
  

  

Abstract—When teams of mobile robots are tasked with 

different goals in a competitive environment, misdirection and 

counter-misdirection can provide significant advantages. 

Researchers have studied different misdirection methods but the 

number of approaches on counter-misdirection for multi-robot 

systems is still limited. In this work, a novel counter-misdirection 

approach for behavior-based multi-robot teams is developed by 

deploying a new type of agent: counter misdirection agents 

(CMAs). These agents can detect the misdirection process and 

“push back” the misdirected agents collaboratively to stop the 

misdirection process. This approach has been implemented not 

only in simulation for various conditions, but also on a physical 

robotic testbed to study its effectiveness. It shows that this 

approach can stop the misdirection process effectively with a 

sufficient number of CMAs. This novel counter-misdirection 

approach can potentially be applied to different competitive 

scenarios such as military and sports applications. 

I. INTRODUCTION 

Humans and Animals commonly use deception to provide 

benefits or advantages for themselves. For instance, blue jays 

can mimic the sound of hawks to scatter other birds in the area 

so that they will have fewer competitors for food [1]. In the 

same manner, with the growth of robotic intelligence, applying 

deceptive behaviors may be beneficial to robotic systems. For 

example, robots could deceive others including humans or 

other robots by sending inaccurate or falsified information 

purposely. This concept is known as robotic misdirection -- 

robots misleading other agents to the wrong location that may 

be traps or other remote locations to gain advantage over them. 

To counter this misdirection, robotic counter-misdirection 

strives to stop this misdirection process or negate its effects. 

Although studies on robotic misdirection [1]–[3] exist, the field 

of robotic counter-misdirection has been understudied.  

In a competitive multi-robot environment such as 

competitions, some robots can use misdirection techniques to 

provide them with an edge over others to accomplish their 

goals. As a result, counter-misdirection becomes crucial for 

these misdirected robots. Two main components in counter-

misdirection include misdirection detection and misdirection 

stoppage. Based on these two main components, a new type 

of agent called counter-misdirection agent (CMA) is 

presented. These agents detect the misdirection process by 

observing misdirected agents' movements and then forming a 

“barrier” to stop them.  

The main contributions of this research involve providing a 

misdirection/counter-misdirection framework for behavior-

based multi-robot systems and developing a counter-
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misdirection approach using a novel type of behavior-based 

robot agents: counter-misdirection agents (CMAs).  

II. BACKGROUND 

A. Robot Deception 

Robotic deception can be interpreted as robots using 

motions and communication to convey false information or 

conceal true information [4],[5]. Deceptive behaviors can have 

a wide range of applications from military [6] to sports [7]. 

Researchers have studied robotic deception previously [4] 

through computational approaches [8] in a wide range of areas 

from human–robot interaction (HRI) [9]–[11] to ethical issues 

[4]. Shim and Arkin [5] proposed a taxonomy of robot 

deception with three basic dimensions: interaction object, 

interaction goal and interaction type. This taxonomy provides 

a basic metric of robot deception. Based on this taxonomy, they 

[6] developed a computational framework to allow the robot’s 

deceptive actions to benefit human users. This work was 

extended to a scenario where robots act deceptively to control 

victims' fear and shock in search and rescue [7]. Additionally, 

they [8] have shown that robots can model deceptive behavior 

from small animals. Inspired by the caching behavior of a 

squirrel, a robotic deceptive strategy was developed. Instead of 

going directly to the caching location, the robot moved 

between the actual caching location and the fake locations in 

order to confuse competing robots. Furthermore, in human–

robot interaction (HRI), researchers have studied deception in 

robot motion context. Srinivasa's team analyzed and classified 

different deceptive robot motions used to approach different 

goal areas [4].  

While most research on robotic deception has focused on 

single robotic systems, few studies considered multi-robot 

systems. Arkin’s group is one of the few research groups that 

studied deception in multi-robot teams. Earlier their research 

involved studying mobbing behavior where birds harass a 

predator for deterrence, resulting in a deceptive model for 

multi-robot systems [9]. While this deceptive model was 

designed specifically for predator deterrence, the misdirection 

framework of this paper is intended for group movement 

misdirection scenarios.  

