AAAT Fall Symposium on “Al for Real-World Autonomous Mobile Robots”, Cambridge, MA, October 1992.

A Case-Based Approach to Reactive Control for

Autonomous Robots

*

Kenneth Moorman and Ashwin Ram
College of Computing
Georgia Institute of Technology

Abstract

We propose a case-based method of select-
ing behavior sets as an addition to tra-
ditional reactive robotic control systems.
The new system (ACBARR — A Case
BAsed Reactive Robotic system) provides
more flexible performance in novel envi-
ronments, as well as overcoming a stan-
dard “hard” problem for reactive systems,
the box canyon. Additionally, ACBARR is
designed in a manner which is intended to
remain as close to pure reactive control as
possible. Higher level reasoning and mem-
ory functions are intentionally kept to a
minimum. As a result, the new reason-
ing does not significantly slow the system
down from pure reactive speeds.

Introduction

Reactive robotic control systems [Arkin, 1989a,
Brooks, 1986) have produced impressive results
in the area of generating intelligent robotic ac-
tion. Unlike traditional approaches, these sys-
tems typically decompose actions into simple
behaviors in order to produce rapid real-time
response to the environment. Generally, how-
ever, the behaviors which such a system has
access to are hard-wired and immutable. This
approach has some significant shortcomings.
Hard-wired behaviors are unable to handle en-
vironments which the initial programmer did

*This work was supported by a Fannie and John
Hertz Foundation fellowship and by the Georgia
Institute of Technology

not foresee. They are also incapable of tak-
ing advantage of navigational successes; even
if a behavior has proven extremely successful,
it is not used more than any other behavior
in the system, nor is it allowed to alter to be-
come even more successful. A third problem is
that most reactive control systems do not uti-
lize sets of behaviors; instead, they rely on a
single type of behavior to guide the system. In
order to achieve better robotic control, we feel
that behavior sets need to be used along with
adaptations of existing behaviors to new envi-
ronments. One option is to have the system
modify its current behavior based on immedi-
ate past experience. While useful, this is only
a local response to the problem. A more global
solution is to have the system select completely
new sets of behaviors based on the current en-
vironment in which it finds itself.

Our work attempts to incorporate both of these
solutions into a reactive control framework. At
the local level, this is accomplished by allow-
ing the system to adapt its current behavior
in order to build momentum. If something is
working well, the system continues doing it and
tries doing it a little bit harder; conversely, if
things are not proceeding well, the system at-
tempts something a little different. This tech-
nique allows the system to fine tune its current
behavior patterns to the exact environment in
which it finds itself [Clark et al., 1992]. For ex-
ample, if the robot has been in an open area for
a period of time and has not encountered any
obstacles, it picks up speed and does not worry
as much about obstacles. If, on the other hand,
it is in a cluttered area, it lowers its speed and
treats obstacles more seriously.

The other method used in our system is a global
level one. If the system is currently acting un-
der the control of a set of behaviors which are
no longer suited to the current environment,
it should select a new set based on what the
environment is now like. Applying this to the
above example, assume that the robot is in a
very cluttered environment and is employing
a conservative set of motor behaviors. It then
“breaks out” of the obstacles and enters a large
open field (analogous to moving from a forested
area into a meadow). If only local changes were
allowed, the robot would eventually adjust to
the new environment. However, by allowing a
global change to take place, the system needs
only to realize that it is in a radically new en-
vironment and to select a new set of motor be-
haviors, one better suited to the new surround-
ings.

This paper describes our work on ACBARR
(A Case-BAsed Reactive Robotic system), a
system which performs both types of behav-
ior modifications described above. The work
is a continuation of a line of research involv-
ing reactive systems in general [Arkin, 1989a,
Clark et al., 1992]. In addition, the system uses
case-based reasoning [Kolodner, 1990] to imple-
ment the global level of modifications. The sys-
tem presented is extremely robust, doing well in
novel environments. Additionally, it is able to
navigate through several “hard” environments,
such as box canyons, in which traditional reac-
tive systems would perform significantly worse.
As a result, the system is a step closer to the
lofty goal of having a truly autonomous robot—
one which can act and react in novel situations
without the need for human aid.

