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Abstract

We show how to recover 2D structure and motion linearly
in order to initialize Simultaneous Mapping and Localization
(SLAM) for bearings-only measurements and planar motion.
The method supplies a good initial estimate of the geometry,
even without odometry or in multiple robot scenarios. Hence,
it substantially enlarges the scope in which non-linear batch-
type SLAM algorithms can be applied. The method is applica-
ble when at least seven landmarks are seen from three different
vantage points, whether by one robot that moves over time or
by multiple robots that observe a set of common landmarks.

1 Introduction

In many mobile robot applications it is essential to obtain
an accurate metric map of a previously unknown environment,
and to be able to accurately localize the robot(s) within it. The
process of reconstructing such a map from odometry and sen-
sor measurements collected by one or more robots is known
as Simultaneous Localization and Mapping (SLAM) [1]. Sen-
sors that are commonly brought to bear on this task include
cameras, sonar and laser range £nders, radar, and GPS.

In the case a single robot observes a set of landmarks,
SLAM algorithms are often based on variable dimension
Kalman £lters [2, 1, 3]. In these on-line approaches, the robot
pose and the landmarks positions are recursively updated as
each new measurement is obtained. Because of the recursive
nature of these algorithms, and because odometry can be used
to predict changes in pose and relative landmark positions, a
good initial estimate is always available in the Kalman update
step. This is essential in practice, as the measurement equa-
tions involved are often non-linear in the state-variables.

However, if multiple robots observe a common set of land-
marks, a recursive algorithm is not applicable. While the
SLAM problem can be formulated in terms of non-linear min-
imization, an important problem in practice is the existence of
local minima which can prevent the optimization process from
converging. In addition, even if they converge to the correct
solution, this is often slow when the initial estimate is far from
the global minimum. Thus, an essential element to solving the
SLAM problem in the multiple robot scenario is the ability to
easily obtain a good initial estimate for the solution.

We show that, with planar motion and bearings-only mea-
surements, an initial estimate is ef£ciently provided by a lin-
ear algorithm borrowed from computer vision. To this end,
the bearings are converted to projective coordinates in a vir-
tual 1-D camera, after which a linear 2D method for projective
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Figure 1: The SLAM problem is to recover both the positions xa of the

landmarks and the relative motion parameters R, t and Q,s for the second and

third robot, respectively, from bearing measurements.

structure from motion (SFM) is used to recover the position of
the landmarks and the robot poses. As we start from bearing
measurements, no calibration is needed and a metric recon-
struction is obtained up to a 2D similarity transform.

Whereas the underlying mathematics has been presented
before in the computer vision community, the present paper
provides a synthesis of results spread over several relatively in-
accessible papers. We also show how to convert the bearings-
only SLAM problem to the 2D projective SFM problem, and
omit details irrelevant to the SLAM problem (such as self-
calibration). We believe the result to be of considerable practi-
cal value to researchers interested in the bearings-only SLAM
problem. The resulting linear algorithm provides a quick ap-
proximate solution to the SLAM problem, which is useful to

1. avoid local minima of non-linear minimization,
2. save computation by starting near the global minimum,
3. provide a quick and dirty SLAM estimate in case non-

linear minimization is infeasible.
The technique is applicable for a single robot or in the case
where some or all of the robots make multiple observations
over time. In this case to it can serve to initialize an incremen-
tal estimator, e.g. a variable dimension Kalman £lter [2, 3].

2 Simultaneous Localization and Mapping

2.1 Problem Formulation
Assume an unknown environment is observed by one or

multiple robots with m different poses a, b, c, etc., and n land-
marks xa are observed (see Fig. 1). The superscript a indicates



that landmark coordinates are expressed with respect to the
reference pose a. The bearings-only SLAM problem can be
stated as follows: given m bearing measurements α, β, γ,... for
each of the n landmarks, recover the n landmark positions and
the m robot poses. Note that the solution can only be recovered
up to a similarity transform in the plane.