B. Group Behaviors in Multi-robot Teams 

Multi-robot teams are modeled using group behaviors for 

different purposes and scenarios. For example, lekking 

behavior from birds has been implemented in multi-robot 

teams for multi-robot groups [10] where members from a 

multi-robot team follow the leader of the team while 
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maintaining a certain distance. To model the flocking 

behaviors of animals, the selfish herd model [11] and the Boids 

model [12], [13] were proposed. Selfish herd model [11] is 

used to mimic a flocking behaviors of a group of sheep or 

ducks. Similar to the selfish herd model, the Boids model [12], 

[13] which tries to mimic the behavior of a flock of birds, 

enables agents to stay close to nearby agents without collision. 

Another group behavior model uses the threshold model [14], 

which models the behavior of a crowd of people. When the 

number of nearby individuals that engage in a similar action 

exceeds the "threshold" for a nearby individual, this agent will 

likely undertake this action as well.  

Robots have been used to drive animals to designated 

locations or divert them away from certain locations based on 

their natural flocking behaviors [15]–[18]. Vanghan et al. [16], 

[18] used a robot as a sheepdog to herd ducks to a desired 

location. Strombom et al. [15] proposed a 2-step algorithm to 

drive unwilling agents to move in the same direction using a 

single agent. Researchers have also studied diverting flocks of 

birds from airports [19], [20] using the Boids model for the 

birds. These methods are considered fear-based ‘push’ 

approaches where robots act as predators to force animals to 

move away from the shepherding robots.  

Based on the threshold model, Pettinati and Arkin [2] 

developed an alternative “pull” approach that attracts target 

agents toward the goal area. Compared with the “push” method 

which requires at least one agent to act as a predator, the “pull” 

method deploys shills which are embedded among the mark 

(target) agents to misdirect them to the goal area. 

C. Robotic Misdirection 

Misdirection is one of the main forms of deception which 

can influence the attentions or movements of an agent. 

Magicians often use misdirection in order to create a magical 

effect. As a result, misdirection has been an interesting area to 

study in the field of psychology. Psychologists and magicians 

have developed different taxonomies for misdirection [21]. 

Among them, Lamont and Wiseman's taxonomy from their 

book "Magic in Theory" [22] can be considered for the study 

of robotic misdirection. 

Lamont and Wiseman classified misdirection into physical 

misdirection and psychological misdirection. Under physical 

misdirection is commonly divided into three categories: 

passive misdirection, active misdirection and temporal 

misdirection. Given a scenario where robots need to move to 

their goal area using misdirection, an example of passive 

misdirection is where robots use camouflage to avoid 

detection while moving to their goal area; similarly, active 

misdirection is when robots move oddly to attract attention so 

that other confederate robots can move to their goal area 

secretly; and temporal misdirection is where robots wait a 

long period of time until they are no longer being "watched" 

before they move to their goal area.  

  In [2] and[23], an active misdirection tactic was developed 

to "pull" a group of agents toward the goal location in contrast 

to the fear-based "push" methods. This research uses a “pull” 

threshold model [14] for a multi-robot team. By using a team 

of shills that move with intention, characterized by their high 

linear velocity movement in a common direction with small 

directional changes, this induces mark agents with low group 

following thresholds to follow the shills. In this manner, mark 

agents with higher thresholds will also follow as the number 

of agents, including the newly recruited lower threshold 

marks, that move with intention increases. This paper reports 

on research that counteracts this earlier approach [23], since 

in addition to the active misdirection tactics utilized earlier, 

counter-misdirection strategies are now investigated to halt or 

reduce the induced misdirection.  

III. MODEL 

In our misdirection and counter-misdirection simulation 

scenarios, each agent can move in a two-dimensional space and 

𝑙𝑖,𝑡⃗⃗ ⃗⃗  = [𝑥𝑖,𝑡 , 𝑦𝑖,𝑡] represents agent 𝑖’s location at time 𝑡 with a 

limited observation range 𝑟𝑖. In the behavior-based approach 

[24], the movement of each agent is based on its motion vector 

from the current behavior assemblage: 𝑙𝑖,𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  𝑙𝑖,𝑡⃗⃗ ⃗⃗  + 𝑣𝑖,𝑡⃗⃗ ⃗⃗  ⃗ ∗ 𝛿𝑡 

where 𝛿𝑡 is the time step. The motion vector 𝑣𝑖,𝑡⃗⃗ ⃗⃗  ⃗ is the 

weighted sum of behavior vectors provided by the primitive 

behaviors from the current behavior assemblage: 𝑣𝑖,𝑡⃗⃗ ⃗⃗  ⃗ =

∑ 𝜌𝑗𝑏𝑗⃗⃗⃗  𝑗∈𝐸𝑖
 where 𝐸𝑖 is the set of all composing primitive 

behaviors and 𝑏𝑗⃗⃗⃗   is the behavior vector of primitive behaviors 

with gain 𝜌𝑗. The definition of each primitive behavior is 

described in Appendix I. 