Overview of Reactive Control
using Schemas

Schema-based control 1s a type of reactive
robotic control system currently being used in
the Autonomous Robot Architecture (AuRA)
that is implemented on the Georgia Institute
of Technology autonomous robot, GEORGE
[Arkin, 1990]. Under this system, each ba-
sic type of motor behavior is represented by
a schema. By selecting the proper schema or
combination of schemas to employ the robot
is able to react to its environment. Various

schemas have been proposed; the ones used in
this research are the following;:

e Avoid-Obstacle: Repel from object with
variable gain and sphere of influence. Used
for collision avoidance.

Omagm’tude =0 for d>S
% *G for R<d<S
oo for d< R
where:
S = Adjustable sphere of influence
(radial extent of force from
the center of the obstacle)
R = Radius of obstacle
G = Adjustable gain
d = Distance of robot to center
of obstacle
Ogirection = Along a line from robot
to center of obstacle
moving away from obstacle

e Move-to-Goal: Attract to goal with vari-
able gain. Set high when heading for a par-
ticular goal.

Vmagnitude = Adjustable gain value
Viirection = Direction towards perceived
goal

e Noise: Random wander with variable gain
and persistence. Used to overcome local
maxima, minima, cycles, and for exploration.

Nmagnitude = Adjustable gain value
Nyirection = Random direction that
persists for Npersistence StepS

(Npersistence 18 adjustable)

Move-to-Goal creates an attraction between
the robot and the desired goal location,
Avoid-Obstacle creates a repulsive force be-
tween the robot and an obstacle, and Noise
provides for random fluctuations on the robot’s
movement. The Noise schema is particularly
important for escaping from equilibrium points
in the force field. If caught at such a point,
the random nature of the noise should free the
robot. The vectors from the active sources are
added, forming a resultant movement vector for
the robot to use. For the purposes of this re-
search, it 1s assumed that there is only one goal
and multiple obstacles.

In order for the system to make use of these
schemas, there are various gains associated
with each. These gain values determine the
impact level that a particular schema has on
the overall system behavior. A high goal gain
will cause the Move-to-Goal schema to have a
more pronounced effect on the system move-
ment. In addition to the three gain values,
there are two other numerical values associated
with these schemas. Noise has a persistence as
well as a gain; since noise is a random effect,
the amount of time which a given bit of noise
affects the system is variable. Finally, the con-
cept of sensible distance limits the area which
the robot is able to receive the effects from the
various obstacles around it.

If one has the proper set of gain values, opti-
mal behavior can be achieved for the system in
question for a given environment and task. The
process of selecting the proper set of values, un-
fortunately, is not a simple one. The traditional
method has been to select a set of starting val-
ues for the gains. Then, the system is run on
a task in a particular environment. The actual
performance is then compared with the desired
performance and the set of gain values is ad-
justed accordingly. When no further increase
in performance can be achieved between two
successive runs, the training is declared com-
plete.

Reactive control forms the base level of robotic
control within our system. Additionally, the
system permits the adaptation of values in or-
der for a behavior set to become better suited
for a given environment [Clark et al., 1992]. In
this way, the local adjustment technique dis-
cussed earlier is implemented within ACBARR.
There is still the question of how to implement
the more global behavior changes. To do this,
case-based reasoning is used to select sets of
behaviors appropriate for the current environ-
ment as perceived by the system.

Overview of Case-Based
Reasoning

Case-based reasoning (CBR) is an artificial in-
telligence technique which relies on past experi-
ences to guide the reasoning process [Kolodner,
1990]. The hope in CBR is that past expe-
riences will be applicable to new situations—

what worked in the past on a certain problem
will more than likely work on a new problem
which is similar to the previous one. The qual-
ity of the solution which a CBR program will
generate is dependent on the following factors:

e the actual experiences (cases) which the sys-
tem has had

e the ability to recognize that a new situation
is like a previous one (retrieval)

e adaptation of an old case to a new situation

e the ability to ewvaluate these retrieval and
adaptation processes and to repair any de-
ficiencies which are identified

One of the key issues in case-bases reasoning
is that of retrieval. This process depends, in
part, on how well the system’s cases are stored
in memory. Ideally, similar things should be
grouped together. However, the selection of
the proper set of features to index the cases
in memory is a difficult problem and an ongo-
ing research issue. This indezxing problem has
been approached in a variety of ways (see, for
example, [Kolodner, 1992]), but none are to-
tally effective. Each indexing method is chosen
to be efficient for a given problem or situation.