2.2 Maximum a Posteriori SLAM
If measurements are noisy, the problem is best formulated as

maximum a posteriori (MAP) estimation. The unknowns are
the 3m motion parameters M and the 2n landmark positions X .
The data Z consists of mn bearing measurements. The MAP
estimate is the set of parameters {M,X}∗ that maximizes the
posterior probability P(M,X |Z) of M,X given the data Z:

{M,X}∗ = argmax M,X P(M,X |Z)
= argmax M,X P(Z|M,X)P(M,X)

The posterior probability P(M,X |Z) is the product of the like-
lihood P(Z|M,X) and a prior P(M,X) on the landmark and
motion parameters. In typical SLAM scenarios there is no
(strong) prior information on the position of landmarks, but
odometry provides a prior on the motion parameters of indi-
vidual robots.

To obtain the MAP estimate, a measurement model is
needed. The bearing measurement αi j taken by the ith robot
on landmark xa

j can be predicted by £rst transforming the 2D

landmark position into the ith coordinate frame and then taking
the arc-tangent:

αi j = atan2(Rix
a
j + ti)+ni j

where Ri and ti are the rotation and translation, respectively,
of the reference frame with respect to the ith frame, and ni j is
measurement noise.

2.3 SLAM as Non-linear Least-Squares
If we assume independent normally distributed noise ni j on

the bearing measurements, then the likelihood P(Z|M,X) can
be factored as follows:

P(Z|M,X) = ∏
i, j

N(atan2(Rix
a
j + ti),σ2)

where N(µ,σ2) is the normal density with mean µ and vari-
ance σ2. Thus, if no prior is available, the maximum likelihood
(ML) estimate can be found by minimizing the following non-
linear least squares criterion:

{M,X}∗ = argmin
M,X

∑
i, j

(αi j−atan2(Rix
a
j + ti))

2

2.4 Number of Measurements Needed
It is of interest how many landmarks are needed to obtain

a solution in the general case. The degrees of freedom of the
system are the number of measurements minus the number of
parameters, plus 4 because the solution can only be recovered
up to a similarity transform in the plane (described by 4 pa-
rameters). Thus:

DOF = mn+4− (3m+2n)

First, note that with only two views, the system can not be
solved. This can be seen by setting m = 2, in which case we
get DOF = −2. This is also intuitively clear: we can place
the robots anywhere and always get a feasible solution for any
number of landmarks by intersecting the lines of sight for each
landmark.

With three views, the minimal number of landmarks is 5.
Indeed, setting m = 3 we get DOF = n−5.

2.5 The Problem of Local Minima
The problem with the non-linear method outlined above is

that is sensitive to local minima. The nonlinear least-squares
minimization proceeds iteratively, and we are only guaranteed
to £nd the globally correct solution if we start from an initial
estimate that is in the basin of attraction of the global mini-
mum. If this is not the case, the iterative minimization proce-
dure will get stuck in a local minimum.

This is an important problem in practice, as simulation ex-
periments with randomly generated problems show that typi-
cally more than 50% of all runs end up in a local minimum.
The more views, the more important the problem becomes.

In the case of a single robot, odometry can be used to pro-
vide a good initial estimate. This is the basis of existing SLAM
methods that typically use variable dimension Kalman £lters.
However, in the multiple robot case or if no odometry is avail-
able there is currently no good solution.

3 A Linear Solution

In this section we describe a linear solution to the bearings-
only SLAM problem that does not suffer from local minima,
but immediately £nds the globally optimal solution. This pro-
vides a basis to solve the SLAM problem in the multiple robot
case or in the single robot case when there is no odometry
available.

The linear method is based on the linear structure from mo-
tion (SFM) algorithms developed over the last few years in
the computer vision community [4], but specialized to the 2D,
bearings-only case [5]. We can easily transform the bearings-
only problem into a 2D SFM problem, by converting bearing
measurements to 1D image measurements in a virtual cam-
era, and solving the associated 2D SFM problem linearly. The
resulting solution can then be £ne-tuned by non-linear mini-
mization, if desired.

