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ABSTRACT Fast Line Finder (FLF) developed at the University of
Massachusetts.13  This algorithm has been used
successfully on minicomputers and workstations by its
authors and others, including some previous work at
Georgia Tech, but for this application it was necessary to
port it to a system more suitable for actual deployment on a
robot.

Routine monitoring of stored radioactive materials can
be performed safely by mobile robots.  In order to
accomplish this in an environment consisting of aisles of
drums, it is necessary to have a reliable means of aisle-
following.  This work describes the adaptation of
successful road-following methods based on visual
recognition of road boundaries to the waste storage
problem.  Since the effort is targeted for near-term usage in
normal operating conditions, special emphasis has been
given to the implementation of the visual processing on
practical (i.e., small, low-cost, and low-power) hardware
platforms.  A modular, flexible architecture called ANIMA
(Architecture for Natural Intelligence in Machine
Applications) has been developed at Georgia Tech.  The
initial versions of this architecture have been based on the
Inmos Transputer, a microprocessor designed for parallel
applications.  To address this application, an ANIMA-
based real-time visual navigation module has been
developed.  The system described here has been
implemented onboard a robot in our laboratory

To provide navigation in the semi-structured
environment found in a hazardous waste storage facility, a
sensor system should use the inherently available
information of the storage structure.  Since these structures
tend to be organized for the convenience of visual
observation, it is assured that visual navigation cues will be
present.  For this reason, vision currently provides the
greatest information content among reasonably-priced
sensor systems.  In addition, vision can be applied to the
task of drum inspection, making dual use of a single sensor.

A drawback to the use of vision in a sensor system is
the large volume of data that must be processed to extract
the necessary navigational cues.  Associated with this
drawback is the high computational processing needed to
provide reasonable throughput rates for real-time control.
Sophisticated image processing algorithms can alleviate the
first problem, at the expense of adding to the second,
simultaneously reducing the quantity and increasing the
quality of the sensor data.

I. INTRODUCTION

The environment for the mobile robot application can
be generally described as rows of closely spaced pallets,
each containing stacks of drums.  It is required that the
robot be able to travel between the rows without colliding
with any drums or pallets.  The drums vary in size, and they
may extend past the edge of the pallets.  The resulting
visual boundary (at the floor) is a series of line segments
and curves, sometimes interrupted by gaps.  In order to
provide steering cues, the visual algorithm must be able to
identify the approximate left and right boundaries, in spite
of their deviation from straight lines, and project an
imaginary center line.  The basis for this work is a mobile
robot navigation system developed by Arkin,1 using the

Our approach to this problem is to:

• utilize the simplest reliable navigational cues
available from the environment,

• perform the necessary image processing to extract
those cues and reduce the data volume to a
manageable level,

• provide processing power sufficient to implement
these algorithms within the time constraints
provided by the robotic control system, and



• implement the system as a separate module so that
it can operate without impacting the performance
of established components

knowledge-based reasoning, the algorithms are often not
considered within the context of a complete machine.  In
many prior efforts, both software architectures and
hardware architectures have been developed to meet the
requirements of specific projects, with little regard to
reusability in other applications.  Often, experimental
systems are not robust, failing due to relatively minor
environmental variations or task redefinitions.  This
section describes the integration of two separate efforts to
address these problems.  One is a robot control software
architecture that has been demonstrated to perform a
variety of tasks well, and the other is a targeted, yet
flexible, computer architecture that provides modularity
and expandability.

To the end of making this system completely portable,
we have designed a modular parallel-processing
architecture that is largely host-independent.  The central
processing element of this architecture is the Inmos
Transputer, a high-performance microprocessor that has
been designed for parallel processing.  For this application,
we used Transputer-based frame grabbers, processing
elements, and interfaces for communication and storage.
All of these components are available as modular, off-the-
shelf products that communicate through high-speed
communication links.  Host interfaces for Transputer
systems are available for most popular platforms.  For
many of these systems, the interface is integrated into a
carrier board that provides for the physical mounting of
Transputer-based modules (or TRAMs).  To demonstrate
the capabilities of a Transputer-based control system on a
commercial (Denning) robot, a custom carrier was
developed to match the robot's native STD-bus form factor.