There are other problems inherent to the case-
based paradigm which must be handled for
ACBARR to be effective. There is the ques-
tion of knowing when to switch cases. There
is also the problem of what to do if there are
no complete matches in the case library when
attempting to perform a retrieval, only partial
matches. In order for the global control to be
implemented, all of these problems with case-
based reasoning must be handled in some way.

The ACBARR System

ACBARR is a combination of a traditional
reactive control system with ideas from case-
based reasoning research. Figure 1 illustrates
the system’s high-level architecture. Data
about the world is gathered by the enwiron-
mental monitor and combined with the robot’s
status, which involves how well the robot is
moving in relation to the world. The system
uses this environmental information for two
things. It adjusts the current gain values of
the active schema, and it monitors the feedback

Adjustment Case

module selector
best case

CASE
LIBRARY

of

KNOWN
indices BEHAVIORS

(environment)

adjustment
rules

envirol ent
adjustments|and feedback

failure “_signal

control schemas
Q Failure

Traditional reactive controller identifier

environment T

control | data envirohment
environment

Motor Environmental
control monitor
module
internal
ternal |

>
environment

motor | control external | environment

!

REAL WORLD

Figure 1: System architecture for ACBARR

for a failure situation. If the failure identifier
determines that the current schema is failing,
then the case selector chooses a better behavior
schema from the case library.

A case within ACBARR’s case library repre-
sents a set of behaviors which is well suited for
a particular environment. It contains both the
desired behavior and the environment in which
it should be applied, which acts as the index
for that case. The behavior information con-
tains the new limits for each schema gain value
and how each is allowed to change while this
case 1s active. The environmental section repre-
sents the environment and movement status of
the robot under which to apply this set of gain
behaviors. The case selector has to determine
which index environment in the stored cases
best matches the current environment and then
switch to that case.

In order to understand the process more fully,
we now present the details of how each of the
components of the ACBARR system operates.

Environmental Information

One of the goals of reactive control is to pro-
duce “intelligent” behavior without resorting to
higher-level reasoning processes, such as com-
pletely mapping a new environment and then
planning a near-perfect path through the ob-
stacles. There are two problems with this high
level of reasoning. First, it involves a large
amount of overhead in the system, both in
terms of processing resources and time. This
means that the robot cannot immediately func-
tion in a new environment; it must first map
and analyze the world around it. Second, if the
environment is dynamic, the robot is faced with
a changing world. Reactive systems handle
both of these problems. Although case-based
reasoning requires some higher-level reasoning,
we did not want to have to add so much pro-
cessing requirements that these benefits were
outweighed.

With this in mind, the following environmental
information is maintained about the world:

o Clutter is a metric of how many obstacles
there are within the sensible distance of the
robot. To aid in case selection, the exact
number is converted into a class number rep-
resenting a range of similar clutters. For ex-
ample, for the purposes of selecting a strat-
egy to use, seven obstacles and eight obsta-
cles would be treated the same.

e Wander is a measure of how efficient the
robot’s current path is. This is determined
by examining the ratio of the robot’s current
path length over the actual distance between
the initial position and the goal.

o Mazzed is a binary value representing
whether the noise persistence has stayed at
its upper bound for a significant period of
time.

o Clear-to-goalis a binary value which, if true,
indicates that the robot is facing the goal and
there are no obstacles between it and the goal
along a straight line path.

e Senses-goal is a binary value which indicates
if the goal is within the robot’s sensible dis-
tance with nothing between the goal and the
robot.

e (Goal-Nearbyis a binary value which indicates
if there the robot senses the goal but there

are obstacles between the two.

o Goal-Direction is a value, in radian angle
measure, which indicates which direction the
goal, relative to the current position and
heading of the robot.

o (ircles is a rough metric of how much the
robot has recently traveled over the same
piece of ground, e.g. how much it is running
in circles.

e (Grannyis a binary variable which indicates if
the ultra-careful behavior should be selected.

Movement information

In addition to the information which ACBARR
maintains concerning its external environment,
it also needs information involving its internal
environment. This is knowledge of how the cur-
rent case behavior is performing, in terms of
the robot’s movement towards the goal posi-
tion. In particular, there are four situations to
which ACBARR needs to pay attention:

¢ No-Movement: The robot’s average step
size has dropped below a certain threshold.
M < Tmovement

where:
M = Step size averaged over
Hsteps
Timovement = Movement
threshold

o Movement-Toward-Goal: The robot’s
step size and rate of approach to the goal
are both above a threshold.

