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Abstract

As robotics research expands into multiagent tasks
and learning, investigators need new tools for eval-
uating the artificial robot societies they study. Is it
enough, for example, just to say a team is “hetero-
geneous?” Perhaps heterogeneity is more properly
viewed on a sliding scale. To address these issues this
paper presents new metrics for learning robot teams.
The metrics evaluate diversity in societies of mechan-
ically similar but behaviorally heterogeneous agents.
Behavior is an especially important dimension of di-
versity in learning teams since, as they learn, agents
choose between hetero- or homogeneity based solely
on their behavior. This paper introduces metrics of
behavioral difference and behavioral diversity. Behav-
ioral difference refers to disparity between two spe-
cific agents, while diversity is a measure of an entire
society. Social Entropy, inspired by Shannon’s Infor-
mation Entropy [5], is proposed as a metric of be-
havioral diversity. It captures important components
of diversity including the number and size of castes
in a society. The new metrics are illustrated in the
evaluation of an example learning robot soccer team.

1 Introduction

At present there are no metrics of diversity in robot
teams; societies are simply classified as “heteroge-
neous” if one or more agents are different from the
others and “homogeneous” otherwise. This either/or
labeling doesn’t tell us much about the extent of di-
versity in heterogeneous teams. How can we deter-
mine, for instance, if one system is more or less diverse
than another? The answer is crucial for investigations
regarding the origins and benefits of heterogeneity.
As an example of the kind of issue this work ad-
dresses, consider two teams of robots: R,, and Rp.
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Suppose R, is composed of 99 identical robots and
one unique robot; while R} is composed of two groups
of 50 identical robots each. Both teams have the same
number of robots (100) and the same number of robot
types (2), but intuitively it seems R is “more di-
verse” than R,. How can the difference be quanti-
fied? This paper suggests Social Entropy, inspired by
Shannon’s Information Entropy [5], as an appropriate
measure of diversity in robot teams.

Investigation of diversity at the societal level forces
several related issues to the surface. First, since di-
versity is based on differences between individuals in
a group, a measure of robot difference is necessary.
One can see how mechanical differences are quan-
tifiable, but what about physically identical agents
which differ only in their behavior? One approach
is to look for the differences in the agents’ behavioral
coding. In robots using identical reinforcement learn-
ing strategies for instance, the robots’ policies can be
compared (specific examples are given later). Sec-
ond, assuming differences between individuals can be
measured, how should they be used to evaluate diver-
sity in the society? In the approach advocated here,
the society is partitioned into castes of behaviorally
equivalent agents based on the difference metric. Di-
versity is evaluated based on the number of castes
and the number of robots in each caste.

To provide an example for concrete discussion,
robot soccer, a multi-robot learning task is presented.
After that, terminology regarding robot behavior and
difference are provided for the formal discussion that
follows. Later sections introduce definitions and
mathematical formulations of behavioral difference,
societal hetero- and homogeneity, and Social Entropy
for robot teams. Finally, the metrics are applied to
example soccer robot teams.
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Figure 1: Examples of hetero- and homogeneous learning soccer teams. In both cases the learning team (dark)
defends the goal on the right. The agents try to propel the ball across the opponent’s goal by bumping it. A
homogeneous team (left image) has converged to four identical behaviors which in this case cause them all to
group together as they move towards the ball. A heterogeneous team (right) has settled on diverse policies which
spread them apart into the forward middle and back of the field.

2 Robot Soccer

Robot soccer is an increasingly popular focus of
robotics research [4]. It it is an attractive domain
for multiagent investigations because a robot team’s
success against a strong opponent often requires some
form of cooperation. Additionally, many people are
familiar with the human version of soccer and can
easily identify with and understand the problem. For
this research, the game is simplified in a few respects:

e Teams are composed of four players.

e The sidelines are walls: the ball bounces back instead
of going out-of-bounds.

e The goal spans the width of the field’s boundary.
This helps prevent situations where the ball might
get stuck in a corner.

e The ball is propelled only by robot bumps.

e Play is continuous: After a scoring event, the ball is
immediately replaced to the center of the field.

