of the function approximator after every experi-
ence. More specifically, every time the controller executes
k actions and observes the next environment situation sy
and reward 741, it can verify whether Equation 4 holds
or not by computing the error between the two consec-
utive predicted performance values; before executing the
parameterization, Qw(st, 9;‘), and after executing the pa-
rameterization, ry41 —|—'wa (St+1, HA;_H). When the error is
different from zero, the controller uses the update formula
to adapt the weights w and improve the estimate of the
parameter-value function at s;.

The procedure above described can be efficiently imple-
mented using temporal difference methods [21]. Sutton
defines a whole family of update formulas for temporal
difference methods called TD(A), where 0 < A < lis a
parameter used to measure the relevance of previous pre-
dictions in the current error.

A Controller improves the
th(st,) by adjustlng the weights after executing every
parameterlzatlon using TD(A) updates. For this purpose,
every time the controller selects and executes parameteri-

current estimate of

zation éf at situation s;, observes the sensations z1, - - -, zx
that result from executing that parameterization for &
steps, and constructs the situation s;y1 = H(z1,- -+, 2zx),

it uses the following TD(A) formula to update the weights
of the function approximator,

t

Aw =« (T’t+1 +YQe41 — Qt) Z()‘V)t_kvwkc}k (5)

k=0

where Tep1 = R(zl,~~ zk,'rgt(zl) ﬂ'gt(zk)) Qt+1 =
th(5t+1a t+1) Qt = th(sta 7)) vkak is the gradi-
ent of Q() with respect w and evaluated at situation-
parameter pair (sk,é;), and « is a learning rate. The

Qt and Qt-}-l

interpretation of Equation 5 is as follows:

represent the current estimates of the long-term benefit
(i.e., performance measure) at states s; and s;4; respec-

tively. The term (Tt+1 + 'yQt_H — Qt) represents the er-

ror incurred by Qt in predicting the future according to
Qt“. In other words, the value of situation s; should be
equal to the immediate reward r:y1 plus the value of the
next situation s;y1 properly discounted. In case of error,
the weights are proportionally modified in the direction
of the gradient V,,, in order to maximally reduce error.
The discounted sum of the previous gradients V,,, are
also credited for the current error although their influence
decays exponentially with A.

An efficient on-line implementation of the update rule
is possible using “eligibility traces” (for details, see, [20]).
The idea is to maintain the value of the rightmost sum in
Equation 5 in a variable or eligibility trace, which can be
easily updated at every stage using a recursive relation.
The controller performs the update every time it executes
an action. Thus, the method is computationally efficient
since each update is computationally inexpensive. On the
other hand, the data efficiency of the method can be very
low since the controller requires large amounts of data (i.e.,
the controller must execute many actions) to make the
value function estimates converge to their optimal values.

RESULTS

This section demonstrates the application of the algorithm
proposed in the previous section for adapting the parame-
ters of a schema-based reactive controller ([2], resulting in
a learning adaptive reactive controller for robotic naviga-
tion. In schema-based reactive control, basic behaviors or
motor schemas such as obstacle avoidance and movement
towards a goal individually recommend specific motor ac-
tions which are then combined to produce the final action
of the robot. Potential fields or forces are used to rep-
resent the recommendations of the motor schemas; thus,
a final motor action can be computed as the sum of the
forces of each motor schema and delivered to the robot’s
effectors. Each motor schema uses current sensory infor-
mation from the environment and internal control param-
eters to compute its potential field, which recommends the
direction and speed at which the robot is to move given
current environmental conditions. For example, the mo-
tor schema AvoOID-STATIC-OBSTACLE directs the system
to move itself away from detected obstacles, and its con-
trol parameter Obstacle-Gain determines the magnitude
of the repulsive potential field generated by the obstacles
perceived by the system. The forces produced by all the
schemas are then summed to produce a resulting force
that directs the actual movement of the robot. Simple be-
haviors, such as wandering, obstacle avoidance, and goal
following, can combine to produce complex emergent be-
haviors in a particular environment. Different emergent
behaviors can be obtained by modifying the simple be-
haviors. A detailed description of schema-based reactive
control methods can be found in [2].

The reactive controller in this system uses three motor
schemas: AvoID-STATIC-OBSTACLE, MovE-To0-GoOAL,
and NOISE. AvOID-STATIC-OBSTACLE directs the system

to move itself away from detected obstacles. Move-To-
GoOAL schema directs the system to move towards a par-
ticular point in the terrain. The NOISE schema makes
the system move in a random direction; it is used to es-
cape from local minima and, in conjunction with other
schemas, to produce wandering behaviors. Each motor
schema has a set of parameters that control the poten-
tial field generated by the motor schema. In this research,
we used the following parameters: Obstacle-Gain, as-
sociated with AvoID-STATIC-OBSTACLE, determines the
magnitude of the repulsive potential field generated by the
obstacles perceived by the system; Goal-Gain, associated
with MovE-To-GoAL, determines the magnitude of the
attractive potential field generated by the goal; Noise-
Gain, associated with NoOISE, determines the magnitude
of the noise; and Noise-Persistence, also associated with
NoisE, determines the duration for which a noise value is
allowed to persist.

