IEEE/RSJ International Conference on Intelligent Robots and Systems, 1992.

The Learning of Reactive Control Parameters
Through Genetic Algorithms

Michael Pearce, Ronald Arkin, and Ashwin Ram
College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332 U.S.A.

Abstract—This paper explores the application of ge-
netic algorithms to the learning of local robot nav-
igation behaviors for reactive control systems. Our
approach is to train a reactive control system in vari-
ous types of environments, thus creating a set of “eco-
logical niches” that can be used in similar environ-
ments. The use of genetic algorithms as an unsuper-
vised learning method for a reactive control architec-
ture greatly reduces the effort required to configure
a navigation system. Findings from computer simu-
lations of robot navigation through various types of
environments are presented.

I. INTRODUCTION

A common robot task is to navigate through an environment
to a goal position, without hitting any obstacles that may be
present. Navigation through a cluttered environment is an ex-
tremely complex and underconstrained task. Apart from the
computational constraints placed on the design of a naviga-
tion system, it is desirable that the system be robust enough
to navigate through a large number of possible environment
configurations.

Traditional robotics research has focussed on symbolic rep-
resentations and world modeling to solve navigation problems
[1, 8]. A large part of the work that these systems perform con-
centrates on the mapping of incoming sensor data to a high-
level symbolic representation of the environment. Such systems
combine data from different types of sensors, process this data
to keep their internal world models up to date, and perform
path planning from this world model. While these systems
perform well in constrained environments, their performance
is less robust in dynamic, real world environments. Symbolic
robotic navigation systems rarely meet real-time constraints in
tasks that seem trivial to humans, and when they do it is under
highly constrained and closely supervised conditions [7].

An alternative approach to robot navigation is reactive con-
trol, which attempts to transform sensor data into information
that directly affects the behavior of the robot. The behavior
of these robot systems emerges from the careful organization
of much simpler behaviors. These behaviors are designed so
as not to require a world model, and are computationally less
demanding than those of a symbol processing robot navigator.
These architectures are able to act in real-time, and are more

robust in dynamic environments than their symbolic architec-
tural counterparts.

This paper describes the application of genetic algorithms to
the problem of optimizing robot navigation control parameters
in a reactive control system. Our approach is to train a reactive
control system in various types of environments, thus creating
a set of “ecological niches” that can be used in similar environ-
ments that were not presented in the learning phase. The use
of genetic algorithms as an unsupervised learning method for a
reactive control architecture greatly reduces the effort required
to configure a navigation system. Since the genetic algorithms
are run as simulations on a computer and do not require that
the learning occur on the actual robotic system, they greatly
decrease the amount of time required to present the system
with a sufficient number of learning trials.

II. RELATED WORK
A. Reactive Control for Robot Navigation

The reactive control approach to robotic navigation grew out of
a dissatisfaction with traditional robotics architectures. Reac-
tive control draws from the Behaviorist school of psychology,
in that there are no explicit symbolic representations of the
external world. The subsumption architecture [5], which typ-
ifies the purely reactive control model, is composed of simple
behaviors (like wandering, obstacle avoidance, and goal fol-
lowing) that combine to produce “emergent behaviors” that
were not explicitly designed to be exhibited by the system.
The simple behaviors of a reactive control system acquire the
information about the environment directly from the sensors,
instead of getting this information indirectly through an inter-
vening world model. These behaviors are closely tied to the
effectors that carry out the behavior of the robot [12, 11].
These non-representational systems avoid many of the pit-
falls experienced by the traditional symbolic based and world-
model driven systems, but they do have their own problems.
The subsumption architecture does not allow for the explicit
representation of high-level goals, so it is difficult to reconfigure
the systems to perform different tasks or reason about unper-
ceived objects. Also, as behaviors are added to the system
and it becomes more complex, the interaction of the various
behaviors is often difficult to predict and debug for systems
that could perform tasks that require high levels of intelligence.
This process is very time-consuming, and undesirable interac-

tions between the behaviors are often difficult to predict and
are not always easy to track down. Robust individual behav-
iors must be designed and implemented, and then tuned to fit
the response characteristics of the sensors and effectors.