There are four types of robot agents: mark, shill, leader and 

counter-misdirection agent (CMA). These agents can be 

divided into three different groups:  

• Mark group: a group of marks which is targeted to be 

misdirected, i.e., to be moved to a location not of their 

own choosing.. 

• Misdirection team: a team composed of a leader and 

a certain number of shills with the intention to 

misdirect marks to their goal area. 

• Counter-misdirection team: a team composed of 

counter-misdirection agents (CMAs) with the goal of 

preventing marks from being misdirected.   

This work follows from [23] which developed a 

misdirection approach for a multi-agent team. The goal of this 

new research is to develop a counter-misdirection approach. 

As a result, the behaviors of the misdirection leader and its 

shills remain the same. Moreover, this misdirection team has 

no knowledge of the counter-misdirection agents (CMAs). 

The behavioral assemblages for the different types of agents 

are summarized in TABLE I.  

A.  Marks 

The mark agents resemble the general public or a flock of 

animals which can potentially be misled or stopped. Mark 

agents cannot distinguish between different types of robotic 

agents and treat every agent similarly. The Granovetter 

threshold model was implemented on these agents based on 

their collective behavior [14], where individuals of a group 

have a tendency to follow when they observe other members 

who “move with intensions.” In this threshold model, if the 



  

number of observed agents which move with intentions, 

exceeds the mark agent’s threshold ∑ [|vj,t⃗⃗⃗⃗  ⃗| >j:|li,t⃗⃗⃗⃗  ⃗ − lj,t⃗⃗⃗⃗  ⃗|<Rsensor

 vlimit] < θi, where Rsensor is the sensor range and θi is the 

threshold of agent i, the mark will then follow these agents 

using a Lek Behavior [10] (Mark Flock). Otherwise, the mark 

will keep wandering or simply milling about (Mark Wander). 

Here, an agent is defined as moving with intention when the 

agent exceeds a certain velocity threshold and is then termed 

an "active" agent. These mark agents can also be "pushed" by 

some agents using the fear-based approach [15]–[18]. The 

Color-Pushed-Back behavior enables marks to evade agents 

with a predefined color that are treated as predators. This 

feature is used by the counter misdirection agents (CMAs) to 

stop or inhibit an ongoing misdirection process.  

B. Shills and Their Leader  

Shills and their leader form a misdirection team with the 

goal to misdirect mark agents to a goal location. Before the 

leader issues a signal to start misdirection, the shills execute 

the same behavior assemblage as the mark agents while they 

are near the start location (Wander Near Start) to "blend 

in".  After the leader gives the signal notifying the shills to 

start misdirection, the leader agent moves with intention 

towards its goal location with a small degree of random 

movement generated by the Wander Behavior while the 

shills will follow the leader (Shill Flock) in order to "draw" 

mark agents to follow them, thus achieving misdirection. 

This process is described in detail in [31]. 

C. Counter-Misdirection Agents (CMAs) 

Counter-misdirection agents are deployed to deter marked 

agents from misdirection. Similar to marks, CMAs are not able 

to identify shills and their leader from marks. Moreover, since 

the information of the goal location is only available to the 

misdirection team, CMAs have no knowledge on where the 

leader’s goal location is. The general counter-misdirection 

strategy for CMAs involves treating every non-CMA agent as 

a mark and blocking them as a group when they are 

misdirected. Figure 1. depicts how a CMA first wanders just 

like other agents at the beginning of a scenario (Wander Near 

Start). Once the number of active agents moving with the 

leader exceeds its own threshold, it monitors the movements of 

these active agents that are within its observation range for a 

period a time (Observe Movement). Then, the CMA will 

estimate an intercept position in front of the marks in motion 

based on the collective movement of these active agents 

(Estimate Intercept Location). The CMA then moves to the 

intercept position (and changes its color in the simulation to 

black indicating it is actively countering misdirection) to push 

mark agents away from its position to prevent them from 

reaching the leader’s target location (Goto Intercept 

Location). Since the CMAs can only "push" the mark agents 

back but not the shills or their leader, these CMAs 'filter' (like 

a sieve) the marks from the shill team. The counter-

misdirection algorithm is summarized in Algorithm 1 from 

Appendix II.  