M Z Tmovement
P= Heistonce > Tprogress

goal

where:
H gistance = Distance travelled
over Hyyeps
H go0a1 = Decrease in distance to
goal over Hyeps
Tprogress = Progress threshold

e No-Progress-With-Obstacles: The robot
is moving but not toward the goal and there
are several obstacles within a sensible dis-
tance.

M Z Tmovement
P= Haistonce < Tprogress

goal
Ocount Z Tobstacles
where:

Ocount = Average number of
sensible obstacles over
Hsteps

Topstacies = Obstacle count

threshold

e No-Progress-No-Obstacles: The robot is
moving but not toward the goal and there
are no obstacles within a sensible distance.

M Z Tmovement
P= Hasstance < Tprogress

goal

Ocount < Tobstacles

Short term memory

ACBARR also employs a primitive short term
memory (STM) mechanism in order to recog-
nize whether or not the robot is running in cir-
cles. The system is primitive as a matter of
choice. It was designed to keep the overhead of
ACBARR’s additions to pure reactive control
as small as possible. There are not adequate
resources to maintain an in-depth model of a
dynamic environment while running in real-
time. As a compromise, the STM system in
ACBARR only keeps track of the robot’s trav-
els within a small window of the entire world.
The window is divided into guadrants through
which the robot travels. As long as the robot
remains within the window, its progress in each
quadrant is recorded. If ACBARR determines
that the robot has been moving an excessive
amount within the window, it declares that the
robot is running in circles. If the robot moves
out of the window, then a new window is es-
tablished and the old one is forgotten.

ACBARR case description

An ACBARR case entry consists of three sec-
tions. The first part represents bookkeeping in-
formation about the case. The second section

details how the various gain values can change
and what their limits are. The remainder of
the case is a breakdown of the types of environ-
ments in which this case is applicable. This last
section is used when determining which case to
switch to.

A sample case is shown in Figure 2. Reading
the data from the first table, we see that this is
case 1 which has a goodness rating of 90 per-
cent. Additionally, we know that the average Bookkeeping Information

step size was 0.5, there were no d.ypamic ob- Parameter [Value
stacles, and that the system was initially 37.56 T T
units from the goal. Finally, the obstacle dan- case nun:l er 39
ger was 0.5 and the goal importance is 1.0. case goodness -
These last two values are intended to allow the average step size 0.5
dynamic obstacles 0

system to navigate in environments where, for

example, some obstacles are more dangerous initial distance to goal | 37.56

than others and need to be treated in a special obstacle danger 0.5
manner. goal importance 1.0
The second section of a case contains the in- Gain Value Adqutrpents
formation describing the bounds on each gain | Delta limits | Range
value in the system. Each value is associated Noise Persistence | [—1.0 0.0] 1.0 5.0]
with two numeric ranges. The first describes Noise Gain —0.05 0.0] 0.011.5
the limits for the changes which the system is Goal Gain 0.0 0.05] 0.05 2.0
allowed to make on each value. In the sample Object Gain —0.01 —0.01] 1.05.0
case, notse persistence has a limit on changes Sensible Distance | [—1.0 0.0] 2.05.0
of [-1.0 0.0]. The system is, therefore, allowed _]
to alter the noise persistence value by a num- Environmental and Movement Information
ber from —1.0 to 0.0. If a constant change is Parameter | Value
desired, then the endpoints of the range simply Clutter 0.0
need to be equal. The rest of the data for each Wander 0.0
value is the range which that value is allowed to Clear-to-goal flag -1
change. For noise persistence, this range is [1.0 Goal-nearby flag |
5.0]. The system is allowed to change the value Circles 0
of noise persistence by a real number from —1.0 Granny 0
to 0.0, as long as the value remains between
l.Ooag’d 5.0. Tghese two ranges, then, represent RN/[o—movement flag =
| . ’ N d ovement-to-goal flag 1
behavior Whlch will sgccesswely decrease the No-progress-with-obstacles flag)
value until it reaches its lower bound; behav- No-progress-with-no-obstacles flag)

ior such as this would be acceptable in an open

field.
Figure 2: Sample ACBARR case

Finally, the case contains information about
the types of environment that this behavior is
well suited for. This is a combination of the
environment knowledge along with the move-
ment information. For the binary values, an
entry of —1 indicates that the system does not
care about this parameter. The sample case
is best suited for a non-cluttered environment.
The robot is making progress towards the goal
and is not wandering or running in circles. The

case doesn’t care if the goal is sensed or not,
nor does it care about the other three move-
ment flags. If this case is selected, then the
modifications of gains which it describes will
take place.