The motor schema approach to reactive control has proven
to be a powerful method in the field of robotics [3]. This model
of robotic systems allows researchers to construct robots that
can function robustly and in real time in a dynamic, open
world. In particular, this method enables the integration of a
high-level planner to configure and instantiate these behaviors,
thereby introducing more flexibility than is found in the purely
reactive approach. A more detailed description of the motor
schema method is given in Section III.A.

B. Robot Learning

There are several factors to be considered in designing a robot
navigation system that learns. It is desirable that the learning
be unsupervised. It would not be practical for a “trainer” to in-
struct the robot as it moved through the environment, because
of the large number of examples that are needed to allow the
robot to generalize its navigational knowledge to a wide vari-
ety of environment types. Also, there is the issue of credit and
blame assignment in navigation. The state of reaching a goal or
colliding with an obstacle is achieved through the combination
of many simple actions. It is impossible to point to one par-
ticular move that led to either good or poor performance. We
desire a navigation system that can evaluate its own plans and
learn based on some function that specifies the costs and ben-
efits that can be computed from easily-measurable behaviors
of the system. For example, the time of travel of a robot from
start to goal can be easily and objectively measured, without
the need for the designer to examine the internal functioning
of the navigation system.

It would be desirable for such a system to be able to learn
how to move the robot through an environment without having
to go through this process for each type of individual robot en-
vironmental configuration. A self-teaching navigation system
can improve its performance by using some simple evaluation
rules that are provided by the designer. These evaluation rules
would be mapped to the behaviors of the robot, in such a way
that it can respond robustly to situations that it had not neces-
sarily encountered in the learning phase. This generalization of
learning is an important issue in robot navigation, since there
are infinitely many possible environmental configurations that
can impinge on the sensors.

Although most Al researchers would agree that learning is
an important feature of a truly intelligent and autonomous
robot system, limited work has been done in this area that
goes beyond the conceptual stage. Fikes, Hart, and Nilsson ex-
tended the STRIPS robot navigation system to allow it to learn
from its experience failures [9]. Researchers have attempted
to solve nonlinear robot navigation tasks using two-layer con-
nectionist networks [4]. This simulation allowed the robot
to learn associations between landmark and the directions of
travel that would lead it to the goal, which would provide posi-
tive reinforcement. Previous workers have also applied genetic
algorithms (GAs) to robot navigation. Dorigo and Schnepf

Fig. 1. The genetic operators reproduce(R), crossover(C),
and mutate(M) (arranged from top to bottom).

have used GAs to train simulated robots to avoid obstacles
and follow moving targets [6]. In this work, GAs were used
to determine when the robot should switch from one behavior
to another, and only one behavior is active at any one time.
Thus the grain size of the learning is at a fairly high level, and
the robots could not learn how to optimize their individual
behaviors.

Our research treats the GA learning not as an end in itself,
but as a means by which global path planning and local nav-
igation can be coordinated in a more integrative fashion. The
global path planner (not implemented in this system) would
pass the positions of subgoal landmarks and a measure of the
crowdedness of the local environment to the schemas, thus af-
fecting where the robot goes and how carefully it navigates
through the obstacles, without explicitly stating what path to
take. This separation of local and global navigation tasks is
provided by the schema-based approach, as outlined later in
the paper.

C. Genetic Algorithms

Genetic algorithms (GAs) are a hill-climbing search method
in which a near-optimal solution may be found by applying a
set of operators to points in a search space to produce better
“generations” of solutions. The fitness of each member of the
GA population (the points in the search space) is computed
by an evaluation function that measures how well the indi-
vidual performs with respect to the task domain. The best
members of the population are rewarded proportionately to
their fitness, and poorly-performing individuals are punished
or removed completely. In this way, the population, and thus
some of the individuals, quickly “homes in” on the optimal
solution(s) to a problem.

