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Abstract

This research seeks to quantify the impact of the
choice of reward function on behavioral diversity in
learning robot teams. The methodology developed
for this work has been applied to multirobot forag-
ing, soccer and cooperative movement. This paper
focuses specifically on results in multirobot forag-
ing. In these experiments three types of reward are
used with Q-learning to train a multirobot team to
forage: a local performance-based reward, a global
performance-based reward, and a heuristic strategy
referred to as shaped reinforcement. Local strate-
gies provide each agent a specific reward according
to its own behavior, while global rewards provide
all the agents on the team the same reward simul-
taneously. Shaped reinforcement provides a heuris-
tic reward for an agent’s action given its situation.
The experiments indicate that local performance-
based rewards and shaped reinforcement generate
statistically similar results: they both provide the
best performance and the least diversity. Finally,
learned policies are demonstrated on a team of No-
madic Technologies’ Nomad-150 robots.

1 Introduction

Most research in multirobot systems has centered on ho-
mogeneous teams, with work in heterogeneous systems
focused primarily on mechanical and sensor differences
(e.g. Parker’s work [9]) In contrast, this research ex-
amines teams of mechanically identical robots. These
systems are interesting because they may be homoge-
neous or heterogeneous depending only on the behavior
of the agents comprising them. Behavior is an especially
flexible dimension of heterogeneity in learning systems
because the agents converge to hetero- or homogeneous
solutions on their own.

This investigation is focused on quantifying the
relationship between the type of reward used to
train a robot team and the diversity and perfor-
mance of the resulting system. This paper reports
results in the multirobot foraging domain, but the same
methodology has also been applied to robot soccer and
cooperative movement tasks. For a complete description
of the results in all three domains the reader is referred

to [5].

Previously, foraging robot teams were configured as ei-
ther homogeneous or heterogeneous a priori, then their
performance comparatively evaluated. In one represen-
tative study, Goldberg and Matarié¢ evaluate the relative
merits of heterogeneous and homogeneous behavior in
foraging tasks [7]. Like the research reported in this pa-
per, their work focuses on mechanically identical, but
behaviorally different agents. To reduce robot-robot in-
terference in foraging they suggest pack and caste arbi-
tration as mechanisms for generating efficient behavior.
In the pack scheme, each agent is arbitrarily assigned
a place in the “pack hierarchy.” Agents higher in the
hierarchy are permitted to deliver attractors before the
others. In the caste approach, only one agent completes
the final delivery; the other robots leave their attractors
on the boundary of a designated “home zone.” They
find that the homogeneous systems performed best.

In another investigation, Balch demonstrates a rela-
tionship between diversity and performance in hand-
coded foraging teams [3]. He compares the performance
of two heterogeneous and one homogeneous strategy.
The performance of each system is evaluated in simu-
lation and also ranked according to an information the-
oretic measure of diversity called social entropy [5). The
results indicate strong negative correlation between per-
formance and diversity in multirobot foraging systems
— 1.e. homogeneity is preferred in this task.

The research reported here 1s distinguished from other
work because diversity is investigated as an outcome
rather than an initial condition of robot experiments.
This approach enables the investigation of diversity from
an ecological point of view — as an emergent property of
agents interacting with their environment. The robots
in this research are initialized with random policies, then
allowed to learn (using one of several reward strategies).
Performance and diversity are evaluated after the agents
have converged to stable policies.

Reinforcement learning plays a growing role in the pro-
gramming of autonomous multirobot teams. A key issue
in this field is how to select appropriate reward functions
for the learning robots. In the most closely related multi-
agent reinforcement learning work Matarié asserts that
the delayed reinforcement often utilized in Q-learning
hinders an agent’s ability to learn quickly [8]. Instead,
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Figure 1: Real and simulated robot foraging. Left: two robots forage for colored attractors in the laboratory; after
grasping an object, they deposit it in one of two delivery zones according to color. Right: in simulation, robots are
represented as black circles, arcs indicate the robots’ visual sensing range, obstacles are drawn as gray circles; the
small discs are attractors. The robots deliver the attractors to the color-coded squares representing delivery areas.

she proposes a heuristic strategy called shaped reinforce-
ment to speed and improve learning performance. In
this paper we compare the performance and diversity of
foraging robot teams trained using shaped reinforcement
with others using delayed rewards.