A.  AuRA – the Autonomous Robot Architecture

AuRA is a hybrid architecture encompassing aspects
of both deliberative and reactive control. It consists of 5
major subsystems:

• Perception – charged with collecting and filtering
all preliminary sensory data.

• Cartographic – concerned with maintaining long-
term memory (a priori models of the
environment), short-term memory (dynamically
acquired world knowledge), and models of spatial
uncertainty.

Another assembly used for testing of the system was a
single Eurocard carrier (similar to the GISC VME form
factor) that contained all of the modules necessary for
control of a three-axis motorized camera platform.  Output
of the vision system was used to direct the camera motor
control system, which emulated the essential aspects of
robot steering.

• Planning – consists of a hierarchical planner (the
deliberative component) and the motor schema
manager (the reactive component).

Our research concentrated on aisle boundaries as the
essential visual cues for safe navigation.  Two algorithms
were studied for effectiveness of aisle-boundary extraction:
the Fast line finder (FLF) and the Fast region segmenter
(FRS).  Only an FLF-based navigation system is discussed
here.  This system extracts left and right aisles by sampling
a single video frame, performing edge detection, building
connected regions of pixels with similar line orientations,
and filtering out low-interest orientations.  The output from
the algorithm is used to derive an estimate of the aisle
center.  Using this estimate and knowledge of the current
heading, the controller servos the robot to follow the
expected center line.

• Motor – the interface software to the specific
robot to be controlled.

• Homeostatic – a component concerned with
dynamic replanning in light of available internal
resources.4

 The overall architecture has been described in detail
elsewhere. The reader is referred to Arkin for more
information.1, 3

The hardware migration to ANIMA thus far has been
concerned with the reactive and perceptual components of
the system that run within the confines of the motor
schema manager. Figure 1 presents the logical
relationships between the varying schemas which
constitute this portion of AuRA.II.  TRANSPUTER-BASED CONTROL SYSTEM

Autonomous machines with sensory, manipulative,
and locomotive capabilities are a significant class of
intelligent systems holding great promise for performing
hazardous or mundane tasks.  Although much work has
been performed with isolated aspects of intelligent
machines, including vision, sonar, manipulator control, and

Action-oriented perception forms the underlying
philosophy for channeling sensory information to the
motor schemas (behaviors).2  Only the  information that is
essential to a particular motor behavior is  transmitted to it,
essentially on a need-to-know basis. The message-passing



paradigm found in ANIMA is well suited for this type of
information flow.

within the environment.  Although this may be viewed as a
sort of coordination, it is really a process much more
closely aligned with the Reasoner in our nomenclature.  A
planned trajectory, given in a high-level description, could
serve as an input to the Coordinator process, which would
then take control of the effectors in order to implement the
trajectory.
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These additional parallel processes are illustrated in
Figure 2.  The independent sensor subsystems are called
logical sensors, in much the same sense as those of
Henderson11 or Crowley.10  At this point, a logical sensor
is best thought of as a combination of a physical sensor,
capable of estimating some property of the environment or
the machine itself, and a generalized device driver.  The
extension of this concept to the logical effector is
straightforward.  Taken together, logical sensors and
logical effectors are called logical devices.  A single
logical device can be composed of multiple physical
devices, with appropriate drivers.  This would be desirable
in cases where the physical devices were virtually identical
(except perhaps in physical location, scaling, or some other
trivial factor), allowing the main driver to give the
appearance of a single effective logical device.

Figure 1.  Inter-schema relationships.