The reactive controller operates on a Denning MRV-
IIT robot. The robot uses a Denning sonar ring which
has twenty-four laboratory grade Polaroid Ultrasonic
Rangefinders equally spaced over 360 degrees in a plane
parallel to the floor. Range data is obtained by emitting
ultrasonic pulses from the sensors. The environment sit-
uation consists of the following four variables: Obstacle-
Density provides a measure of the occupied areas around
the robot that impede navigation;> Absolute-Motion
measures the activity of the system; Relative-Motion
represents the change in motion activity over an appropri-
ate interval; and Motion-Towards-Goal specifies how
much progress the system has actually made towards the
goal. The situation assessment function computes the val-
ues of these four variables using the sonar ring and shaft
encoders sensors collected over an interval of k = 4 steps.

In the current system, successful navigation is defined
as reaching the destination point as fast as possible and
without any collisions. Thus, the robot needs to minimize
the time taken to reach the goal with the fewest number
of collisions. This is represented in the following reward
function:

locit
r = —(C virtual_collisions + R (veroenty)

max_velocity

This formula is based on the assumption that the only
sensory information available to the robot consists of the
24 ultrasonic sensors and the shaft encoders. This means
that the robot receives a negative reward every time a
virtual collision? is detected and a positive reward every
time the robot is moving; the faster it moves the stronger
the reward. The constants C' and R determine the rela-
tive importance of avoiding collisions versus maximizing

®Note that this sensory input does not provide any informa-
tion about the distances or direction of the obstacles; it simply
measures the density of occupied area around the robot.

“Since there is a real robot involved we can not afford ac-
tual physical collisions. The term virtual collision to refer to
the situation when the robot come so close to an obstacle that
a physical collision is imminent. When this occurs, SINS auto-
matically diverts all its resources to focus on eliminating this
imminent danger.

velocity for a particular application. This reward func-
tion is not computationally expensive to evaluate, it uses
information provided by the robot sensors, and it is con-
sistent with the performance metric defined for successful
autonomous robotic navigation.

The function approximator used in the experiments is
implemented using case-based methods. A description of
the implementation of this type of function approximator
can be found in [19]. The case-based function approxima-
tor uses cases to represent the parameter-value function.
Each case represents a point in the situation-parameter
space and holds its associated Q-value. In the experiment,
the density threshold and the smoothing parameters were
set to 7y = 0.1 and 7, = 0.1 respectively. The similarity
metric was the Euclidean distance and the kernel function
was the Gaussian. This produces cases with spherical re-
ceptive fields and blending of the value function using a
small number of cases. The values of each case were up-
dated using temporal difference (Equation 5) and imple-
mented using eligibility traces following [19]. The values
for the free constants were v = 0.99, A = 0.7, « = 0.4,
and € = 0. The one-stage lookahead search was performed
using 6 equally spaced values for each control parameter
between its minimum and maximum values.

We performed an experiment using the actual Denning
MRV-III robot to verify the validity of our approach. We
ran twenty learning trials and measured the accumulated
time and the number of virtual collisions. A trial con-
sisted of placing the robot at the starting point and let
it run until either it reached the goal or 300 seconds had
elapsed, whichever came first. The experiment was per-
formed in an indoor room with an rectangular free space
of approximately 25 x 14 feet and with three circular static
obstacles besides the walls. Two of these obstacles were
55-gallon drums with a diameter of 2 feet and the third
obstacle was another Denning robot with a diameter of
2% feet. Figure 3 shows an schematic layout of the robot
and the laboratory room used in the experiment. Note
that the boundaries of the navigable area are not flat; for
example, there are desks and chairs against the walls so
that the shape is irregular.

Figure 4 shows the performance of the robot plotted
against the learning trials. The graphs show the time
taken (top) and the number of virtual collisions (bottom)
in each trial. During the first two trials the robot was
not able to reach the destination point and both trials
were manually terminated after five minutes. During the
following trials, the robot was able to complete the task
successfully and improve its performance. The robot re-
duced the total time taken from over 5 minutes to a final
value of about 2 minutes after the first 10 trials, after
which it did not improve further on this metric. Also, it
reduced the number of virtual collisions from about 60 to
a steady state of about 10 after the first 15 trials, which
produced jerky movements along the path. The SINS sys-
tem, therefore, showed a significant improvement along
both metrics. Figure 5 shows the path taken by the robot
in the first (1) and last (20) trials.

Figure 3: A schematic layout of the robot and its environ-
ment. The robot is shown at the bottom of the figure; the
hollow circle near the top represents the goal; the black
circles represent the static obstacles; and the black bars
represent occupied areas that the robot cannot navigate
through.

300 >~

250

200 \

150 M

100

Time

50

Trials

70

. /\

50
é 40 \
" \ Figure 5: Actual path followed by the robot in the first

\// \‘\/\’_K and last trials: Top: trial 1. Bottom: trial 20.
10 — S
0 + + + + + + +
0 2 4 6 8 10 12 14 16 18 20

Trials

Figure 4: Performance of the real robot. Top: Total time
per trial. Bottom: Number of virtual collisions per trial.