The examples discussed here are drawn from robot
soccer simulations. The simulation proceeds in dis-
crete steps. In each step the robots process their sen-
sor data, then issue appropriate actuator commands.
Ball position and defended goal sensors are used in
the experiments examined here. Space precludes a
more detailed description of the system.

The skills provided to the soccer agents are de-
signed as motor schema-based behavioral assem-
blages. Motor schemas are the reactive component
of Arkin’s Autonomous Robot Architecture (AuRA)
[1]. AuRA’s design integrates deliberative planning
at a top level with behavior-based motor control at
the bottom. The lower levels, concerned with exe-
cuting the reactive behaviors are incorporated in this
research. Motor schemas may be grouped to form

more complex, emergent behaviors. Groups of behav-
iors are referred to as behavioral assemblages. One
way behavioral assemblages may be used in solving
complex tasks is to develop an assemblage for each
sub-task and to execute the assemblages in an appro-
priate sequence.

To implement an overall soccer strategy, each robot
is provided a set of behavioral assemblages for soccer.
Each assemblage can be viewed as a distinct “skill”
which, when sequenced with other assemblages forms
a complete strategy. The behavioral assemblages de-
veloped for these experiments are:

o move_to_ball (mtb): The robot moves directly to the
ball. A collision with the ball will propel it away
from the robot.

o get_behind_ball (gbb): The robot moves to a position
between the ball and the defended goal while dodging
the ball.

o move_to_back_field (mtbf): The robot moves to the
back third of the field while being simultaneously
attracted to the ball.

The overall system is completed by sequencing the
assemblages with a selector which activates an appro-
priate skill depending on the robot’s situation. This is
accomplished by combining a boolean perceptual fea-
ture, behind_ball (bb) with a selection operator. The
selector picks one of the three assemblages for acti-
vation, depending on the current value of bb. Pro-
gramming the selector is equivalent to specifying the
agent’s policy (e.g. Figure 2).

In experimental evaluations, learning robots are
trained against a control team, using rewards based
on the game’s score. After the agents converge to
stable behaviors, policies of the individual robots are
examined for diversity in the resulting team. Since
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Figure 2: The control team’s policy viewed as look-
up tables. The 1 in each row indicates the behavioral
assemblage selected by the robot for the perceived
situation indicated on the left. The abbreviations for
the assemblages are introduced in the text.

this article focuses on evaluation metrics for robot
teams, the learning system is presented in overview
only. For more detail, the reader is referred to [3].

The control team includes three agents that move
to the ball when behind it and another that remains
in the backfield. For convenience, we refer to them
as “forward” and “goalie” policies. The forwards and
goalie are distinguished by the assemblage they acti-
vate when they find themselves behind the ball: the
forwards move to the ball (mtb) while the goalie re-
mains in the backfield (mtbf). Both types of player
will try to get behind the ball (gbb) when they find

themselves in front of the ball.

The learning teams are developed using the same
behavioral assemblages and perceptual features as
the control team. Clay (the system used for config-
uring the robots) includes both fixed (non-learning)
and learning coordination operators [2]. The control
team’s configuration uses a fixed selector for coordi-
nation. Learning is introduced by replacing the fixed
mechanism with a learning selector. A Q-learning [6]
module is embedded in the learning selector. At each
step, the learning module is provided the current re-
ward and perceptual state, it returns an integer indi-
cating which assemblage the selector should activate.
The Q-learner automatically tracks previous percep-
tions and rewards to refine its policy. Altogether
there are 9 possible policies for the learning agents
since for each of the two perceptual states, they may
select one of three assemblages. Figure 3 summarizes
the possible policies. Based on these nine policies
there are a total of 6561 possible 4 robot teams. Two
example teams, one homogeneous, the other hetero-
geneous are illustrated in Figure 1.

the learning agents discussed in the text. Each policy
is composed of one row for each of the two possible
perceptual states (not behind ball or behind ball -
bb). The position of the 1 in a row indicates which
assemblage is activated for that policy in that situ-
ation. The policies of the goalie and forward robots
introduced earlier (Figure 2) are in bold.

3 Terminology

To facilitate the discussion, the following symbols and
terms are defined:

¢ Robots:

— R; is an individual robot.