The rest of this paper is organized as follows: The
next section describes the multiagent foraging task in
more detail. Later sections explain the development of
behaviors and reward functions used to train robots to
accomplish the task. The quantitative performance of
the resulting systems is compared Section 5. Diversity
is examined in Section 6. Section 7 describes the imple-
mentation of the foraging behaviors on mobile robots.
We conclude with a review of the results and a discus-
sion of their implication.

2 The multi-foraging task

The forage task for a robot is to wander about the envi-
ronment looking for items of interest (attractors). Upon
encountering an attractor, the robot moves towards it
and grasps it. After attachment, the robot returns the
object to a specified home base. Foraging has a strong
biological basis. Many ant species, for instance, perform
the forage task as they gather food. Foraging is also
an important subject of research in the mobile robotics
community; it relates to many real-world problems [1; 2;
4; 7; 6]. Among other things, foraging robots may find
potential use in mining operations, explosive ordnance
disposal, and waste or specimen collection in hazardous
environments (e.g. a planetary rover).

In most robotic foraging research to date the robots
collect attractors of a single type and deliver them to a
single destination. This basic task is referred to as simple
foraging. Simple foraging is an important robotic capa-
bility, but many practical industrial and military tasks
call for more functionality. Consider, for example, a jan-
itorial robot responsible for collecting and sorting recy-
clable trash objects into glass, aluminum and paper bins.
Similarly, many assembly and construction tasks involve
collecting parts or materials and placing them in a spe-
cific location. These more complex tasks are referred to

as multi-foraging tasks. In general, the multi-foraging
task calls for several types of objects to be collected and
placed in specific locations according to type. Here mult:
refers to the multiple types of object to deliver, not the
number of robots engaged in the task. An example of
robots executing a multi-foraging task is presented in
Figure 1.

Performance in the multi-foraging task is measured as
the number of attractors collected and properly delivered
by the robots in a 10 minute trial. Several environmental
parameters affect the rate at which the agents collect and
deliver the attractors including the number of attractors,
obstacles in the environment, playing field size and the
number of robots.

The following conditions were present in simulation
experiments: 40 attractors (20 of each type, red and
blue) and five 1 m? obstacles (5% coverage) randomly
distributed about a 10 by 10 meter field with one to
eight simulated robots. In laboratory runs there were 20
attractors and no obstacles (except arena boundaries) on
a b by 10 meter playing field with one or two robots.

3 Behaviors for multi-foraging

A schema-based reactive control system 1s used for robot
programming. In this approach, an agent is provided
several pre-programmed skills (or more formally, behav-
ioral assemblages) that correspond to steps in achieving
the task (e.g. wander, acquire, deliver, and so on). Bi-
nary perceptual features are used to sequence the robot
through steps in achieving the task. Selection of the
appropriate behavior, given the situation, may be pro-
grammed by hand or discovered by the robot through re-
inforcement learning. In addition to the learning strate-
gies investigated here, these behaviors were also used to
build successful hand-coded foraging strategies, includ-
i[n]g a winning entry in the AAAI-97 Robot Competition
3.
A range of skills were developed to support a number
of foraging strategies and to avoid bias towards any par-
ticular approach. The repertoire is suitable for building
behaviorally homogeneous foraging teams as well as var-



ious heterogeneous strategies. The behaviors are sum-
marized below:

e wander: move randomly about the environment in
search of attractors. Upon encountering an attractor,
most agents learn to transition to an appropriate ac-
quire behavior.