3.1 Converting to a Projective Formulation
Below we introduce homogeneous coordinates, as the lin-

ear methods are based on projective geometry. Bearings mea-
surements taken by the robots will be converted to measure-
ments in a set of 1D perspective cameras or views, one for
each robot. The views are denoted by Ψ1, Ψ2, Ψ3, etc. 1D
image measurements are given by their projective coordinates

uA ∆
= (u1 u2), vB ∆

= (v1 v2), etc..., where the uppercase super-
scripts A, B,... indicate in which view the measurements where
taken. The landmarks are described by 2D projective coordi-

nates xa ∆
= (xyz)T . The superscript a in xa refers to the refer-

ence view, which we arbitrarily take to be the £rst view Ψ1.

p. 2
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Figure 2: Converting from bearings to homogeneous image measurements.

With the conversion uA← (cosα sinα)T a virtual camera is created as shown,

parallel to the x-axis at y = 1.

y-axis xa = (x y z)T

uA = (u1 u2)T ~ [I 0] xa

Reference Frame I,0
vB = (v1 v2)T ~ [R t] xa

R,t

t

Figure 3: 2D to 1D projection in homogeneous coordinates is a linear op-

eration. Above we project the 2D point xa ∆
= (xyz)T into the reference frame

Ψ1 and into a second view Ψ2 with motion parameters R, t.

2D coordinates in the other views take superscripts b, c, etc.
Homogeneous coordinates are only de£ned up to a scale, i.e.
xa ≡ ya iff xa = λya. The 1D and 2D projective spaces will be
referred to as P1 and P2, respectively.

We can easily convert bearing measurements α to 1D image
measurements uA in a virtual camera as follows:

uA← (cosα sinα)T

The virtual camera is located at y = 1 on the y-axis, parallel
to the x-axis, as illustrated in Fig.2. The boundary cases of
a bearing measurement with α = 0 or α = π is handled auto-
matically, as in both cases the 1D projective coordinate will be
(10)T , i.e. the “point at in£nity”. Note that as there is only
one virtual camera for y > 0, the mapping above is a 2-to-1
mapping: bearings that differ by π are identi£ed.

In homogeneous coordinates, the projection from 2D to 1D
is a linear operation. This is illustrated for one 2D landmark
and two views in Fig. 3. In the reference view Ψ1, which we
can arbitrarily place at the origin, we have

uA ∆
= (u1 u2)T ≡ [I 0]xa

and in a second view Ψ2 we have

vB ∆
= (v1 v2)T ≡ [Rt]xa

with R and t the rotation and translation of view Ψ2.

3.2 Recovering Landmarks
Consider £rst the sub-problem of recovering the landmarks

in the case that the robot poses are known. As discussed above,
a landmark xa gives rise to an image measurement in each view
given by

vB ∆
= (v1 v2)T ≡ [Rt]xa

which is equivalent to vB× [Rt]xa = 0. Written out explicitly
this yields the homogeneous equation

(v1R21− v2R11)x+(v1R22− v2R12)y+(v1t2− v2t1)z = 0

where we assumed xa = (xyz)T . Each view gives one such
equation, and hence given at least 2 views we can linearly re-
cover (xyz)T . This makes intuitive sense: the landmark can
be recovered by simply intersecting the viewing rays.

In practice this is done using singular value decomposition
(SVD). To this end, we £rst form a m×3 data matrix D, where
each row is formed by the three coef£cients of the equation in
the corresponding view. For example, for three views D is
equal to





−u2 u1 0
v1R21− v2R11 v1R22− v2R12 v1t2− v2t1

w1Q21−w2Q11 w1Q22−w2Q12 w1s2−w2s1





where Q and s are the rotation and translation parameters of
the third view Ψ3, respectively, and the image measurement in

Ψ3 is given by wC ∆
= (w1 w2)T

.
The matrix D is then decomposed using SVD:

Dm×3 = Um×3 Λ3×3 V3×3

where the columns of V3×3 contain the eigenvectors ei of DT D.
The eigenvector e∗ corresponding to the minimum eigenvalue
λ∗ minimizes the sum of squares of the residual, subject to
||e∗||= 1. The homogeneous coordinate of the recovered land-
mark is thus xa ≡ e∗.