 

 

Figure 1.  The FSA of a counter-misdirection agent (CMA) 

In order to stop the misdirected mark agents, CMAs need 

to move ahead of these agents and "push" them back. Each 

CMA needs to predict the general movement of these agents in 

order to estimate the intercept location 𝑖 = [𝑖𝑥 , 𝑖𝑦]ahead of the 

group. During movement observation, the location of each 

observed agent 𝑖 at each time stamp 𝑡 is treated as a data point 

𝑙𝑖,𝑡⃗⃗ ⃗⃗  = [𝑥𝑖,𝑡 , 𝑦𝑖,𝑡]. After a sufficient number of data points are 

collected for a period of time 𝑇 to generate a dataset 𝐷, it will 

be used for location estimation. 

Based on the assumptions that the leader moves toward the 

designated location directly with limited wandering (noise), 

and that all shills will follow the leader, and that these active 

(high velocity) mark agents will follow other observed active 

agents, it is reasonable to model the group movement as a 

linear model.  

In the local frame of the CMA, let 𝑐 = [𝑎, 𝑏]𝑇 be the 

centroid of the misdirected group with the movement vector 

𝑓 = [𝑓𝑥, 𝑓𝑦]
𝑇. Given the maximum speed that the CMA can 

achieve 𝑣𝑚𝑎𝑥 , we can formulate a set of equations to solve for 

𝑔 = [𝑔𝑥 , 𝑔𝑦]
𝑇, the movement vector of the CMA which will 

allow it to intercept the misdirected group after 𝑚 time units. 

 {
𝑐 + 𝑚𝑓 =  𝑚𝑔 

‖𝑔 ‖  ≤  𝑣𝑚𝑎𝑥 .
 (1) 

Assuming 𝛽 is fixed, we can derive (1) into a quadratic 

function and solve for a positive 𝑚: 

 (𝑎 + 𝑚𝑓𝑥)
2 + (𝑏 + 𝑚𝑓𝑦)

2 = 𝑚2 𝛽𝑣𝑚𝑎𝑥
2 (2) 

After 𝑚 is found, we can easily calculate 𝑔  using (1) and 

the intercept location 𝑖 = m𝑔 . 

Once the intercept location is created, each CMA moves 

toward its computed intercept position. After the CMA reaches 

the intercept location, it will change its color to black in the 

simulation indicating it is signaling to repel the deceived mark 

agents. This behavior creates a circular effective vector field 

radius 𝑅𝑒 pushing any mark agents using the color-pushed-

back behavior.  
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Figure 2.  Diagram of the counter-misdirection deployment 

In the case of more than one CMA being deployed, their 

estimated intercept locations for each individual agent may be 

very close to each other, which will be inefficient for counter-

misdirection since there will be many overlapping repulsive 

field areas. In order to minimize the misdirection rate for 

counter misdirection, CMAs will try to form a "barrier" to 

deter the misdirected marks. As a result, each CMA relocates 

some distance above or below its original intercept location 

that is perpendicular to the group movement vector 𝑓  based on 

an offset 𝛾. In addition, CMAs can be "pushed" by other black 

colored CMAs in the directions that are perpendicular to the 

group movement vector 𝑓 ⃗⃗⃗   for better distribution from the 

Color-Pushed-Back behavior. This enables CMAs to form a 

barrier against the misdirected group of agents to achieve 

better counter-misdirection efficiency as shown in Figure 2. 

No explicit communication between CMAs is needed to 

achieve this separation. 

IV. EXPERIMENT 

In order to test the viability and efficiency of the counter-

misdirection strategy by the CMAs, various cases were 

implemented using the MissionLab mission specification 

software system [25], which is a powerful platform designed 

specifically for multi-agent behavior-based systems. For each 

case, there is a shill team composed of a leader and two shills, 

a group of marks and a team of CMAs. 

A. Simulation Results 

A two-dimensional 60 meters by 240 meters simulation 

environment was created: a start area at (20, 40) with 10 meters 

radius and a goal area at (220, 40) with 10 meters radius as 

well. In the environment, each scenario was tested with 50 

experiment trials for each case to analyze the performances of 

the counter-misdirection strategy. The misdirection rate was 

defined as the percentage of the marks that were misdirected to 

the goal area by the shill team within 360 simulation time steps. 