Behaviors stored in the case library

A reactive robotic simulator! was first run sev-
eral hundred times in order to gain insight into
the types of behavior different environments
would call for. This initial attempt to con-
ceptualize the various schemas resulted in ten
strategies being identified:

1. Clear-Field: In an open environment, the
system should ignore the data about obsta-
cles since there won’t be any, increase the
goal gain, and lower the noise gain and noise
persistence.

2. Ballooning: When there are relatively few
obstacles, the system attempts to swing
around them in a wide way (increase obstacle

gain).
3. Squeezing: When there are many obstacles,
the system attempts to find a path by squeez-

ing between obstacles (lower obstacle gain,
increase the goal gain).

4. Hugging: When there are many obstacles
and the system is currently faced with an
obstacle directly in its path, it will attempt
to hug the side of the obstacle as it makes its
way around it.

5. Shooting: Regardless of the number and size
of the obstacles surrounding the robot, if it
see its goal and there are no obstacles in the
way, it will adopt the clear-field strategy and
go directly to it.

6. Wall-Crawling: If there is an obstacle the
system cannot seem to get around by hug-
ging, 1t will check to see if it is actually in
front of a wall. If so, it determines which
way is the shorter side of it, and go for a
distance in that direction.

!The simulator was written in standard C with
an X-Windows interface. All test runs described
were performed on Sun SparcStation 1s. For more
information concerning the simulator, see [Clark et
al., 1992].

7. Random: The system will raise the noise
gain and goal gain, leave the obstacle gain
at a medium level, and wander for a period
of time.

8. Granny: After Hgseps, the system reconsid-
ers the environment by actually attempting
to build a limited model of it. It concen-
trates on the location and sizes of the ob-
stacles within sensible distance and attempts
to choose the direction which offers the best
success possibilities while deviating the least
from the goal direction.

9. Mazzed: If a value has remained at its max-
imum level for a period of time, the system
increases the maximum by some ¢ value.

10. Repulsion: In certain situations, the system
considers moving away from the goal for a
period of time. This is accomplished by set-
ting the goal gain to a negative amount.

Indexing and case selection

Since there is a limited number of cases in the
library, there is little need at this stage for a
sophisticated indexing scheme. As a result,
ACBARR employs a flat memory model of the
case library [Kolodner, 1992]. Cases are located
by a sequential search of the memory for in-
dex matches. Although generally an inefficient
method, this suffices for the current system
without significant slow-down. If ACBARR
was extended to include several dozen or possi-
bly hundreds of cases, a better indexing scheme
would need to be implemented.

There are no restrictions placed on the relation-
ship between cases and known environments.
Multiple cases may be stored for the same en-
vironment, and a case may apply to multiple
environments. The system can handle both of
these scenarios with no problem.

When to select a new case There are two
options available when using a case-based con-
trol system with regards to when a new case
should be selected. The first one is to have the
system look for a new case every Heps steps.
This ensures that the optimal behavior will al-
ways be in place. This is also a pessimistic
strategy. It assumes that every H,;.ps steps
the environment is going to be so changed that
a new case is needed, even if the current one has

not failed. The second option is to select a new
case only if the current one is failing in some
way. This is the optimistic control strategy. It
assumes that a given case is “good enough” as
long as it does not actually fa:l. This is the
method currently used by ACBARR. It pro-
vides low system slowdown, while achieving re-
spectable results.

How to determine failure ACBARR
makes extensive use of its STM and envi-
ronment knowledge to check for failing cases.
There are two criteria for failing. The first is
excessive wandering by the robot. This is kept
track of by the wander entry in the environ-
ment data. If it rises above a given threshold,
failure is assumed. The second is the condition
of running around in circles. This is kept track
of by the short-term memory which tracks the
robot’s movement over a limited area of ter-
rain. If the robot is not making progress out of
an area, then failure can be assumed.