3.3 Recovering the Motion
A second sub-problem is recovering the relative motion pa-

rameters in the case that the epipoles are known. The epipole
is simply the projection in one view of the center of projection
of a second view. Finding the epipoles is at the core of the
linear approach and is discussed in the next section, Section
3.4.

If the second view Ψ2 has relative motion parameters R and

t, respectively, then the epipole in Ψ2 is t
∆
= (t1 t2)T . The trans-

lation between Ψ1 and Ψ2 is only de£ned up to a scale and its
direction is given directly by the epipole t. The situation is
illustrated in Fig. 4. The bearing α from Ψ2 to Ψ1 satis£es

(cosα sinα)≡ t

Let us denote the epipole in the £rst view Ψ1 as eA = (e1 e2)T .
The bearing β to the second view Ψ2 satis£es

(cosβ sinβ)≡ e

p. 3
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Figure 4: Determining the relative orientation of two views from the

epipoles t and e. The angles α and β are recovered directly, up to π radians.

The relative orientation θ is then α−β.

From these two relations, we get two solutions for the relative
orientation θ = α−β:

{

θ = atan2(t)−atan2(e)
θ = atan2(t)−atan2(e)+π

Below we are interested particularly in the three view case.
For three views and known epipoles we can use the method
above to recover the relative orientations θ and γ of view Ψ2

and Ψ3 with respect to the reference view Ψ1. By £xing the
scale of the translation of view Ψ2, i.e. choosing a speci£c
scale for t, we can recover the location of the second view by
triangulation, using the epipoles of view Ψ3 in view Ψ1 and
Ψ3 as image measurements.

3.4 A Linear Method for Three Views
In this section we describe the linear method of recovering

2D structure and motion for three views. The exposition be-
low is a synthesis of material found in [5, 6, 7, 4]. For three
views and at least 7 landmarks, there exists a linear algorithm
to recover a set of coef£cients that completely describes the
geometry of the three views. From these coef£cients we can
recover all 6 epipoles in the three views. Then, as described
above, from the epipoles we can recover the relative motion
and subsequently the position of the landmarks.

3.4.1 The Trifocal Tensor: The intuition underlying
the linear algorithm is simple. A triple of corresponding mea-
surements in three views cannot be independent: if two mea-
surements are given, the location of the third measurement
can be predicted simply by triangulating the £rst two mea-
surements in Ψ1 and Ψ2 and re-projecting in the third view
Ψ3. It is well known that this three-view relationship can be
expressed as a trilinear constraint of the form

2

∑
i=1

2

∑
j=1

2

∑
k=1

Ti jk uiv jwk = 0 (1)

where uA ∆
= (u1 u2), vB ∆

= (v1 v2), and wC ∆
= (w1 w2) are the

image measurements in the three views, respectively, and the
Ti jk are the 8 trifocal tensor coef£cients. They are so called
because they can be arranged in a 2× 2× 2 tensor, the 2D

uA R,tt

vB

sQ,s

dL

wC

L

K

Figure 5: Intrinsic homographies K and L, see text.

trifocal tensor. Together, they completely describe the relative
geometry of the three 1-D virtual cameras to which the bearing
measurements are converted.

While there are 8 trifocal tensor coef£cients, the trifocal ten-
sor is only de£ned up to a scale and as such has only 7 degrees
of freedom.

3.4.2 Recovering the Trifocal Tensor: We can lin-
early recover the tensor coef£cients Ti jk using SVD, in the
same way we recovered the landmark positions. Indeed, each
constraint of the form (1) contributes one homogeneous equa-
tion on the coef£cients Ti jk. To recover 8 coef£cients up to a
scale, we need at least 7 equations, hence the requirement of
having at least 7 landmarks.