Each of the active motor schemas generates a velocity
vector in a manner analogous to the potential fields
method14, 15 with the individual results being summed,
normalized and transmitted to the robot for execution.  The
speed of operation is highly dependent on the rate of
processing of incoming sensory data. The parallelism
found in the Transputer implementation described below is
a natural match for this aspect of the AuRA architecture.

B.  ANIMA hardware architecture
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We have developed a flexible, real-time platform for
the development of AuRA and other software
architectures.  The skeleton of our hardware architecture,
ANIMA (Architecture for Natural Intelligence in Machine
Applications), has been developed from basic principles.8

The deliberative component controlling the input and
output subsystems is called the Reasoner.  A major aspect
of this reasoning capability is the need to maintain some
sort of world model based on sensory input, at least for
anything more than basic reactive behavior.

The vast majority of intelligent machine research has
assumed that the input/output devices, just as in a
conventional computer, are largely independent in their
low-level operation (at or below the level of the device
driver).  For input devices, the combination of these
independent streams of data has often been referred to as
sensor integration, and we include a process, called the
Integrator, to perform this task.  On the output side of the
structure, the most appropriate term is coordination,
although the specific definition varies considerably in the
literature.  Corresponding to the Integrator, we include a
process called the Coordinator.  Often, researchers wish to
place task planning in this position.  The most common
form of task planning is trajectory planning (or path
planning) in which one or more effectors are given
commands that, taken together, result in a desired trajectory

Figure 2.  ANIMA structure.

C.  Hardware implementation

Implementations of this architecture have been
developed based on the Inmos T800, a member of the
Transputer family of microprocessors developed for
parallel processing.  Each Transputer provides four high-
speed serial links for the required processor
interconnection.

Using commercial off-the-shelf components, the
module consists of a frame-grabber, a dedicated FLF



processor, and an optional graphics display controller.  The
FLF processor is a 30 MHz T805 Transputer, which
includes a floating-point processor capable of over 2.5
MFLOPs, but requiring few external components and
minimal power.  The processor and its four Megabytes of
dynamic memory are packaged in the standard Transputer
Module, or TRAM, format.  Both the frame-grabber and
the display controller also utilize T805 processors and are
packaged as TRAMs as well.  The ANIMA architecture
requires no parallel data busses or backplanes of any kind.
Instead, it consists of modular components connected only
by high-speed serial links.  This allows the processors to be
distributed to any convenient locations within the
intelligent machine.

retention.  The largest TRAM, a Size 8, is 3.66” by 8.75”
with 128 pins for retention, of which only 16 are used by
the TRAM for electrical services.  On TRAMs larger than
Size 1, the extra unused pins are passed through the module
so that other TRAMs may be piggybacked to avoid the loss
of TRAM sites.  In this fashion, the STD host adapter could
support one Size 4 TRAM plus three Size 1 TRAMs.

III. VISION-BASED NAVIGATION

Using vision to guide a mobile robot has many
difficulties.  Among these is the problem of reducing a
large amount of pixel-based information into a smaller
representation that lends itself to computer-based
reasoning.  We have investigated two approaches
developed by the University of Massachusetts while
performing research for the DARPA Autonomous Land
Vehicle Project.13  Both of these algorithms, the Fast Line
Finder (FLF) and the Fast Region Segmenter (FRS), rely
upon selective processing to achieve reasonable
performance levels in the real-time environment of a
mobile robot.  Selective processing is derived from a priori
knowledge of the robot's environment and goals and can be
used to limit the processing of visual information to regions
of high interest.  In the FLF-based research performed here,
areas of interest are confined to regions of the visual field
in which pathways are likely to be found.  Additional
selection is performed by processing only objects whose
features, such as line orientation, match the constraints
necessary for visual navigation.