How cases are matched Finally, there is
the question of actually selecting the best case
from the case library. This is done in the
ACBARR system through a goodness-of-match
metric. The matching algorithm attempts to
match the current environment to each known
case. If corresponding internal values in the
two cases are equal, then the goodness-of-
match is incremented by 1. Near matches are
also handled. If, for example, the current en-
vironment is very cluttered and the case be-
ing considered is just moderately cluttered, the
goodness-of-match will have 0.5 added to it.
After all cases have been examined, the one
with the best match is chosen. Due to the nu-
merical nature of the matching procedure, par-
tial matches are taken care of as well as total
matches. If no total match is found which is
good, a partial match can be chosen.

Some additional intelligence is also embedded
in the ACBARR system. It has the option to
choose either the best case from the library or
to choose the best case without consideration
of the current case. Suppose the system is cur-
rently making use of case 1. At some point, the
system determines that a new case is needed
and selects the best one from the library, which
turns out to be case 1 again. Obviously, case 1
may not actually be the best case for the given

environment; otherwise, why did it fail? On
the other hand, the matching criteria may not
be in error; this environment may be a fluke.
By selecting to choose the best case without
consideration of the current one, this problem
is minimized.

Empirical Testing

To test the program, sample runs were per-
formed with ACBARR. Three predefined envi-
ronments were used, as well as several random
ones. The predefined ones represented particu-
larly difficult problems. These were a wall be-
tween the start position and the goal, a box
canyon, and a quasi-box canyon.

The ACBARR system did not fail to find the
goal in any test run. Paths chosen in no clutter
to low cluttered environments were particularly
efficient. ACBARR was able to successfully
navigate the standard box canyon problem, the
quasi-box canyon problem (a box canyon with
an exit), and the wall environment (see Fig-
ure 5 through Figure 7) with no help from the
human operator.

As a test of the ACBARR system, an ablation
study was performed on it [Cohen and Howe,
1988], in which the system was tested without
one or more of its components in order to eval-
uate their impact. Figure 3 shows the system’s
performance on the box canyon world with nei-
ther local adjustments nor global cases avail-
able to the system. As can be seen, the robot
achieves an equilibrium point and stays there.
Figure 4 shows the results of the system being
run on the same world, this time with adjust-
ments permitted. The goal is reached, although
the path is wasteful. Finally, Figure 5 shows
the complete ACBARR system’s performance.
With the benefits of both adjustments and case
knowledge, the system achieves its goal with a
fairly good path.

It was noticed in the empirical tests that the
system would generally use only a subset of
its stored possible strategies during test runs.
There were two reasons hypothesized for this
behavior. First, the system only alters a strat-
egy if that strategy is failing in some way.
This means that the optimal strategy is not al-
ways in place. If the current strategy is “good

Moise Mersistence Moise Gai

Goal Gai Objece Gaim Sensi ble Distance
.5 1,00 1.50
Steps 260 Contacts 0 Dis

t 33.58 Obstacles 4.40 Motion 0.48 To Goal 0.032

Moise Mersistence Moise Gai

Goal Gain Dhject Gaim Sensi ble Distance
0. 4 4.5 4.65
Steps 120

Contacts 20 Dist 0.84 OBstacles 0.00 Motion 1.00 Ta Goal 0.930

Magnitude 0.39 Direction —0.510

Lo

Magnitude 1,00 Direction 1,072
Current case 2

Figure 3: Box canyon — No cases, no adjust- Ficure 5: Box canvon — ACBARR
ments allowed & o Y

Moise Mersistence Moise Gai Goal Gain Sensi ble Distance
1 187
Steps 2940 Contacts 0

Object Gain
N N 4,89
Dist 4.34 Obstacles 0.00 Motion 0.80 To Goal 0,614

—

Hoise Mersistence Hoise Gai Goal Gain Dhject Gain

Steps 60

Sensi ble Distance

a5 N . 2
Contacts 2 Dist 1,39 Obstacles 0,00 Motion 1.00 To Goal 0,993

e e~
- ———

Magnitude 1,00 Direction 0,0dd

L

Magnitude 1,00 Direction 0.779
Current case

Figure 4: Box canyon — No case, but adjust- Figure 6: Quasi-box canyon — ACBARR
ments are permitted

Gosl Gain Obiect Gain Oensible Distance

[
1 0.45 ; 4.65
Steps 115 Contacts 12 Dist 2,98 Obstacles 0,00 Motion 1.00 To Goal 1.007

—

Magnitude 1,00 Direction

0.777

Figure T:
ACBARR

Wall environment problem —

enough,” the system will not bother to switch
to the optimal one. For example, if the system
initially chooses to make use of the clear-field
strategy, it will continue to do so until there is
a clear failure. This reason was shown to be
a correct explanation by altering ACBARR’s
control strategy so that new cases were selected
every Hgieps steps. Upon doing this, more
movement strategies were utilized. The sec-
ond reason for only a subset of strategies being
used was the robustness of several of the strate-
gies involved. In particular, clear-field, hug-
ging, and wall-crawling are especially robust.
These three alone can account for the majority
of behaviors noted in the system.