One of the most important factors of the counter-

misdirection strategy is the number of CMAs deployed. As 

shown in Figure 4. without the presence of any CMAs, marks 

were always misdirected to the goal area (misdirection rate = 

1). However, as more CMAs were deployed, fewer marks were 

misdirected. Specifically, when the CMAs are more than 1, less 

than 25% of the mark agents reach the goal area. The main 

reason the misdirection rate is fairly high when there was only 

one CMA agent is due to the ratio between the radius of CMA's 

effective field (16[m]) and the mark's follow range (30 [m]) in 

the lek behavior. Since their follow range is almost twice as 

large as the CMA’s effective radius, these misdirected marks 

can still circumnavigate the repulsive field and follow shills to 

the goal area if the estimated intercept location is slightly away 

from the misdirected marks’ actual paths. In the case of 

multiple CMAs, these CMAs used effective fields to build a 

long overlapping barrier collectively (shown in Figure 3. ), 

which makes it much more challenging for misdirected marks 

to follow shills. This demonstrates the effectiveness of the 

CMA strategy.  

The main factor contributing to the case when CMAs failed 

to stop the misdirected marks from reaching the goal was 

incorrect intercept location estimation. Due to the random 

movement of the leader and the interactions between agents 

from their composing behaviors, CMAs’ estimation on the 

movement vector of the misdirection group could be 

imprecise, which led to incorrect intercept location estimation. 

In this case, the barrier formed by the CMAs would have little 

overlap areas with the marks’ actual paths. As a result, these 

misdirected marks can circumnavigate the barrier easily. This 

is also the reason why deploying multiple CMAs wouldn't 

increase misdirected marks’ time to reach the goal area. 

Another factor worth looking into is the inter-robot distance. 

Each robot has a repulsion sphere in the off-robot behavior for 

collision avoidance. As the radius of the repulsion sphere 

increases, robots will stay further away from other robots, 

which yields larger inter-robot separation. This can represent 

different practical scenarios: smaller inter-robot distance can 

represent a more crowded environment and larger inter-robot 

distance can represent a sparser environment. In order to 

investigate the effects of inter-robot distances on the counter-

misdirection, the approach was tested with different numbers 

of CMAs and different inter-robot distances from 2 meters up 

to 6 meters in the simulation environment. Despite having 

different inter-robot distances (shown in Figure 4. ), this 

approach is still effective on lowering the misdirection rate 

using a sufficient number of CMAs.  

In this counter-misdirection approach, CMAs estimate their 

intercept locations based on the linear model (misdirected 

marks and the shill team move linearly toward the goal area). 

However, as the gain of the leader's random movement (noise) 

increases, instead of moving directly to the goal area, the leader 

moves toward different directions more frequently followed by 

shills and misdirected marks. This made CMA's linear-based 

estimation less accurate which led to higher misdirection rates 

as shown in Figure 6. When the random movement gain 

increases, it shows a significant increase on the misdirection 

rate even with the increase number of CMAs. Currently, this is 

the main limitation for the counter-misdirection strategy. It 

potentially can be considered a strategy for counter-counter 

misdirection by the leader agent. 

 



  

 

Figure 3.  Screenshots of the counter-misdirection process on 

MissionLab: (a) CMAs (red circles near InitialArea) were observing the 
active agents to estimate their intercept locations; (b) CMAs were moving 

toward their estimated intercept locations; and (c) CMAs reached their 

estimated intercept locations and started deploying their effective fields 
(change their color to black) to push back the misdirected marks while shills 

and their leader were reaching the goal area without misdirecting the marks. 
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Figure 4.  This shows how different numbers of counter-misdirection 

agents (CMAs) affect the the percentage of marks that are misdirected to the 

goal area by the shills (misdirection rate) along with the time taken for 
successfully misdirected marks that reached the goal area in both the 4 

marks and 8 marks scenarios. 
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Figure 5.  This figure shows the differences in robot's repulsion sphere 

size where larger repulsion spheres create larger inter-robot distances which 
impacts the percentage of marks that are misdirected to the goal area 

(misdirection rate). 
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Figure 6.  This shows how the behavior gain of the leader's random 

movement affects the efficiency of the counter-misdirection strategy on 

stopping misdirected marks from reaching the goal area.  