Genetic algorithms depend on an encoding of the domain
being learned for the genetic operators to operate on. The en-
coding is usually in the form of a position-dependent bit string,
where each bit is a gene in the string “chromosome.” The com-
ponents of GAs that produce the learning in the system are
the genetic operators that are applied to the bit strings of the
members of the population. There have been several proposed
operators, but the three most frequently used are reproduc-
tion, crossover, and mutation. These operators are expressed
graphically in Figure 1. Each of the rectangles in the figure

represents a single bit of the string (most representations use
much longer strings).

In reproduction operator, the fittest individuals are copied
exactly, and replace individuals that are less fit. This in-
creases the ratio of good individuals to the number of poorly-
performing individuals. The selection of individuals to be re-
produced is done using a weighted roulette wheel selection, so
that the best individuals are preferred, but not guaranteed, to
be reproduced.

The crossover operation allows two individuals to exchange
information by swapping some part of their representation with
other individuals. This creates new individuals that may or
may not perform better that the parent individuals. The choice
of which individuals to crossover and what bits to exchange is
done randomly, and it is this random search component that
gives GAs much of their power [10].

The mutation operator is used to prevent the loss of infor-
mation that occurs when there are many nearly-optimal indi-
viduals that are missing an important value in their bit string.
This operator adds a random factor to the individual members,
without affecting the rest of the population. The individuals
can “jump” out of local minima and come closer to the optimal
value. Mutation must be used carefully, since it often causes
near-optimal individuals to perform worse. The mutation rate
is decreased linearly during the simulation.

These operators allow the individuals to share information
between themselves and improve the fitness of some of the
individuals. This is an important point in GA theory; some of
the offspring of the genetic operators have a lower fitness than
their parents, but on the average the fitness of the population,
and the best individuals, improves with successive generations.
If the GA is designed and coded properly, it eventually settles
on a cluster (or multiple clusters) of near-optimal individuals
with similar bit strings. The quality of the solution and length
of time it takes to get there depends on the nature of the
problem and the values for the many parameters in that control

the GA.

III. TASK AND APPROACH TO THE PROBLEM

The navigational control parameters were learned in a two di-
mensional world that is composed of static virtual obstacles
and a single goal position, as shown in Figure 2. The task
of each robot in a simulation is to move from the start posi-
tion, past the obstacles, and to the goal position. All of the
simulations used the same distance from start to goal. Simu-
lations were run with varying numbers of obstacles and with
varying groupings of fixed numbers of obstacles. A “virtual
collision” with an obstacle, which is defined as an intrusion
of the robot into the safety margin surrounding the simulated
obstacle, is not considered to be lethal, but the fitness of the
robot is decremented by an amount determined by the punish-
ment parameter. Robots are rewarded for minimal traversal
time from start to goal; the smaller the time, the larger the
reward. The size of each step of a robot can vary from zero to
some maximum value, and the size depends on values of the
various control parameters for that robot and the distance and
position of the nearest obstacles and the goal.

Fig. 2. Partially complete robot navigation task in a
crowded environment.

A. Schema-Based Navigation

The design of a reactive control architecture can be seen as
having two parts; a structure and a set of values. The struc-
ture is determined by the tasks that the robot must perform,
since this constrains the collection of behaviors that the robot
can exhibit. Simple robots that are designed to avoid preda-
tors need few behaviors, while more complex robots may also
have goal seeking and exploratory behaviors. Once the struc-
ture of the system has been defined, the system is tuned by
adjusting the values of the parameters that make up the be-
haviors. There are several parameters that control a behavior
of a schema-based navigation system, and coming up with a
good set of values is currently less scientifically exacting than
we would like.

In the Autonomous Robot Architecture (AuRA) motor
schemas provide the reactive component of navigation [2]. In-
stead of planning by predetermining an exact route through
the world and then trying to coerce the robot to follow it,
motor schemas (behaviors) are selected and instantiated in a
manner that enables the robot to interact successfully with un-
expected events while striving to satisfy its higher level goals.
Motor schemas are manifested as analogs of potential fields [3].
Multiple active schemas are typically present, each producing
a velocity vector driving the robot in response to its percep-
tual stimulus. The individual vectors are summed together
and then normalized to fit within the limits of the robot ve-
hicle yielding a single combined velocity for the robot. These
vectors are continually updated as new perceptual information
arrives with the result being immediate response to any new
sensory data.