The algorithm is the same as the one in Section 3.2, except
each row in the D-matrix is now formed by the entries uiv jwk

from equation 1.

3.4.3 Recovering Epipoles: To recover the epipoles
from the trifocal tensor, we use a technique due to Shashua
for the 3D case [7]. This necessitates a geometric interpre-
tation of the trifocal constraint in terms of homographies. A
homography is a mapping between projective coordinates on
two lines, induced by a third line. For example, if we take the
line of sight through an image coordinate uA in view Ψ1, a ho-
mography HC

B between the image coordinates in view Ψ2 and
Ψ3 is induced:

wC ≡ HC
B vB

where HC
B is 2×2. The subscript B and superscript C indicate

that HC
B goes from view Ψ2 to view Ψ3.

Two special homographies, the intrinsic homographies K
and L, are induced by taking uA to be (10)T and (01)T , re-
spectively. As shown in Fig. 5, the intrinsic homography K
is induced by the line through the optical center of view Ψ1

and parallel to its image plane. The intrinsic homography L is
induced by the line perpendicular to that, through uA = (01)T .
The coef£cients of K and L can be directly obtained from the
trifocal tensor, as each homography is simply the two-view
constraint obtained from (1) by £lling in uA:

2

∑
j=1

2

∑
k=1

T1 jk v jwk = 0
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Figure 6: A special homography from the second view Ψ2 to itself is de-

£ned by £rst mapping through K, and then back through L, i.e. M ≡ L−1K.

2

∑
j=1

2

∑
k=1

T2 jk v jwk = 0

from which get the homography matrices (from Ψ2 to Ψ3):

KC
B =

[

−T112 −T122

T111 T121

]

LC
B =

[

−T212 −T222

T211 T221

]

Different arrangements of the trifocal coef£cients give intrin-
sic homographies between all ordered pairs of the three views.

The epipoles are now found as follows. We can de£ne a
homography M from view Ψ2 to itself, by mapping a point
vB to Ψ3 through K, and then back to Ψ2 by means of L−1,
as illustrated in Fig. 6. The 2× 2 homography matrix is then
M ≡ L−1K. The only points that are mapped to themselves
under this mapping M are the epipoles, i.e. the epipoles are
the eigenvectors of M. Thus, by performing an eigenvalue de-
composition of M (which can be done in closed form for 2×2
matrices) we obtain the two epipoles eB

1 and eB
3 in view Ψ2.

The superscript B refers to the fact that they are image points
in view Ψ2, while the subscript 1 or 3 refers to the optical
center it is the image of (that of view Ψ1 or view Ψ3). The
corresponding epipoles in view Ψ1 and Ψ3 can be obtained by
pushing the epipoles eB

1 and eB
3 through either K or L (using KA

B
for view Ψ1 and KC

B for Ψ3), as epipoles are always mapped to
each other (by any homography !).

3.5 Summary
The linear algorithm to recover structure and motion for the

three view case is now summarized:
Step 1. Recover the trifocal tensor coef£cients Ti jk form

at least 7 three-view correspondences using the ’7-point algo-
rithm’ from Section 3.4.2.

Step 2. Recover the epipoles in view Ψ2 as the eigenvectors
of M≡ L−1K, and the corresponding epipoles in views Ψ1 and
Ψ3 by applying the homographies KA

B and KC
B (Section 3.4.3).

Step 3. From the epipoles, recover the relative motion pa-
rameters R, t and Q,s (Section 3.3).

Step 4. Triangulate the position of the landmarks through
SVD (Section 3.2).

t

e3 t
e3

View 3

View 1

View 1

View 3

Figure 7: The two recovered epipoles e and t in view Ψ2, obtained as the

eigenvectors of M, can be assigned in two ways to the view Ψ1 and Ψ3. Both

possibilities lead to self-consistent structure and motion solutions in the three-

view case, regardless of the number of landmarks involved.