o stay_near_home: similar to the wander assemblage, but
with an additional attractive force to keep the agent
close to the homebase. This assemblage might be uti-
lized in a territorial foraging strategy.

e acquire_red: move towards the closest visible red attrac-
tor. When close enough to grasp the attractor, most
agents learn to close their gripper and transition to a
deliver assemblage.

o acquire_blue: move towards the closest visible blue at-
tractor.

o deliver_red: move towards the red delivery area. When
close enough to deposit the attractor in the delivery
area, most agents learn to open their gripper and tran-
sition to one of the wander assemblages.

o deliver_blue: move towards the blue delivery area.

All of the above behaviors include a provision for ob-
stacle and robot avoidance.

Depending on its perceptual state (an abstract rep-
resentation of the agent’s situation) each robot selects
which of the six behaviors to activate at each movement
step. In the language of the reinforcement learning com-
munity, agent learns to select an action (behavior/skill)
depending on it’s state (perceptual state). The associa-
tion of actions to states specifies the robot’s policy.

The perceptual state 1s a combination of nine percep-
tual features. Each feature i1s a single, abstracted bit
of environmental or sensor state germane to the robot’s
task (e.g. whether or not the robot is holding an at-
tractor in its gripper). The perceptual features used in
this work are cataloged in Table 1. In addition to the
features advising the robot whether an attractor is visi-
ble, there are also features indicating whether attractors
are visible outside the delivery (or “home”) zone. The
visibility cues are used to allow hand-coded territorial
agents (reported in separate work [3]) to search for at-
tractors at a distance from the delivery zone (home zone)
while ignoring the others (and vice-versa).

Instead of being provided a pre-coded sequencing
strategy however, the robots in this work must learn
an effective policy as they interact with the environment
and are provided feedback (in the form of a reward). The
learning agents are provided information about the envi-
ronment in the 9-bit perceptual state vector. Altogether
there are 512 potential perceptual states. In practice
however, some states never occur. It is impossible, for
instance, for a robot to be both in the red delivery area
and outside the home zone simultaneously.

4 Learning strategies for foraging

The approach is to provide each agent a reward function
that generates feedback at each movement step regard-
ing the agent’s progress, then to use that function over

many trials to train the robot team. Q-learning is used
to associate actions with state. The learning agents are
initialized with random Q-tables, thus random, poorly
performing policies. Since each agent begins with a dif-
ferent policy, the teams are initially maximally diverse.
They improve their policies using the reinforcement func-
tions described below.

The reinforcement function used to train a robot is
usually closely coupled to the performance metric for
the task. In fact in many reinforcement learning investi-
gations performance, task and reward are viewed as one
and the same. Since learning agents strive to maximize
the reward signal provided them, performance is maxi-
mized when their reward closely parallels performance.
It is sometimes the case however, that robots cannot or
should not be rewarded strictly according to overall sys-
tem performance. Some examples include: the robot’s
sensors do not provide enough information for an accu-
rate evaluation of performance; the delay in receiving a
reward is too great — learning a sequential task is too
difficult and/or takes too long; performance depends on
the actions of other robots over which the agent has lim-
ited knowledge and/or control. As a result, the perfor-
mance metric (task) and reward function are often quite
different and must be treated separately. A taxonomy
introduced by Balch is adopted to help distinguish be-
tween the various reward functions investigated in this
work [5].

Three reward functions are investigated here:

e Local performance-based reinforcement: each
agent is rewarded individually when it delivers an at-
tractor.

e Global performance-based reinforcement: all
agents are rewarded when any agent delivers an attrac-
tor.

e Local shaped reinforcement: each agent is rewarded
progressively as it accomplishes portions of the task [8].