Some of the schemas we have already developed include:

¢ avoid-static-obstacle -
threatening impediment to motion.

move away from a non-

e move-to-goal - move towards an attractor.

¢ move-ahead - move in a pre-specified compass direction.

e stay-on-path - find a path in the environment and stay
near its center.

e noise - move in a random direction, useful for both ex-
ploration and handling problems with local maxima.

e docking - move first in a ballistic then controlled motion
towards a docking workstation.

e Various maintain-altitude, move-up, and move-

down schemas useful for navigation in rough terrain.

B. Simulation Ezperiments

A robot in our simulation uses three primitive behaviors:
move-to-goal, avoid-static-obstacle, and noise, as defined in the
previous section. These behaviors define the structure of the
navigation system. The three behaviors emerge from a set of
five parameters:

e Goal gain - speed at which robot approaches the goal.

e Obstacle gain - speed at which robot moves away from
the obstacles.

e Obstacle sphere-of-influence - distance from obstacle at
which robot is repelled.

e Noise gain - amplitude of random wandering.

e Noise persistence - number of steps the robot holds the
noise vector.

These parameters control the direction and speed at which
the robots move through the environment. Because the struc-
ture of the system is fixed, a robot’s navigation always ex-
hibits the three behaviors with some strength, as long as the
values of their gains are not zero. The parameters control the
strength of the behaviors, and the system learns one or more
sets of parameter values for a given type of environment and
a given evaluation function. This optimization is nontrivial,
since there is a large set of possible combinations of values,
and a large number of these combinations cause the robot to
become stuck in areas where the obstacle avoidance force just
cancels the force of the goal attraction, especially in regions
where box canyons predominate.

C. Genetic Algorithm Methodology

Our implementation of the robot navigation GA uses a floating
point representation of the control gains, instead of the stan-
dard bit string representation. Although this makes the design
of genetic operators more complicated, it does not affect the
rate or quality of learning, since an equivalent bit string would
just be an encoding of the gains that control the navigation.
By using a floating point representation for each of the gain
values, the simulation does not need to translate from the bit
string to a gain value that can be used by the reactive control
system, thus increasing the efficiency of the algorithm.

The algorithm starts by generating a population of robots,
an environment of obstacles, and a single goal. Each of the
robots has a set of randomly generated values for each of the
motor schema parameters. The robots move through the envi-
ronment until they reach the goal, or until it is obvious that the
robots that are not at the goal are “stuck” and are making no
progress towards the goal. This constitutes a single simulation.
Next, the obstacles in the environment are randomly reconfig-
ured to ensure that the learning is not specific to a particular
environment. Another simulation run is made, using the same
navigation parameters as in the previous simulation. A run-
ning total of the fitness of each of the robots is kept over three
simulations, and this value is used during the application of

for(generation=1; generation<MAX_GEN; generation++){
if ((generation % RECORD_FREQUENCY) == 1)
/* arrange obstacles as they were originally #*/
obstacles.unscramble();

/* Move robots, see if they reached =*/

/* goal or collided with an obstacle */

for (step = 1; step < MAX_STEPS; step++)
robots.moveAndCheck(&obstacles, &goal);

if ((generation % GA_FREQUENCY) == 0){
/* Apply the GA operators. */
robots.reproduce (P_REPRODUCE) ;
robots.crossover (P_CROSSOVER) ;
robots.mutate (P_MUTATE);

¥

/* randomize obstacle positions */

obstacles.scramble();

Fig. 3. Top-level code for the genetic algorithm simulation.

the genetic operators. The top-level code for the algorithm is
shown in Figure 3.