3.6 Multiplicity of Solution
There are, however, two ways in which we can assign the

eigenvectors of M to the epipoles in step 2. This is illustrated
in Fig. 7. Both choices lead to a different set of 6 epipoles.
Remarkably, both choices lead to a completely self-consistent
solution for structure and motion. This is a fundamental am-
biguity of the three view case, and is true for any number of
landmarks, counter-intuitive though it seems. Thus, the algo-
rithm will always output two valid reconstructions consistent
with the image measurements in the three views.

When starting from bearing measurements, we can fre-
quently pick the correct solution from the two possible struc-
ture from motion solutions. Recall that, in order to obtain a
linear algorithm, we convert the bearing measurements α to
image measurements uA by

uA← (cosα sinα)T

but we lose some information in the process. In particular,
we lose the distinction between bearings α and α + π. After
we have recovered the structure and motion, however, we can
re-calculate the actual bearings and check whether they agree
with the measured bearings. Frequently, one of the two solu-
tions will contain landmarks that are inconsistent (i.e. differ
by π) with the measured bearings, while the other solution is
consistent. Thus, by checking this, we can frequently choose
correctly between the two solutions.

Unfortunately, even with bearing measurements it is possi-
ble to obtain two consistent solutions. In this case, the only
way to disambiguate between the two three-view solutions is
by adding a fourth view. To do this, we simply add the view to
both solutions (see below) and look at the SVD residual. The
solution with the lowest residual is then chosen as the correct
one. Adding views is described in the next section.

3.7 More Than Three Views
A linear method that treats all views simultaneously is not

available, but given an initial three-view geometry and its re-
covered structure we can easily recover the relative motion of
additional views. This can be done similarly to recovering the
position of the landmarks as described in Section 3.2.

For example, when adding a fourth view Ψ4, each measure-
ment uD in Ψ4 yields a homogeneous equation in the motion

p. 5



Figure 8: Experimental setup with Minnow robots and colored landmarks.

The picture corresponds to the arrangement of Fig. 9 below (although one

landmark is missing in the picture).

parameters of Ψ4. As before, let us denote these parameters

by R and t, where t
∆
= (t1 t2)T and

R
∆
=

[

c −s
s c

]

with c = cosθ and s=sinθ for some θ. Now, any landmark

xa ∆
= (xyz)T is projected into Ψ4 according to

uD ≡ [Rt]xa

Written out as a cross product, this yields the homogeneous
equation below in the motion parameters t1, t2, c, and s:

(yu1− xu2)c+(xu1 + yu2)s+(−zu2)t1 +(zu1)t2 = 0

Using the by now familiar method of SVD, we can recover
the motion parameters up to a scale given at least three com-
mon measurements with the recovered structure so far. After
performing SVD and taking the eigenvector corresponding to
the smallest eigenvalue, the correct scale can be recovered by
imposing the constraint c2 + s2 = 1.

4 Results

4.1 Experimental Results
In terms of experimental validation, we performed two ex-

periments with a team of mobile robots. The experimental
setup is illustrated in Fig. 8. As hardware platform we used
a team of 4 “Minnow” robots, a class of small mobile robots
developed at CMU and based on the Cye robot, an inexpensive
and commercially available platform. As landmarks we used
cardboard boxes (about 16” wide, 10” deep, 20” tall) covered
with colored construction paper. The experimental area was
about 5x7 meters, enclosed by white poster-board walls.

A commercial USB camera provides sensory input in the
form of images at a resolution of 360×240 pixels. Landmarks
were detected using blob detection and identi£ed through
color analysis. The cameras were calibrated so that yaw an-
gle is easily calculated from the position of the color blob in

1 2 3 4 5 6

1

2

3

4

Figure 9: Multiple robot setup: £rst experiment.

1 2 3 4 5 6

1

2

3

4

Figure 10: Multiple robot setup: second experiment.

the image. Because the cameras have a limited £eld of view, 4
images are taken by each robot in each direction, providing a
360 degree £eld of view of the environment.