In both types of performance-based reinforcement the
reward is tied directly to the performance metric; in this
case, attractor delivery. A performance-based reward
i1s advantageous for the designer because it allows her
to succinctly express the task for an agent. There 1s no
need to enumerate how the task should be carried out (as
is necessary in hand-coded teams). Instead, the agents
learn behavioral sequences autonomously. In contrast,
heuristic or shaped reinforcement functions provide re-
wards to the agent as it achieves parts of the task; for
instance, when grasping an attractor, when heading for
the delivery area, and when depositing it in the delivery
area.

Assuming the task proceeds in discrete steps, the local
performance-based reinforcement function for foraging
at timestep t is:

{ 1 if the agent delivered
Riseal (t) = an attractor at time ¢ — 1.
—1 otherwise.



perceptual feature |

meaning |

red_visible

blue_visible

red_visible outside homezone
blue_visible outside homezone
red_in_gripper

blue_in _gripper
close_to_homezone

cloge_to_red bin

clogse_to_blue bin

a red attractor is visible.

a blue attractor is visible.

a red attractor is visible outside the
three meter radius home zone.

a blue attractor is visible outside

the home zone.

a red attractor is in the gripper.

a blue attractor is in the gripper.

the agent is within

3 meters of the homebase.

close enough to the red

delivery area to drop an attractor in it.
close enough to the blue

delivery area to drop an attractor in it.

Table 1: Perceptual features available to the foraging robots. Each feature is one bit of environmental state; the

entire perceptual state 1s a nine-bit value.
The global performance-based function is defined as:
if any agent delivered.

1
Reiobal (t) = an attractor at time £ — 1.
—1 otherwise

The global function will reward all team members when
an attractor 1s delivered. The global function is imple-
mented using an inter-robot communication scheme that
allows the agents to communicate their individual re-
wards. In terms of the reinforcement function taxonomy
developed in [5], Rglobal and Rioca are similar in that
they are both INTERNAL _SOURCE, PERFORMANCE, DELAYED
and DISCRETE reward functions. Of course they differ in
locality; one is LOCAL while the other is GLOBAL

A potential problem with these reward functions is
that the reinforcement is delayed. The agent must suc-
cessfully complete a sequence of steps before receiving a
reward. This makes credit assignment in the intervening
steps more difficult. To address this issue, Matarié¢ has
proposed an alternate reward scheme where the agent is
provided intermediate rewards as it carries out the task
[8]. The agent is not only rewarded for delivering an
attractor, but also for picking one up, for moving to-
wards a delivery area when it is holding an attractor,
and so on. This heuristic strategy, referred to as shaped
reinforcement, is defined as a sum of three component
functions:

Rshaped(t) = Revent(t) + Rintruder(t) + Rprogress(t)

Revent () encapsulates the reward for events like deliv-

ering an attractor or dropping it in the wrong place.
Rintruder (t) is used to punish the agent for prolonged in-
terference with other agents. Finally, Rprogress(t) is ac-
tivated when the agent is holding an attractor, and re-
wards the agent for moving towards the delivery point.
Revent (1) is defined more formally as:

1 if delivered attractor
at time ¢t — 1.
1 if picked up attractor
at time ¢t — 1.
—3 if dropped attractor
outside bin at time ¢ — 1.
—1 otherwise.

Revent (t) =

Matarié sets Reyvent to 0 in the default case, instead of
-1 as above. The choice was made to use -1 here because
Q-learning converges more quickly with negative rewards
before task completion. Rprogress(t) is defined as:

0.5 if holding attractor and moving
towards bin at time ¢ — 1.

if holding attractor and moving
away from bin at time ¢ — 1.

0 otherwise.

Rprogress(t) = —0.5

Because the individual behaviors used in this work
already include a provision for agent avoidance,
Rintruder(t) 1s not used. Rghaped 1s an INTERNAL_SOURCE,
HEURISTIC, IMMEDIATE, DISCRETE and LOCAL reward
function.