The evaluation of the robots that is performed during the
simulation is central to the GA algorithm, since it is this eval-
uation that drives what the robots learn. There are several
“goodness of path” measures that one may want to optimize.
Of primary concern is speed, since we usually want our robots
to perform a task in minimal time. Robots that take the least
number of time steps to reach the goal are given the highest fit-
ness values, while those that collided with obstacles are penal-
ized and given low fitness ratings. Also important is the need to
minimize the distance traveled and the energy expended, since
autonomous systems are constrained by limited resources. If
we have a good model of the robot that the simulations are
modeling, we can also take into account the wear on the robot,
the safety of the route, and any difficulties that it may have
navigating over certain types of terrain.

The evaluation function used in these experiments begins
with a base value, which is the same for all of the robots. For
each robot, this base value is decremented by a function based
on the number of moves (and thus the time it takes) for the
robot to reach the goal. This value is then decremented by a
percentage of its value for each virtual collision the robot has
with an obstacle. By adjusting these reward and punishment
parameters, one can get fundamentally different navigation be-
haviors to emerge. Low punishment values produce robots that
tend to crash into the virtual obstacles frequently, but get to
the goal more quickly. The robots that result from high pun-
ishment values are more passive and take a safer route, while
taking longer to reach the goal.

Once fitness ratings have been calculated over several nav-
igation simulations, the genetic operators are applied to the
population. The fittest individuals are reproduced, and these

fitness(x) = max_fitness - time_to_goal(x) -
(collision-weight * collisions(x))

WHERE:
max_fitness = the maximum possible fitness.
time_to_goal(x) = number of steps robot x took.
collision_weight = penalty for each collision.
collisions(x) = number collisions for robot x.

Fig. 4. One possible evaluation function for measuring per-
formance of a robot.

offspring replace the least fit robots. Then the crossover oper-
ation is applied to the population, and again the fittest indi-
viduals have the highest probability of combining with other
individuals to create robots with new parameter sets. Finally,
individuals are randomly chosen from the population to be
mutated, and the parameter sets of these robots are changed
slightly.

The process is then repeated; the population, with the new
and mutated robots, is allowed to move through the environ-
ment and the individuals are assigned new fitness values. How
many times this is repeated depends on several variables; the
density of the obstacles, the size of the population, the amount
of optimality desired, and the closeness of the initial random
control parameters all affect the amount of processing required.

IV. REesurTs

Computer simulations were run to study the behavior of our
system, and to evaluate the magnitude of improvement that
the GAs can provide for the navigation tasks.

A. Factors Affecting Learning

One factor that determines what the robots actually learn is
the type of environment that they are learning in. Environ-
ments can vary along several dimensions. The density of the
obstacles in the environment affects how much the “best” route
deviates from a straight line from the start to the goal, and how
frequently the robot has to zig-zag through the obstacles. As
the density of the environment increases, it becomes more ef-
ficient to go around a cluster of obstacles rather than try to
navigate through them (and risk a possible collision). Envi-
ronments may also vary in the organization of the obstacles;
they may be totally random, be clustered into groups, or form
highly-organized patterns such as fences or box canyons. One
may also add the complexity of moving obstacles and goals,
each of which can have their own peculiar behavior. The
type of navigation that is optimal varies between these envi-
ronments, and the robots should learn these different types of
navigation behaviors so that they may be used in similar future
situations. Of course, the robot must also learn how to clas-
sify an environment, and possibly interpolate between known
environments, to be able to use this information effectively.
Robots that learn to navigate in a particular environment
are optimized to navigate in similar environments. Thus a

simulation for that environment forms a “niche” in the same
way that animals evolve to fill a particular niche in nature.
Take such an animal outside of of its evolutionary niche and it
performs poorly, but left in its environment it does just fine.
One could set up a set of simulations to form several niches,
and then design a high level controller to choose the niche
parameters that are right for a particular world. Thus the
reactive control system would adapt to its current environment,
making it more efficient and more robust. Although this is
beyond the scope of this paper, it does point to one interesting
direction for future work.

Since the fitness function is driving the learning, it also af-
fects what is learned. Robots that learn with a large punish-
ment for collisions take the safe route, but may no longer be
able to navigate between certain objects. On the other hand,
robots with no collision punishment can navigate through most
environments more quickly than the punished robots, but of-
ten collide with obstacles. The amount of punishment that
one assigns to a collision should depend on the robustness and
strength of the robot being simulated.