Future work

An important issue at this point is where the
set of cases in the library comes from initially.
For now, these cases are coded by hand. This
is not the optimal solution for two reasons.
One, it allows human biases to enter the pro-
cess. To illustrate this point, consider our own
experiences. At first, we believed that bal-

10

looning and squeezing were relatively robust,
general-purpose strategies. As pointed out ear-
lier, these did not turn out to be the most
used ones by the system. Luckily, there was
enough variety within the hand-created cases
to allow the system a relatively comprehensive
selection. Yet, the nagging question remains:
Is there a behavior even more robust and ap-
plicable than hugging (for instance) which we
have overlooked? A second potential problem
is that a completely novel situation unseen by
the human teacher may not be handled in the
best way. If the system had the ability to learn
its own cases, this problem could be alleviated.
At the very least, the system needs to be able
to add new cases to an already existing library.
At the most, it would be desirable to produce
a system which could learn all of its cases from
scratch. We are currently developing a system
which is capable of this automatic case learn-
ing.

Another area of future work involves the ac-
tual implementation of the ACBARR system
on a real robot. The work to date has been
restricted to the simulator. The transfer to
a physical robot should not be difficult, par-
tially because AuRA is already implemented
on a physical system, GEORGE. Every effort
was made in the system so that it performed in
a way suitable for both a simulated world and
the real world.

Conclusion

Intuitively, combining case selection based on
environment with traditional reactive robotic
control systems should lead to better perfor-
mance. The empirical data supports this claim
as well. By adding basic environmental data
to the system, we have increased the level of
its success. We have not sacrificed the inher-
ent benefits of reactive control. Although the
ACBARR system is not a pure reactive control
system as traditionally defined, it combines the
best features of that paradigm with the bene-
fits of case-based reasoning. There is still the
chance that ACBARR will fail in certain envi-
ronments, although no such failures were iden-
tified in the extensive empirical testing. The
performance of the system is tightly coupled
with the adequacy of the cases in its library.
As pointed out, the cases currently in use have

proven to be extremely robust, making fail-
ure in new environments unlikely. This results
in ACBARR being a highly efficient, adaptive

control system.

11

References
[Arkin, 1989a] Ronald C. Arkin. Motor

schema-based mobile robot navigation. The
International Journal of Robotics Research,

8(4):92-112, August 1989.
[Arkin, 1989b] Ronald C. Arkin. Towards the

unification of navigational planning and re-
active control. In the working note: AAAI
Fall Symposium on Robot Navigation, May
1989.

[Arkin, 1990] Ronald C. Arkin. Integrating be-
havioral, perceptual, and world knowledge in
reactive navigation. In Pattie Maes, editor,
Designing Autonomous Agents. The MIT
Press, Cambridge, Massachusetts, 1990.

[Brooks, 1986] Rodney Brooks. A robust lay-
ered control system for a mobile robot. IEEE
Journal of Robotics and Automation, RA-
2(1):14-23, August 1986.

[Clark et al., 1992] Russell J. Clark, Ronald C.
Arkin, and Ashwin Ram. Learning momen-
tum: On-line performance enhancement for
reactive systems. Submitted to 1992 IEEE
International Conference on Robotics and
Automation, Nice, France, May 1992.

[Cohen and Howe, 1988] Paul R. Cohen and
Adele E. Howe. How evaluation guides Al
research. Al Magazine, 9(4):35-43, Winter
1988.

[Kolodner, 1990] Janet L. Kolodner. An intro-
duction to case-based reasoning. Technical
Report GIT-ICS-90/19, Georgia Institute of
Technology, 1990.

[Kolodner, 1992] Janet L. Kolodner. Case-
Based Reasoning. Morgan Kaufmann Pub-
lishers, San Mateo, CA, 1992. In press.