D.  Case studies – “Buzz” and “Stimpy”

AuRA and ANIMA were first brought together in the
development of a machine called “Buzz,” to compete in the
first robot exhibition and competition sponsored by the
American Association for Artificial Intelligence (AAAI).
The competition stressed the ability of mobile robots to
explore an arena, avoid static or moving obstacles, locate
goals, and visit goals in specified order.5,9  Buzz required
an onboard PC to host its network of Transputers.  To
address more directly the needs of WSRC, a compact, low-
power, onboard implementation was developed and used in
a robot called “Stimpy.”  Like Buzz, this version was
designed for one of the Denning commercial robots (an
MRV-2), and it was used in a AAAI competition (held in
July 1993 in Washington, D. C.).

The Fast Line Finder algorithm, based upon Burns’s
algorithm, works by extracting a set of image intensity
gradients for each pixel in an image and groups pixels with
related orientations and positions together.7  From these
groups, lines can be developed.  In this research, these lines
are used to define speculative road edges from which a path
can be derived.

The Denning MRV-2 is a three-wheeled cylindrical
robot intended for general-purpose use, mainly in research.
All three wheels turn simultaneously, providing
(approximately) the ability to turn in place.  The body
itself does not rotate, except for gradual precession
resulting from non-uniform slippage of the wheels against
the floor.  Twenty-four sonar sensors are equally spaced
around the body. The following steps are taken by the Fast Line Finder

algorithm to generate a set of lines that are of use in vehicle
navigation:E. STD Host Adapter

1. Computation of the image intensity gradient
(magnitude and direction) for each pixel

Integration of the Transputer Control System with the
Denning MRV-2 was achieved by building two STD host
adapters.  These adapters meet the specifications for
Transputer Module (TRAM) motherboards provided by
Inmos12 and allow for the mounting of up to four TRAMs
on each adapter.  The TRAM format has been defined by
Inmos to cover various-sized modules that interconnect
through Transputer-compatible links.  The basic size of a
TRAM is 3.66” by 1.05” (referred to as a Size 1 TRAM)
with 16 pins for electrical services and mechanical

2. Quantization of pixel direction into a set of
orientation ranges.

3. Grouping of adjacent pixels of like orientation
into regions

4. Fitting of lines to match regions

The Fast Line Finder optimizes the processing of these
steps by ignoring irrelevant pixels during the early stages
and irrelevant regions during the later stages.



Figure 3. Example of an accurate FLF centerline
determination.

Figure 4. Illustration of typical error sources in FLF
algorithm.

For robot navigation, the line fragments provided by
the Fast Line Finder must be accompanied by a control
system that can interpret the results in a useful manner.6  In
this implementation, the navigation system1 constrains the
generation of line segments by the FLF algorithm and from
these attempts to determine path edges and path centerline.
The path edges are derived by applying the robot's
knowledge about its current position and approximate
position of the path from the last image.  Using this
information, the control system can make a prediction as to
the location and orientation of the path edges in the current
frame.  This prediction is used to tune the FLF to produce
sets of lines that can be used as fragments for candidate
road edges.  Fragments are considered by first filtering out
those line segments whose position or orientation does not
match the expectations for either of the path edges.  Two
sets of fragments, one for each path edge are produced,
from which line equations are generated.  From these left
and right edges, a center line is computed which provides a
basis for the generation of a new directional heading for the
robot.

As shown in Figure 4, interference from extraneous
fragments can cause the performance to deteriorate.  In this
image, unwanted fragments pull the left aisle boundary
toward the edge of the frame.  However, even in this case,
the errors are not navigationally significant.  Furthermore,
the estimated boundaries are close enough to adequately
predict their position in the next sequential image.

IV. TESTING

The environment for the mobile robot application can
be generally described as rows of closely spaced pallets,
each containing stacks of drums.  The rows are separated
by aisles that are large enough for the robot to pass through
(about 1 m).  It is required that the robot be able to travel
down these aisles without colliding with any drums or
pallets.  The drums vary in size, and they may extend past
the edge of the pallets.  The resulting visual boundary (at
the floor) is a series of line segments and curves,
sometimes interrupted by gaps.  In order to provide
steering cues, the visual algorithm must be able to identify
the approximate left and right boundaries, in spite of their
deviation from straight lines, and project an imaginary
center line.