B. FEvaluation

The evaluation of GAs as applied to robotic navigation learning
can be done in several ways. Each of these methods tells some-
thing about the learning of the robots, but does not tell the
whole story. This section describes three methods that were
used to evaluate these simulations. One of these evaluation
methods is included in each of the three simulated environ-

ments described later.

1) Objective behavior measures: ~ The simplest method of
evaluation would be to measure the change of the fitness val-
ues for the robots over several generations. If the simulation
is working correctly, the robot population shows an increase in
the average value over the course of a simulation, with a con-
vergence toward an optimal value at the end of the simulation.
However, there are problems with using this method. It is this
fitness value that is driving the learning, and this function is
only a qualitative measure of what a good path would be like.
An increase in the quality of the path occurs only if the eval-
uation function accurately models the interaction between the
robot and the real world. It is possible for the population to
show an increase in fitness value, without a corresponding in-
crease in the quality of the path. We need a criteria for testing
the success or failure of the learning algorithm that is external
to the operation of the GA.

One evaluation method we use is to analyze the objective
measures that the fitness values were calculated from to eval-
uate the learning of the robots. Our simulation uses time of
travel and number of collisions to calculate the fitness values,
and we analyzed these values to ensure that the robots were
learning what was intended. For example, when a large pun-
ishment was used for collisions, the number of the collisions of
the robots quickly dropped to zero, while causing an increase
in the total number of steps needed to get to the goal.

2) Visualization of the navigation: Although the use of
visualization methods to evaluate the learning algorithm is ad-
mittedly subjective, such methods can provide many insights

into what the robots are learning. Also, using purely objective
measures of performance do not tell us much about what kind
of behaviors the robot is likely to exhibit. In an open world
there is a tradeoff between length of path and safety, and look-
ing only at the path length leads to systems that ignore the
issues of safety and robustness of navigation. By using a vi-
sualization of the simulation, one can get a qualitative feel for
the success of the learning algorithm.

The GA simulations produce a trace of the moves of the
robots for each run. A separate program is then used to dis-
play the movements of the robots for each of the simulated
navigations. This program displays both the first generation
and one of the later generations on the same screen, so that the
user can compare the two simulations and judge the change in
behavior for the later generations. To insure that the outcome
of a displayed simulation is the result of the learning and not
of the particular environment, the configuration of the obsta-
cles is reset to that of the first generation when a particular
simulation run is saving the moves of the robots for viewing.

3) Convergence evaluations: The third method used in
evaluation is to look at the navigational parameters and deter-
mine whether they converge to one or more sets of values. The
gain values at the start of a simulation are randomly generated,
and are fairly evenly distributed over the range of possible ini-
tial values. If there is an optimal solution to the problem, given
a simulation environment and fitness function, then the popu-
lation converges toward that value. The number of generations
that it takes to converge depends on the GA parameters and
the difficulty of the problem.

In each of the experiments, a trace of the values for the five
reactive control parameters was saved for later analysis. Given
enough time to converge (usually around 400 generation with
a population size of 30), each of the reactive control param-
eters of the populations converged to within about 2 percent
of the starting range for that parameter. It is possible that
some environmental configurations may result in several sub-
populations with similar fitness values and different reactive
control values, but no such environments were found in these
experiments.

C. Simulation Results

Simulations were run on three types of environment of increas-
ing complexity. The sparse environment contained 50 obsta-
cles in the field, and these obstacles were not organized into
higher-level structures.
500 obstacles, and presented a more difficult learning problem
for the robots. The third and most difficult environment was

The crowded environment contained

the box canyon problem, which had the obstacles arranged so
as to “trap” the robots. The results of these simulations are
presented below.