  

B. Demonstration on Hardware 

The counter-misdirection strategy has been implemented 

on physical robots using the Georgia Tech Robotarium [26], an 

open-access robotics research platform. The parameters of 

robotic behaviors are adjusted to the smaller testing 

environments. Three representative trials were run with 

different numbers of CMAs (counter-misdirection agents): no 

CMA, one CMA and three CMAs. Moreover, each trial 

includes four marks, two shills and one leader. As expected, 

the same type of dynamic is observed in the Robotarium as in 

the simulation. The videos of these trials are available online1. 

With three CMAs deployed for counter-misdirection, these 

CMAs were able to stop the misdirection process by preventing 

the misdirected marks from reaching goal area. Once the 

misdirection process was detected, each CMA moved to its 

intercept location after movement observation and intercept 

location calculation were completed. After the CMA reached 

their intercept locations, they started to “push” misdirected 

marks away from their locations to stop the misdirection 

process. Snapshots from this trial are shown in Figure 7.  

V. DISCUSSION 

From these results, the following observations can be made: 

As more CMAs (counter misdirection agents) are 

deployed, this counter misdirection approach can lower the 

misdirection rate substantially.  

When there are more CMAs, they can form a larger barrier 

collaboratively which makes it harder for misdirected marks to 

bypass them. An important benefit of deploying many CMAs 

is even when some of the CMAs have incorrect estimations on 

intercept locations, other CMAs can still form a "barrier" to 

stop the misdirected marks.  

The counter-misdirection approach is suitable for 

variable numbers of marks and different inter-robot 

distances.  

Based on the behaviors of the marks, misdirected marks 

follow nearby active (high velocity) agents including other 

misdirected marks and shills. This makes them behave as a 

flock following the leader. As long as the barrier size is 

larger than the flock size, the counter-misdirection strategy is 

still effective.  

The leader's random movements significantly affect the 

efficiency of the counter-misdirection strategy.  

As the gain of the leader's random movement increases, the 

flock of the following shills and misdirected marks will have a 

less direct movement pattern toward the goal area, which 

makes it more challenging for CMAs to estimate the intercept 

locations. As a result, the counter-misdirection strategy will be 

less effective. This zig-zagging can potential serve as a 

counter-counter misdirection strategy by the leader agent. 

 
1 Video will be posted on https://www.cc.gatech.edu/ai/robot-

lab/Deception/.  

 

Figure 7.  Snapshots of an experiment trial in the Robotarium consisted 

of four mark robots, two shills, one leader and three CMA robots. The 

CMAs were abled to form a “barrier” to stop marks misdrected by shills and 

its leaderfrom reaching the goal area.  

VI. CONCLUSION 

Misdirection and counter-misdirection have significant 

potential in the field of mobile robotics, especially for multi-

robot systems for possible applications in the military and 

sports. For instance, one robotic team can use misdirection to 

draw (feint) its opponent team toward an incorrect location, 

and the opponent team can use counter-misdirection to deter 

its members from going there. However, there has been little 

study on robotic counter-misdirection to date, if any. In this 

paper, we developed a simple and effective behavior-based 

counter-misdirection approach for multi-robot teams. We 

have shown that, by deploying a team of counter-misdirection 

agents (CMAs), each CMA can estimate a possible intercept 

location whereby they can form a barrier that uses the fear-

based approach to push back misdirected marks thus achieving 

counter-misdirection. We have also demonstrated the 

effectiveness of the strategy and investigated its key factors in 

MissionLab [25]. By deploying a sufficient number of CMAs, 

they can stop the misdirection process in a range of instances.  

In the future, we will create more complex environments to 

study the applicability of the strategy for more realistic cases, 

such as adding obstacles.  



  

APPENDIX I 

This appendix contains the behavioral assemblages and its 

composing primitive behaviors for the different types of 

agents.  

TABLE I.  THE BEHAVIOR ASSEMBLAGES FOR EACH TYPE 

OF AGENTS  

Type Behavior 

Assemblage 
Composing Behaviors 

Mark 

Wander Near Start 

(Simulation Outset) 

Wander, Stay-Near-Start, 

Avoid-Obstacle, Off-

Robots 

Mark Mill Around 

(Below Threshold) 

Wander, Avoid-Obstacle,  

Off-Robots 

Mark Flock (Above 

Threshold) 

Wander, Lek Behavior, 

Avoid-Obstacle, Color-

Pushed-Back, Off-Robots. 