CONCLUSIONS

This paper presented a formulation of parameter-adaptive
reactive controllers in terms of basic concepts from adap-
tive control theory, autonomous robotics, and machine
learning. Additionally, it described an algorithm that is
able to learn and use a mapping to adapt a reactive con-
troller in order to improve the navigation performance of
an autonomous mobile robot. The algorithm uses a multi-
strategy case-based and reinforcement learning approach
to progressively learn an efficient adaptive policy. The
algorithm learns and uses the adaptive policy simultane-
ously, using its own experience to incrementally refine the
policy and improve system performance. Finally, the pa-
per presented results from a fully implemented system in
a real robot.

Learning adaptive reactive controllers inherit all the ad-
vantages of traditional reactive controllers, but also are
able to dynamically adjust themselves to the current oper-
ating conditions of the robot and the environment. More-
over, the are able to use its own experience to synthesize
an efficient adaptive policy. This results in a significant
advantage because designers do not need to specify an
adaptive policy since the system can learn its own and
adapt itself to the particular characteristics of the envi-
ronment.

REFERENCES

[1] P. Agre and D. Chapman. Pengi: An implementation
of a theory of activity. In Proceedings of the Ameri-
can Association of Artificial Intelligence (AAAI-87),
volume 1, pages 268-272. Morgan Kaufmann, 1987.

[2] R. C. Arkin. Motor schema-based mobile robot nav-
igation. International Journal of Robotics Research,
8(4):92-112, 1989.

[3] C. G. Atkeson. Local trajectory optimizers. Advances
wn Neural Information Processing Systems, 6, 1993.

[4] T. Balch, G. Boone, T. Collins, H. Forbes,
D. MacKenzie, and J. C. Santamaria. lo, ganymede,
and callisto - a multiagent robot janitorial team. A7
Magazine, 16(2):39-51, 1995.

[5] R. Bellman. Dynamic Programming. Princeton Uni-
versity Press, Princeton, NJ, 1957.

[6] R. Bellman and R. Kabala. On adaptive control pro-
cess. IRE Transactions on Automatic Control; 4:1-9,

1959.

[7] D. P. Bertsekas. Dynamic Programming and Optimal
Control, volume 1. Athena Scientific, Belmont, MA,
1995.

[8] R. Brooks. A robust layered control system for a mo-
bile robot. IEEE Journal on Robotics and Automa-
tion, RA-2(1):14-23, 1986.

[9] L. P. Kaelbling. Learning in embedded Systems. PhD
thesis, Department of Computer Science, Stanford
University, Stanford, CA, 1990. Technical Report
TR-90-04.

. Langer, J. K. Rosenblatt, an . Hebert.

10] D. L J. K. R bl d M. Heb A

behavior-based system for off-road navigation. IEEE

Journal on Robotics and Automation, 10(6):776-783,
1994.

R. E. Larson. A survey of dynamic programming
computational procedures. I[EFEE Transactions on

Automatic Control, AC-12(6):767-774, 1967.

P. Maes. Situated agents can have goals. Robotics

and Autonomous Systems, 6:49-70, 1990.

S. Mahadevan and J. Connell. Scaling reinforcement
learning to robotics by exploiting the subsumption
architecture. In Proceedings of the Fight Interna-
tional Workshop on Machine Learning, volume 1,

pages 328-332. Morgan Kaufmann, 1991.

K. S. Narendra and A. M. Annaswamy. Stable Adap-
tive Systems. Prentice Hall, Englewood Cliffs, NJ,
1989.

K. Ogata. Modern Control Engineering. Pretince
Hall, Englewood Cliffs, NJ, 1990.

D. W. Payton. An architecture for reflexive au-
tonomous vehicle control. In Proceedings of the IEEE
Robotics and Automation Conference, pages 1838-
1845, 1986.

A. Ram, R. C. Arkin, K. Moorman, and R. J.
Clark. Case-based reactive navigation: A case-based
method for on-line selection and adaptation or reac-
tive control parameters in autonomous robotic sys-
tems. Technical Report GIT-CC-92/57, College of
Computing, Georgia Institute of Technology, Atlanta,
GA, 1992.

G. A. Rummery and M. Niranjan. On-line g-
learning using connectionist systems. Technical Re-
port CUED/F-INFEG/TR66, Cambridge University
Department, 1994.

J. C. Santamaria, R. S. Sutton, and A. Ram. Exper-
iments with reinforcement learning in problems with
continuous state and actions spaces. Technical Report
UM-CS-1996-088, Department of Computer Science,
University of Massachusetts, Amherst, MA, 1996.

S. P. Singh and R.. S. Sutton. Reinforcement learning
with replacing eligibility traces. Machine Learning,

22:123-158, 1996.
R. S. Sutton.

of temporal differences.

1988.

R. S. Sutton. Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding.
Advances in Neural Information Processing Systems,

8, 1996.

C.J. C. H. Watkins. Learning from Delayed Rewards.
PhD thesis, Univeristy of Cambridge, England, 1989.

Learning to predict by the methods
Machine Learning, 3:9-44,