— R is a society of N
R ={Ri,R2,Rs...Rn}

robots  with

o Castes:

— C is a classification of R into ¢ possibly over-
lapping sub-sets. Example: a four robot team
R = {R1, Rz, R, R4} is divided into three sub-
sets, C = {{Rl, RQ}, {}{3}7 {R4}}

— (C; 1s an individual sub-set of C. Ex-
ample: if C={{Ri,R2},{R:},{Rs}}, then
Ci ={Ri, R2}.

— The sub-sets of C are castes.

e Sensing and Action

— 1, is the sensor input provided to R;’s control
system. i, is referred to as the perceptual
state of the robot.

— P/ is the proportion of time R; experiences in-
put 2.

— aj is the vector of outputs generated by R;’s
control system based on the input 1;.

Now consider how the behavioral difference between
two robots might be evaluated. Imagine the ultimate
robotics laboratory where we could enclose an agent
in an evaluation chamber and expose it to all pos-
sible sensory situations while carefully recording its
response to each. This corresponds to varying the
sensory input i while tracking the actuator output
a. Having collected the data for one robot, the next
agent could be placed in the chamber and exposed to
the same situations. Finally, the traces of the robots’
responses over all sensory inputs would be compared

perceptual assemblage mth  gbb  mtbf | mtb ghb  mthf | mtb ghb  mibf
feature | mib gbb mib f not behind_ball 0 0 1 0 0 1 0 0 1
not behind_ball 0 1 0 behind_ball 0 0 1 0 1 0 1 0 0
behind_ball 1 0 0 not behind_ball 0 1 0 0 1 0 0 1 0
Control Team Forward behind_ball 0 0 1 0 1 0 1 0 0
perceptual assemblage not behind_ball 1 0 0 1 0 0 1 0 0
feature | mth gbb mth f behind_ball 0 0 1 0 1 0 1 0 0
not behind_ball 0 1 0 . . . . .
behindball | 0 0 1 Figure 3: The nine soccer robot policies possible for




to draw up a measure of their behavioral difference.
Since this evaluation chamber will likely never exist,
other kinds of behavioral comparison must be consid-
ered.

When otherwise identical robots diversify by learn-
ing, their behavioral difference can be evaluated by
comparing their policies. For example, the goalie and
forward soccer robots introduced earlier exhibit be-
havioral differences that are reflected in and caused
by their differing policies (Figure 2). In comparing
robot policies, i represents the perceptual features an
agent uses to selectively activate behavioral assem-
blages. In the case of the soccer robots i = 1 if the
robot is behind the ball and 0 otherwise. a is the se-
lected behavioral assemblage. For the soccer robots
a can be viewed as unit vector with one non-zero ele-
ment indicating which behavioral assemblage is acti-
vated. For instance, a = (0,0, 1), would indicate that
the third assemblage is active.

Even though this paper focuses on comparing be-
havior at the level of an agent’s behavioral sequenc-
ing strategy, similar evaluations could be conducted
at other levels. The agent could be measured at a
lower level, for instance, with i representing the full
set of real-valued sensor inputs, and a being the full
set of actuator outputs (e.g. motor currents, etc.).

Returning to the soccer example, recall that at each
movement step, one of three behavioral assemblages
(move_to_ball, get_behind_ball or move_to_backfield) is
selected, based on the behind_ball perceptual fea-
ture. If, in every perceptual state, two robots select
the same output, they are considered behaviorally
equivalent.

In more complex systems, with perhaps thousands
of perceptual states, it makes more sense to pro-
vide a sliding scale of equivalence. This would allow
substantially similar agents to be considered “equiv-
alent” even though they differ by a small amount.
Recall the ideal laboratory where robots are evalu-
ated by sweeping them through all possible sensory
situations. When robots are compared at the policy
level, the same effect can be achieved by checking the
robots’ policies for their response at every perceptual
state.