Leader Lead to Goal 
Go-To-Goal, Avoid-

Obstacle, Wander 

Shill 

Wander Near Start 

(Simulation Outset) 

Wander, Stay-Near-Start, 

Avoid-Obstacle, Off-

Robots 

Shill Flock 

Wander, Follow-Leader, 

Lek Behavior, Avoid-

Obstacle, Off-Robot 

CMA 

Wander Near Start 

(Simulation Outset) 

Wander, Stay-Near-Start,  

Avoid-Obstacle, Off-

Robots. 

Observe Movement Stop, Observe 

Estimate Intercept 

Location 
Stop, Estimate-Location 

Goto Intercept 

Location 

Goto-Intercept, Color-

Pushed-Back, Avoid-

Obstacle, Wander. 

 

Here are the definitions of primitive behaviors in the 

behavior assemblages; each primitive behavior returns a 

motion vector. The notation 𝑣̂ represents the normalized 

vector of vector 𝑣 . In two-dimensional space, 𝑙 = [𝑥, 𝑦]𝑇is 

used to represent the location of the robot. 

Wander (Noise) Behavior: The motion vector makes the 

robot move in random directions with random speeds, which 

allows the agent to incorporate realistic noise.  

Lek Behavior [10]: This motion vector 𝑣 𝑙𝑒𝑘 is based on the 

lek behavior for group formation to let the robot to attract to 

another robot at location 𝑙 𝑟  where 𝑅𝐴 is the radius of the 

attraction sphere and 𝑅𝐷 is the radius of the dead zone sphere. 

𝑣 𝑙𝑒𝑘 = 𝛼𝑣̂; 𝑣 =  𝑙 𝑟 − 𝑙   

 𝛼 = {1 −
(𝑅𝐴 − 𝑅𝐷) − (𝑅𝐴 − ‖𝑣 ‖ )

(𝑅𝐴 − 𝑅𝐷)
       𝑅𝐷  ≤  ‖𝑣 ‖  ≤  𝑅𝐴

0                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Off-Robot Behavior: This motion vector 𝑣 𝑂𝑅  prevents the 

robot from crashing into another robot at location 𝑙 𝑟  given its 

repulsion sphere 𝑅𝐷.  

𝑣 𝑂𝑅 =  𝛼𝑣̂;  𝑣 =  𝑙 − 𝑙 𝑟  

 𝛼 =  {
𝑅𝑟 − ‖𝑣 ‖

𝑅𝑟
        ‖𝑣 ‖  ≤  𝑅𝑟

0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Avoid-Obstacle Behavior: This motion vector 𝑣 𝐴𝑂  enables 

the robot with an obstacle avoidance sphere with radius 𝑅𝐴𝑂 

to avoid a known obstacle centered at 𝑙 𝑟  with radius 𝑅𝑜 in the 

environment. 

𝑣 𝐴𝑂 = 𝛼𝑣̂; 𝑣 =   𝑙 − 𝑙 𝑟  

 𝛼 =

{
 
 

 
 ∞                   ‖𝑣 ‖  ≤  𝑅𝑜
𝑅𝐴𝑂 − ‖𝑣 ‖

𝑅𝐴𝑂 − 𝑅𝑜
     𝑅𝑜  ≤   ‖𝑣 ‖  ≤  𝑅𝐴𝑂

0                   ‖𝑣 ‖  >  𝑅𝐴𝑂

 

Follow-leader Behavior: This motion vector 𝑣 𝐹𝐿 allows the 

robot to follow its leader at 𝑙 𝑙 if it is within detection range 𝑅𝐿. 

𝑣 𝐹𝐿 =  𝛼𝑣̂;  𝑣 =  𝑙 𝑙 − 𝑙   

 𝛼 =  {1 −
𝑅𝐿 − ‖𝑣 ‖

𝑅𝐿
        ‖𝑣 ‖  ≤  𝑅𝐿

0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Go-To-Goal Behavior: Given the goal location 𝑙 𝑔, this 

vector 𝑣 𝐺𝐺 enables the robot to move toward the goal location 

with an adjustable gain 𝛼. 

𝑣 𝐺𝐺 = 𝛼𝑣̂; 𝑣 =  𝑙 𝑔 − 𝑙   

Color-Push-Back Behavior (on mark):   The Color-Push-

Back vector 𝑣 𝐶𝑃𝐵 "pushes" the robots from a predefined-

colored robot at 𝑙 𝑐𝑜𝑙𝑜𝑟  away when it is within the effective area 

with radius 𝑅𝑒 as a fear-based approach with an adjustable fear 

gain 𝛽. 