1) A sparse environment: This environment has only 50
obstacles, and there are several possible paths through the en-
vironment that are very nearly the same length. In the first
generation, some of the robots are too slow to get to the goal
in the allocated time. The noise component that is fairly large
in the first few generations settles down to a value that is more

reasonable for this type of environment. Since there are few

Fig. 5. Evolution of time and collisions measures for a sparse
environment (each box represents the range of values, the
middle bar is the median).

local minima/maxima in this environment, there is little need
for noise to push the robots around the obstacles. The robots
learn that noise is not important in a sparse environment, and,
as the value of the noise gain decreases, the performance of the
robots increases.

Figure 5 shows the median, minimum, and maximum val-
ues for the number of steps and the number of collisions for
several generations of robots, with the median values as the
dark band inside the boxes, and the minimum and maximum
as the tops and bottoms of the boxes, respectively. The dot-
ted line at the bottom of the graph is a benchmark used to
judge performance for both the number of steps and number
of collisions. The distance from the start to goal positions (the
absolute minimum for a path with no obstaclesin the environ-
ment) is 400 steps, and we would like to have no collisions for
this simulation. The evaluation function decreased the fitness
of the robots by 5 percent for each collision. By the time the
simulations reaches the 240th generation, there are no colli-
sions, and all of the robots reach their goals (each robot was
allowed 1200 steps to travel to the goal).

None of the robots in this simulation could minimize the
number of steps to the number of steps on straight line be-
tween the start and goal positions, since there were several
obstacles directly between the start and goal. Also, it is not
clear whether is is desirable to optimize this measure to the
point that the robot takes sharp turns at the obstacles. In
real-world navigation, obstacles may move unpredictably, sen-
sors are noisy, and the robot locomotion system may not go
exactly where it is told to. This is one of the advantages to this
approach; it gives a “margin of safety” that is useful in unpre-
dictable environments. The robots learn to navigate through
the environment at a distance from the obstacles that will pre-
vent collisions, as can be seen from the convergence of the
number of collisions to zero in the above figure.

Fig. 6. Range of values for the obstacle sphere-of-influence
and noise gain parameters over several generations in a
crowded environment.

2) A crowded environment: This environment for this
simulation contained 500 obstacles, and also had a fence-like
arrangement of obstacles in the middle of the field. The envi-
ronment is much harder to learn how to navigate through than
the sparse environment, since the spaces between obstacles is
smaller and there is a greater chance of collision. This higher
probability of collision would favor low noise values, but the
greater chance of being stuck in a local minimum would favor
high noise values. Also, there is tradeoff between high obstacle
gains with small spheres-of-influence, and low gains with large
spheres-of-influence. In some situations, it may be better to
go around a cluster of obstacles rather than try to navigate
through them. Take the example of walking through a room
full of chairs; it is sometimes better to walk around the chairs
at a fast pace than to walk slowly through the middle of them.

Figure 6 shows the convergence of the robots’ obstacle
sphere-of-influence and noise gain parameters. The initial pa-
rameter settings are random across the population, as can be
seen by the distribution of the values for the first generation.
Over successive generations, the values of these parameters
converge toward a small range. One interesting feature of this
simulation is that the final value for the obstacle sphere-of-
influence parameter is outside the range of the values of the
first generation. The algorithm is able to find a value that is
not an interpolation of the initial set of initial values. None of
the simulations in this experiment showed sensitivity to initial
values, given a large enough population size and number of
generations.

3) Box canyons: This type of environment is difficult for
a purely reactive control system to navigate in, since the robot
must first move away from the goal when it becomes trapped
in one of the canyons. In some cases the noise component
knocks the robot out of valley, but one can design a environ-
ment configuration that “tricks” the robot into being trapped

for some amount of time. These non-linear problems usually
require knowledge about the meta-configurations of obstacles,
and procedures that can be use to get out of the trap and move
toward the goal. The navigator of a hierarchical planner must
be able to determine when the robot is not making progress
toward the goal, and indicate a new direction for the reactive
control component.