The £rst experiment corresponds to the arrangement in
Fig. 8, and is illustrated in Fig. 9. The ground truth locations
are depicted as circles for the robots and squares for the land-
marks. The standard deviation of the error on the bearings
obtained by the vision system was 2.23 degrees.

The result of applying the linear method is shown in Fig. 9
as asterisks, which represent the recovered position of both the
robots and the landmarks. Because these are only recovered up
to a 2D similarity transform, they were £rst optimally aligned
with the ground truth to make comparison possible. Note that
the alignment process simply recovers the 4 unknown ambigu-
ities and does not improve or degrade the results of the linear
step. As can be seen from the £gure, the recovered position of
two of the robots and some of the landmarks has appreciable
error. However, the reconstruction is good enough to ensure
fast convergence of a subsequent non-linear re£nement step,
the result of which is shown using the ’+’ symbols.

In a second experiment, illustrated in Fig. 10, we cre-
ated a setup where the robot-team is surrounded by the land-
marks. Such a situation would occur when using landmarks
on the horizon (mountain tops, large buildings), or when all
the robots are within the same open space and landmarks are
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(a) Mixed con£g.: 0.1, 0.5, and 1 degree stddev.
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(b) Enclosed con£g.: 0.1, 0.5, and 1 degree stddev.

Figure 11: Convergence results for synthetic data for (a) mixed, and (b)

enclosed con£guration. In each case, 50 synthetic datasets were generated

for 25 different combinations of m and n, i.e. 1250 data sets, and this with

three different noise levels, for a total of 3750 data sets. The images show the

percentage of cases in which SLAM failed to converge without (top rows) and

with linear initialization (bottom rows). White=0%, black=100% failures.

available only on the perimeter of the space. The standard
deviation of the bearing error in this case was 1.53 degrees.
The linear and subsequent non-linear reconstruction are again
shown as asterisks and pluses in Fig. 10.

In both experiments, the linear reconstruction provided a
good initial estimate for the solution obtained by subsequent
non-linear minimization. Of course, both are expected to be
different from the ground truth because of measurement error.
As expected, this difference is more pronounced in the £rst
experiment due to the larger bearings errors.

4.2 Qualitative Analysis
In order to characterize the behavior of the linear method

under different circumstances, we ran it on a large number of
synthetic data-sets. We randomly generated two types of con-
£gurations: (a) mixed, i.e. landmarks share the same area as
the robots, as in Fig. 8 and 9, and (b) enclosed, i.e. landmarks
enclose the robot team, as in Fig. 10. For each type, we gen-
erated 50 synthetic data-sets for each of 25 different combina-
tions of m (#robots ranging from 4 to 12) and n (#landmarks
ranging from 7 to 15). Measurements were obtained by tak-
ing the ground truth bearings and adding Gaussian noise with
standard deviations 0.1, 0.5, and 1 degrees.

The results are best appreciated graphically, as shown in
Fig. 11. In this £gure we graphically show in what percent-

age of the cases the non-linear minimization process fails to
converge (i) using a random initialization (top three images in
Fig. 11a and 11b), and (ii) using the linear method to obtain
an initial estimate (bottom three images in Fig. 11a and 11b).

The results show that the linear method substantially in-
creases the number of cases in which SLAM converges to
the global minimum. However, it is sensitive to measurement
noise, particularly in near-minimal con£gurations. The sensi-
tivity to noise is most noticeable in the “enclosed” con£gura-
tions. The noise-sensitivity decreases for both types as more
landmarks and/or robots are added. For errors in the range
0-0.3 degrees, the linear method almost always leads to con-
vergence, with rare exceptions in the minimal con£guration
cases. We conjecture that those cases are the result of having
randomly generated near-degenerate data-sets (i.e. the land-
marks or robots are not in general con£guration).

5 Conclusion

Linear methods for projective structure recovery can be suc-
cessfully applied to the bearings-only SLAM problem under
the assumption of planar motion. This is an important case in
practice, and we hope that this new tool will ease the applica-
tion of batch-type SLAM methods to multiple robot scenarios.
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