5 Performance results

Statistical results were gathered in thousands of simula-
tion trials. Each type of learning system under investi-
gation was evaluated using one to eight simulated robots
in five randomly generated environments. Performance
is evaluated as the number of attractors collected in 10
minutes. 300 trials were run in each environment, or
12,000 runs overall.

Agents are able to learn the task using all three types
of reinforcement. A plot of the average performance for
each learning strategy versus the number of agents on
the team is presented in Figure 2. (In separate research,
the performance of three different hand-coded systems
was also evaluated [3]; performance of the best hand-
coded system (a homogeneous strategy) is included in
the graph for comparison).

The plot shows that, of the learning strategies, lo-
cal performance-based and heuristic (shaped) reinforce-
ment systems perform best. Performance in the glob-
ally reinforced system is worse than the other learning
teams. Note that the performance plots for teams us-
ing local and shaped rewards are nearly identical and
that one’s confidence interval overlaps the other’s mean
value. Both also overlap the performance of the hand-
coded homogeneous policy. In fact, there is no statis-



tically significant difference between the homogeneous
hand-coded systems and the best learning systems. Lo-
cal and shaped reinforcement systems perform as
well as the best hand-coded systems.
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Figure 2: Performance of foraging teams versus the num-

ber of robots on a team. The errorbars indicate 95%
confidence intervals.
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Figure 3: Convergence for learning systems, measured
as policy changes per trial; low numbers indicate con-
vergence to a stable policy.

The rate at which agents converge to stable policies
is evaluated by tracking the number of times an agent’s
policy changes during each trial. A policy change 1s a
revision of the agent’s Q-table such that it will select
a different action in some perceptual state. The aver-
age number of policy changes per trial is graphed for
each system in Figure 3. The figure shows plots for sys-
tems with eight agents. All three reinforcement strate-
gies show good convergence properties, but the systems
using shaped reinforcement converge the quickest.

6 Diversity results

Previously, diversity in multirobot teams was evaluated
on a bipolar scale with systems classified as either het-
erogeneous or homogeneous, depending on whether any
of the agents differ [6; 7; 9]. Unfortunately, this label-
ing doesn’t tell us much about the extent of diversity in
heterogeneous teams.
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Figure 4: Social entropy (diversity) versus size of the
team for learning teams; larger numbers indicate greater
diversity, error bars indicate 95% confidence intervals.

Heterogeneity is better viewed on a sliding scale pro-
viding for quantitative comparisons. Such a metric en-
ables the investigation of issues like the impact of di-
versity on performance, and conversely, the impact of
other task factors on diversity. Social entropy, inspired
by Shannon’s information entropy [11], is used as a mea-
sure of diversity in robot teams. The metric captures
important components of the meaning of diversity, in-
cluding the number and size of groups in a society. So-
cial entropy is briefly reviewed here. For more details
please see [5].

To evaluate the diversity of a multirobot system, the
agents are first grouped according to behavior 1 (e.g. all
red-collecting agents are placed in one group). Next,
the overall system diversity is computed based on the
number and size of the groups. Social entropy for a mul-
tirobot system composed of M groups is defined as:

H(X) = =) pilogs(p) (1)

where p; represents the proportion of agents in group .
We will use this metric in the evaluation of the experi-
mental foraging strategies.

The average diversity is computed for robot teams
trained with each type of reinforcement. Results are
plotted versus the size of robot teams in Figure 4. In all
cases with two or more agents, the globally reinforced
teams are most diverse. In all but one case the teams
using shaped reinforcement are the least diverse and lo-
cally reinforced teams lie between the two extremes.