The general idea is to compare two robots, R,
and Ry, by summing the differences between their re-
sponses, | @, — @y |, over all perceptual states, 1. It is
also important to emphasize the response differences
in perceptual states where the agents spend most of
their time and to de-emphasize those that are infre-
quently experienced. This notion is encapsulated by
multiplying the response difference in each situation
by the probabilities of each agent (P?+ P?) being
in that situation. Formally, behavioral difference

between two robots R, and R is defined as:

S PP a—a] ()

for all i

D(Ra,Ry) =

If R, and Ry select identical outputs (a) in all per-
ceptual states (i), then D(R,, Ry) = 0. When R,
and R select differing outputs in a given situation,
the difference is normalized by the joint proportion
of time they spend in that situation.

Now that a measure of behavioral difference is
available, it is possible to define a type of equivalence
using it. Two robots are e-equivalent when their dif-
ference is less than e:

Definition 1: R, and R, are e-equivalent iff
D(Ra, Ry) < e.

Definition 2: =. indicates e-equivalence, R, =. R
means R, and Rp are e-equivalent.

This in turn provides for definitions of societal homo-

and heterogeneity:

Definition 3: A robot society, R, is e-homogeneous iff
for all Ry, Ry € R, Ry =< Rp

Definition 4: A robot society, R, is e-heterogeneous
iff there exists an R, and Ry € R) such that R, FRs

4 Social Entropy

The goal is to devise a metric which captures the
following expectations regarding behavioral diversity:

e The least diverse society is one in which all agents
are equivalent.

o The greatest diversity is achieved when no agent is
equivalent to any other agent.

e A society in which one agent is different and all the
rest are equivalent is slightly more diverse than the
society in which all agents are the same.

o If two societies have uniformly-sized groups, the one
with more groups is more diverse.

Before a proposed metric addressing these require-
ments is presented, the manner in which a robot
society is partitioned into behavioral castes must
be explained. The idea is to group agents into
castes, according to their behavioral similarity, using
e-equivalence:

C={C,Cs,C5..C}
for all Rq, Ry € Ci, Ro =< Ry

R is broken into ¢ castes, and each caste is e-
homogeneous. Observe that if ¢ > 0, the sub-classes
are not necessarily disjoint; one robot may belong to
more than one class.

Given that a robot society is partitioned into castes
how should a measure of its diversity be based on the
partitioning? Consider Het(R), a candidate function
evaluating the heterogeneity of R. The requirements
listed above are restated more formally:



e Het(R) = 0iff R is e-homogeneous.

o Het(R) should be at a maximum when every robot
in R is different.

e Het(R) should be at a minimum (but still > 0) when
only one robot in R is different from the others.

o If R, and Rp contain uniformly-sized sub-classes, we
should have Het(R.) < Het(Rp) when R4 is com-
posed of more sub-classes than R,.

e If two robot societies, R, and Rp have ¢, and
cp sub-classes respectively, with robots uniformly
distributed among the sub-classes, we should have
Het(R.) = Het(Ry) iff ca = c.

H(X), referred to as Information Entropy meets all
these criteria [5]. The Information Entropy of a sym-
bol system X is used in coding theory as a lower-
bound on the average number of bits required per
symbol to send multi-symbol messages. X assumes
discrete values in the set {x1,z2,s...x.} (the al-
phabet to be encoded). p; is the probability that
{X = 2;}. H(X) measures the “randomness” of X
as follows: Each p; > 0 and the sum of the p;’s is 1.0.
H(X) is greatest in the “most random” case, where
each z; is equally likely, e.g. p; = % H(X) is small-
est in the least random case where some p; = 1 and
all the others are zero. The Information Entropy of
X is given in bits as:

H(X) = =Y pilogy(pi) (2)

The log is taken to the base 2 because entropy is in
bits. If symbols were coded in a ternary versus binary
system the log would be to the base 3.

In appropriating H(X) for use as a social metric,
the robot castes correspond to the symbols to be
coded (one symbol per caste), while the proportion
of robots in each caste correspond to the probabili-
ties of each symbol occurring in a message. H(X) for
a robot society is therefore the average number of bits
required to specify which caste a randomly selected
robot belongs to; a more diverse society requires more
bits.

It is easy to adopt H(R) as Het(R) by specifying
each p; as the proportion of robots in the correspond-
ing sub-class Cj:

oo ol
S, 1G]

Het(R) = = pi log,(pi) (4)

(3)

Since e-equivalence does not ensure disjoint sub-
classes, p; is normalized so that > p; = 1. The other
restriction, p; > 0, is also met.