𝑣 𝐶𝑃𝐵 =  𝛽𝑣̂;  𝑣 = 𝑙 − 𝑙 𝑐𝑜𝑙𝑜𝑟  

 𝛽 =  {
𝑅𝑒 − ‖𝑣 ‖

𝑅𝑒
        ‖𝑣 ‖  ≤  𝑅𝑟

0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Color-Push-Back Behavior (on CMA): The Color-Push-

Back vector 𝑣 𝐶𝑃𝐵−𝐶𝑀𝐴 "pushes" the CMA from a predefined-

colored robot at 𝑙 𝑐𝑜𝑙𝑜𝑟  along the direction 𝑏̂ that is 

perpendicular to the group movement vector 𝑓  based when it 

is within the effective area with radius 𝑅𝑒 as a fear-based 

approach with an adjustable fear gain 𝛽. 

𝑣 𝐶𝑃𝐵−𝐶𝑀𝐴 =  sgn(𝑣  ⋅ 𝑏̂)𝛽𝑏̂;  𝑣 = 𝑙 − 𝑙 𝑐𝑜𝑙𝑜𝑟  

𝑏̂ = 𝑹𝒐𝒕(
𝜋

2
)𝑓 

 𝛽 =  {
𝑅𝑒 − ‖𝑣 ‖

𝑅𝑒
        ‖𝑣 ‖  ≤  𝑅𝑟

0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 



  

APPENDIX II 

This appendix contains the counter-misdirection algorithm 

of a counter-misdirection agent (CMA). 

Algorithm 1: The counter-misdirection approach based on 

linear movment model for each CMA 

function Initlization(): 

    𝐷 = {} 
end function 

 

function Movement Observation(𝑙𝑖,𝑡⃗⃗ ⃗⃗  ): 

    𝐷 = 𝐷 ∪ {𝑙𝑖,𝑡⃗⃗ ⃗⃗  } 
end function 

 

function Intercept Location Estimation(𝐷, 𝛾): 

    𝑐 = [𝑎, 𝑏]𝑇 = ∑ 𝑙𝑖,T⃗⃗⃗⃗  ⃗𝑖∈𝑂𝑇  

    𝑓 =  [𝑓𝑥 , 𝑓𝑦]
𝑇 = ∑

(𝑙𝑖,T⃗⃗⃗⃗  ⃗  −  𝑙𝑖,𝑜𝑖
⃗⃗ ⃗⃗ ⃗⃗  ⃗)

(𝑇 − 𝑜𝑖)
⁄

𝑖∈𝑂𝑇  

   𝐴 = (𝑓𝑥
2 + 𝑓𝑦

2 − 𝛽𝑣𝑚𝑎𝑥
2 ) 

   𝐵 = (𝑎𝑓𝑥 + 𝑏𝑓𝑦) 

   𝐶 =  (𝑎2 + 𝑏2) 

    𝑚 = max {
−𝐵±√𝐵2−4𝐴𝐶

2𝐴
} 

    𝑔 =  
𝑐 +𝑚𝑓 

𝑚
 

    𝑓 =  
𝑓 

‖𝑓 ‖
 

   𝑏̂ = 𝑹𝒐𝒕(
𝜋

2
)𝑓 

   𝑖 = 𝑚𝑔 + 𝛾𝑏̂  

   Return 𝑖  , 𝑏̂    

end function 

 
𝐷: the dataset that contains the locations of ‘active’ agents’ during the 

CMA’s observation.  

𝑂𝑇: the set of ‘active’ agents that are observed by the CMA at time 𝑇.   

𝑙𝑖,𝑡⃗⃗⃗⃗ : the location of agent 𝑖 at time 𝑡.  

𝑐 : the centroid of the misdirected group. 

𝑓 : the movement vector of the misdirected group. 

𝑜𝑖: the first-time agent 𝑖 is observed by the CMA. 

𝑖 : the intercept location for CMA.  

𝑚: the time needed for CMA to move to the intercept location 𝑖 . 

𝑔 : the movement vector of the CMA. 

𝑹𝒐𝒕(∙): a function that produces a 2-dimensional rotation matrix. 

𝑏̂: unit vector that is perpendicular to the group movement vector 𝑓 . 

𝛾: the offset used to calculation the intercept location. 
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