Figure 3 shows the operation of the navigation system
under good conditions.  Because the FLF has produced a
majority of line fragments that closely match the aisle
boundaries, the centerline is accurately computed.  Due to
orientation filtering, relatively few lines are generated from
the drum images, even in the regions occupied by the
rectangular labels.  As will be discussed in more detail
later, the most useful images are acquired when the camera
is pointed steeply downward, as seen here.  Ideally, none of
the field of view is used for extraneous information above
the horizon.

Two methods were established for testing of the vision
system and related algorithms.  The first setup used
videotape images from the Fernald Environmental
Management Project that simulated motion of a robot
through the waste storage facility.  These images were
digitized and stored for processing by both a Sun
workstation and the Transputer-based vision system.  The
second test setup consisted of simulated environment



constructed from 50-gallon drums and pallets assembled
into aisles.  These aisles were navigated by a camera-
equipped Denning robot driven by a remote Sun
workstation running an image processing algorithm.  The
images shown here are all from the Fernald videotape.

without adding significantly to the size or power
consumption (the frame grabber is already the largest
single component).  In order to perform thorough radiation
detection, the robot's speed would be relatively low, which
constrains image processing speed more than the on-board
hardware.  Since Transputers were used, the architecture
can easily be expanded to achieve higher frame rates if
required.  An example of an obvious parallelization would
be to use a different processor for the left and right
boundary extractions.

Figure 5.

For demonstration and testing purposes, a Transputer-
based three-axis motor controller was developed to drive a
pan-tilt-verge camera platform.  The implementation of this
controller demonstrated the division of labor achievable
with parallel-processing systems.  The motor controller
runs on a separate Transputer and interfaces with the 3-axis
platform via an RS-232 serial channel.  Communication
with the rest of the Transputer network is through the high
speed Transputer links.  This real-time interface was added
without impacting the performance of the processor-
intensive vision computations.  Demonstration of the entire
control system was achieved by servoing the camera to
look in the direction of the computed aisle centerline.  In
these tests, the vision system did not use images acquired
from the camera, but was instead driven by previously
acquired images from the Fernald facility.

Figure 6.

Testing of the FLF-based system with images of stored
hazardous waste showed that this implementation is robust
and well suited for autonomous navigation.  Use of aisle-
boundary extraction techniques appears to provide suitable
navigational cues and is tolerant of variations in the storage
environment.

The navigation system always found a reasonable
approximation to the path, as long as it had a reasonable
expectation of where to look.  Normally, this expectation
arises from previous knowledge combined with dead-
reckoning to account for position changes, but it is also
possible to use the Fast Region Segmenter (FRS) as a
means of providing bootstrap information to the FLF.  The
FLF appears to be a more reliable primary strategy,
supplemented by the FRS for bootstrapping or
confirmation.

Figures 5 and 6 illustrate the performance of the FLF-
based navigation system.  For these examples, all of the
derived lines resulted from only knowing that the aisle was
approximately in the center of the image.

V. CONCLUSIONS
This research has shown that a low-cost, high-

performance vision system can be built using a modular
parallel-processing system.  Because of the modularity and
communication techniques, portions of this system could be
rapidly integrated into a completely different hazardous

Both the Sun and Transputer implementations ran in
under six seconds per frame.  Since only a single
Transputer was used for the image processing, significant
speedup could be achieved by using additional processors,



waste inspection system.  Additionally, this architecture
supports both automated and manual visual inspection
since the vision system (and its associated computing
power) need not be dedicated solely to the visual
navigation task.  Standard image compression techniques
could be easily adapted to this system with the parallel-
processing ability providing the necessary computing
power for real-time image archiving.
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