Now, to help clarify the use of these new metrics,
they are applied in the evaluation of several example
robot teams.

R e R 0.00
1.50
158
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Figure 4: The Social Entropy of several example four
robot societies. The ovals enclose e-equivalent robots
forming castes. The value of Het(R) for each society
is to the right.

5 Example Evaluations

We now return to the learning soccer robots intro-
duced earlier. First, consider the behavioral differ-
ence between the forward and goalie policies of Fig-
ure 2. For comparisons between agents, behavior is
considered at the policy level, so that robots with
identical policies are considered equivalent. All the
possible policies for these example agents are listed
in Figure 3.

Following the terminology introduced in Section 3,

there are two potential perceptual inputs for the
soccer robots, i = 1 and ¢ = 0, depending on
whether the agent is behind the ball or not. Simi-
larly there are three potential outputs: a; = (0,0,1)
(move_to_backfield), az = (0,1,0) (get_behind_ball) or
az = (1,0,0) (move_to_ball). Manhattan distance is
used here when evaluating vector differences, so that
ag —az = (0,—1,1) and | a3 — a3 |= 2.
_ In the case where the robots are behind the ball,
t = 1, both the goalie and forward select the same
assemblage. They choose different assemblages when
they aren’t behind the ball. Assuming the robots
spend the same amount of time in each of the two
perceptual states, Equation 1 gives the behavioral
difference between a goalie robot, R,, and a forward
robot, Ry, as:

1
D(Rg,Re) = 3 S(PF+P)|ag—ar|
for all i
1,1 1
= (=4 =)[(0,1,0) —(0,1,0
G+ 5 1(0,1,0)~(0,1,0) | +
1,1 1
75+ 3)1(0,0,1) = (1,0,0) |

= 210,00 [+3() | (-1,0,1)
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The behavioral difference between the goalie and for-
ward agents is 1. Following this approach, we find
that the maximum difference between any of the
agent policies in Figure 3 is 2.

Now consider the Social Entropy, Het(R), of a het-
erogeneous team composed of one goalie and three
forward agents (following the policies in Figure 2).
First, we choose ¢ = 0 so that robots must have iden-
tical policies to be considered equivalent. The so-
ciety consists of four robots, R = {R1, Ra, Rs, Ra}.
One robot, R4 (the goalie) is not e-equivalent to
the others so there are two castes, C = {C1,Cs},
with C; = {Ri1, Ra, Rs} (the forwards’ caste) and
Cy = {R4} (the goalie caste). Then,

P1 = .75
P2 = .25
2
Het(R) = = pi log,(p)
i=1

= —((p1 logy(p1)) + (p2 log,(p2)))
= —((.75 log,(.75)) + (.25 log,(.25)))
= 811

The Social Entropy of the control team is .811.

Finally we evaluate the Social Entropy of the ho-
mogeneous team in Figure 1. All four learning robots
have converged to the forward behavior given in
Figure 2. The team consists of the robots R =
{R1, Rs, R3, R4}. Homogeneity implies there is only
one caste, so C = {C1}, and Cy = {R1, Rs, R3, Ra}.
Then:

pt = 1
1
Het(R) = = pi log,(p:)
i=1

—(p1 log,(p1))

—(1 log, (1))
=0

As expected, the Social Entropy of a homogeneous
society is Het(R) = 0. This result generalizes to all
homogeneous cases.

The entropies for several other four robot society
examples are illustrated in Figure 4.

6 Conclusion
New metrics and definitions for multi-robot learning
teams have been introduced, including

o A mathematical expression for the behavioral dif-
ference between two robots.

o Definitions of behavioral homogeneity and hetero-
geneity for multi-robot teams.

e Social Entropy, a new measure of robot team be-
havioral diversity.

Use of the metrics is illustrated through evaluations
of a learning multi-robot soccer team. It is hoped
that these metrics will serve as tools for future work
in the evaluation of learning multi-robot teams.

The author thanks Ron Arkin, Chris Atkeson,
Maria Hybinette and Juan Santamaria for helpful dis-
cussions on these topics.
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