Spearman’s Rank-order Correlation Test is used to
evaluate the relationship between diversity and perfor-
mance in these systems [10]. The test measures the cor-
relation between rankings in one dimension (e.g. per-
formance) and another (e.g. diversity). Spearman’s test
indicates the rankings are strongly negatively correlated,

'We use numerical hierarchical overlapping clustering
techniques to group agents according to policy similaries.
Please see [5] for details.



configuration/trial performance
before training after
1 robot trial 1 1.0 9.0
trial 2 0.0 10.0
trial 3 0.0 8.0
trial 4 0.0 7.0
trial 5 0.0 8.0
average 0.2 8.4
2 robots trial 1 0.0 15.0
trial 2 1.0 15.0
trial 3 0.0 16.0
trial 4 1.0 14.0
trial 5 0.0 13.0
average 0.4 14.6

Table 2: Summary of performance in learning foraging
robot trials. Policies learned using local performance-
based rewards were used in all trials.

with » = —0.96. The probability of the null hypoth-
esis being true (that the rankings occur by chance) is
0.000028. Diversity and performance are nega-
tively correlated in these learning teams.

7 Implementation on mobile robots

To verify the simulation results, the learning systems
were ported to Nomad 150 mobile robots. The Java-
based behavioral configuration system used in this work
enables the behaviors and features to be utilized on mo-
bile robots and in simulation. Identical control soft-
ware was employed in simulation and on the mo-
bile robots.

Performance was evaluated before and after learning
using local performance-based rewards on one and two
robots. In each case, the robots were initialized with
a random policy (the behavior for each situation is set
randomly), then evaluated in a 10 minute trial. The
Q-tables were transferred to the simulation system and
trained for 300 trials. After training, the policies were
transferred back to the robots for another evaluation.
The process was repeated five times for each number
of robots. Performance of the robots running learned
policies is summarized in Table 7. A photograph one of
the mobile robot trials is presented in Figure 1.

As in simulation the robots perform much better af-
ter the learning phase. However, they do not collect as
many attractors as comparable simulated systems. This
is due to the reduced number of attractors available for
collection.

8 Discussion and summary

The experimental results reported here show that the
choice of reinforcement function significantly impacts the
diversity and performance of learning teams in a foraging
task. Separate studies (using the same methodology)
in robot soccer and cooperative movement support this
result in other domains as well [5].

Interestingly, the relationship between diversity and
performance in soccer (positive correlation), is exactly
opposite the relationship reported for foraging in this
work (negative correlation). The reasons for this differ-
ence aren’t known for certain, but we believe they are
due to the differences in task. Soccer is unavoidably a
team activity while foraging can be accomplished by an
individual agent. We believe that when multiple agents
are required, it is more likely that the team will benefit
from diversity.

These experiments in foraging show that agents using
local reinforcement strategies converge to more homoge-
neous societies and perform better than robots using a
global reward structure. Greater homogeneity with local
reinforcement is due to the fact that individuals are re-
warded for their own actions, thus making reinforcement
of the same state/action pair more likely in different
agents than with global reinforcement. The relationship
between diversity and performance is exactly opposite
that found in robot soccer experiments (reported sepa-
rately), but in both soccer and foraging, local rewards
lead to greater homogeneity [5].

In addition to the local and global performance-based
reward structures, a local heuristic, or shaped reinforce-
ment method was evaluated [8]. In these experiments
teams trained using shaped reinforcement learn the task
more quickly (converge faster) than teams using de-
layed rewards. However, after approximately 150 tri-
als the performance of systems using shaped reinforce-
ment is nearly identical to that of systems using de-
layed performance-based rewards. In general we believe
“standard” performance-based rewards are preferable to
tailored heuristic rewards because they provide greater
generality and less programmer bias. But when quick
learning is imperative, shaped rewards may be a better
choice.

The diversity of each system was evaluated using
the social entropy metric introduced in [5]. Globally-
rewarded teams were found to be the most diverse,
followed by the locally rewarded teams. Teams using
shaped reinforcement were the least diverse. This is be-
cause agents using shaped reinforcement are provided
more uniform “guidance” in finding a policy, and are
thus less likely to settle on diverse solutions. In these
learning systems, diversity and performance are nega-
tively correlated with r = —0.96 and prob = 0.000028.
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