Figure 7 contains several frames from the visualization pro-
gram for the box canyon environment. In the figure we can
see the navigational behaviors, from moving left to right, of 30
robots in generations 1, 100, 300, and 500 (from top to bot-
tom). Although these pictures do not capture the dynamics
of the navigation, they do represent the navigational behav-
iors of the robots. The dark “fuzzy” areas are regions where
the repulsion from the obstacles is too high to allow the robot
to pass. This happens both where the obstacles are close to-
gether, in which case the robot can pass between the obstacles,
and in the box canyons, where the robot cannot pass through
and must go around. In each successive generation, more of the
robots are able to reach the goal, although even in the last gen-
eration some of the robots still become trapped. Also, notice
the increase in the distance from the paths to the obstacles,
as the robots learn to avoid collisions and box canyons. The
average path length of the last generation was slightly greater
than for the first generation, since the evaluation function used
a high punishment value for the virtual collisions, but the av-
erage path completion time (number of steps) was significantly
less.

This simulation shows the interaction between the naviga-
tion parameters. Large obstacle repulsion gains prevent the
robot from colliding, but do not allow the robot to pass be-
tween two obstacles that are close together.
allows the robot to jump out of local minima, but increases
the travel time. For complicated environments with great dis-
tances between the start and goal, one set of reactive control
parameters does not guarantee that the robot can navigate to
the goal.

Likewise, noise

V. CONCLUSION

Genetic algorithms provide a powerful method for searching
for near-optimal solutions in complex search spaces. Drawing
from analogies in biology and evolution, they can be applied
to the learning of robotic coordination in reactive control sys-
tems. It is hoped that many of the behavioral parameters that
are presently being programmed into these systems manually
can instead be learned by systems similar to the one presented
in this paper. This work shows that GAs can be used to learn
such parameter values for reactive control navigation, and that
simulated systems that use these learned parameters perform
well in similar environments. An important focus for future
work is the integration of the learned parameters into a hier-
archical navigation system.

Fig. 7. Navigation (from left to right) of 30 robots for in
a box-canyon environment for generations 1, 100, 300, and
500 (top to bottom).

REFERENCES
[1] J. Albus, H. McCain, and R. Lumia. NBS Standard Ref-

erence Model for Telerobot Control System Architecture
(NASREM). NBS Technical Note 1235, Robot Systems
Division, National Bureau of Standards, Washington, D.C.
1987.

[2] Arkin, R., Riseman, E. and Hanson, A., AuRA: An Ar-
chitecture for Vision-based robot Navigation, Proc. DARPA
Image Understanding Workshop, pp. 417-431, Los Angeles,
Feb. 1987.

[3] R. Arkin. Motor Schema-Based Mobile Robot Navigation.
The International Journal of Robotics Research Vol.

[4] A. Barto, C. Anderson, and R. Sutton. Synthesis of Nonlin-
ear Control Surfaces by a Layered Associative Search Net-
work. Biological Cybernetics Vol. 43, pp. 175-85. 1982.

[5] R. Brooks. The Whole Iguana. Robotics Science, pp. 432-
56, 1989.

[6] M. Dorigo and U. Schnepf. Organization of Robot Behavior
Through Genetic Learning Processes. Submitted for publi-
cation, 1991.

[7] E. Dickmanns and A. Zapp. Guiding Land Vehicles
along Roadways by Computer Vision. AFCET Conference
Toulouse, France. 1985.

[8] A. Elfes. Sonar-based Real-world Mapping and Navigation.
IEEE Journal of Robotics and Automation. R-A-3(3), pp.
249-265. 1987.

[9] R. Fikes, P. Hart, and Nils Nilsson. Learning and Executing
Generalized Robot Plans. Artificial Intelligence Vol. 3, pp.
251-88.

[10] D. Goldberg. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley Publishing Com-
pany, 1989.

[11] L. Kaelbling. An Architecture for Intelligent Reactive Sys-
tems. SRI Technical Note V 400, SRI International. Oct.
1986.

[12] D. Payton. An Architecture for Reflexive Autonomous Ve-
hicle Control. IEFEE Conference on Robotics and Automa-
tion. pp. 1838-1845. 1986.

[13] A. Petland and R. Bolles. Learning and Recognition in
Natural Environments. Robotics Science, pp. 164-207, 1989.

