Dynamic Scheduling for Mobile Robots

Tucker Balch, Harold Forbes and Karsten Schwan

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280 USA

tucker@cc.gatech.edu
fax:(404)853-0957

Abstract—This research concerns efficient mul-
tiprocessor threads-based implementation of reac-
tive navigation for mobile robots. We present two
important results: 1) Performance is improved sig-
nificantly when CPU time allocated to individual
navigational threads is adjusted dynamically ac-
cording to a heuristic measure of their importance.
2) To implement this strategy, we present a multi-
processor scheduler design which can dynamically
schedule navigational threads. The experiments
were conducted in simulation on a BBN Butter-
fly and a KSR1 (shared memory multiprocessors).
Speedups found for this example should extend to
more complex navigational strategies as long as a
heuristic measure of thread importance is avail-
able.

I. THREADED REACTIVE ROBOT NAVIGATION

The specific task examined in our research is robot naviga-
tion to a known goal position across an unmapped world
potentially cluttered with obstacles. Many robot control
systems have been proposed as solutions to this problem
(e.g. [1,6,4,7]). The system implemented in this research
is based on the Autonomous Robot Architecture (AuRA)
2].

AuRA consists of both reactive and deliberative com-
ponents. The deliberative component sets high level goals
and selects appropriate behaviors to achieve them. The
reactive component of AuRA executes the selected be-
haviors which are typified by tight sensor to actuator cou-
pling. This research concerns the reactive component only.

Motor schemas are the basic unit of behavioral control
in AuRA. Several schemas may be active as the robot nav-
igates. Such schemas are independent processes that com-
bine to generate an overall navigational behavior. Motor
schemas take input from specialized perceptual schemas
that process sensor data. Each motor schema generates
a movement vector. These output vectors are summed,
then normalized. The result is transmitted to the robot

(or simulated robot) for execution.

Several systems utilizing this approach have been in-
stantiated at Georgia Tech in simulation [?, 5], on mobile
robots [?] and for multiagent research [?]. In [?], Collins
describes a multiprocessor implementation of schema-
based reactive system. His implementation, however, did
not address the parallel execution of schemas. This im-
plementation of AuRA is the first in which schemas run
concurrently on multiple processors.

The system is implemented on a BBN Butterfly using
the Cthreads library for parallel programming [9]. The
various motor and perceptual schemas are instantiated as
individual threads which communicate using shared mem-
ory. At execution time the following threads are activated:

e Avoid-static-obstacle: One instance of this motor
schema is generated for each obstacle. All instances
are independent and concurrently executable.

¢ Move-to-goal: A motor schema.
o Noise: A motor schema.

o Move-robot: References the outputs of the motor
schemas and effects robot movement.

e Monitor: Terminates processing when the robot
reaches the goal.

Other than mutual exclusion locks on shared data, there
is no explicit thread synchronization. The following infor-
mation is shared between threads:

¢ Robot Position: In cartesian coordinates.

e Force On Robot: Each motor schema adds its own
component to this force. The result is added to the
robot’s position by the Move-robot thread.

e Completion Flag: Set to true by Monitor when
the mission is complete.

Figure 1 presents the sample navigational task used in
our experimentation. The robot is to navigate from the
start in the lower left, to the goal in the upper right. Ob-
stacles are represented by black circles. The resultant path
is shown by the black line.



Fig. 1. Example Navigational Problem

II. EXPERIMENTAL EVALUATION

The system is first tested using best effort scheduling,
where all threads representing schemas are run in a round-
robin fashion. Experimental runs are conducted with 1 to
13 processors. All runs assume the external environment
shown in Figure 1, which includes 9 obstacles between the
robot’s starting point and its goal. T'wo performance met-
rics are recorded for each run: path length and execution
time.

Since obstacle locations are not revealed a priori an op-
timal path cannot be precomputed. In fact, the robot is
only allowed to use current sensor inputs for movement se-
lection (this is the spirit of purely reactive control). Path
length then reflects the distance the robot travelled to the
goal. Execution time is the time it took for the robot to
traverse this distance. The two metrics are distinct. More
optimal paths may demand computational resources that
would otherwise be used for obstacle avoidance. Since
these resources are not available, the robot must slow
down so as not to run into anything.

Figure 2 depicts the run times for reactive navigation
when using multiple processors for schema execution. The
speedup gains drop off as the number of processors ap-
proaches nine. This is due to contention for shared mem-
ory and synchronization overhead. Figure 3 depicts the
resultant distance the robot followed to the goal as the
number of processors is increased. The importance of this
graph is that it shows path length does not degrade with
more processors. We conclude that parallelism is an ef-
fective means for improvement of the execution speed of
a schema-based navigation system.

While the experimental results of Figure 2 are encour-
aging one interesting insight is that the frequent execution

0.6

0.2 0.3 0.4 0.5

0.1

CPU Time (Clock Ticks) (10e8)

.0

o

5 7 E] 11 13
Processors

,,,,,,,, Round Robin

Dynamic

Fig. 2. Run times for round robin and dynamic
scheduling of navigational threads on 1 to 13 processors

of schemas that do not immediately affect the robot’s cur-
rent operation is both unnecessary and degrades perfor-
mance by causing contention. Therefore, obstacle schemas
should be scheduled dynamically so that their execution
is delayed according to their effect on the robot’s path.
Figure 2 shows that from 18% (in the uniprocessor case)
to 50% percent savings may be achieved when dynamic
scheduling is used. These results are achieved by schedul-
ing the Avoid-static-obstacle threads at the earliest
time at which the associated obstacle could significantly
affect the robot’s path.

III. GUARANTEED DYNAMIC SCHEDULING

The object of our research regarding dynamic schema
scheduling is to ensure robot safety by guaranteeing the
varying start times and hard deadlines required by the
reactive navigation system. Such guarantees may be
achieved by: 1. using strict round-robin scheduling with
sufficiently fast cycle-time, 2: dynamically removing and
appending an obstacle’s thread in the run queue based
on the obstacle danger and the worst case run queue cycle
time, or 3: using explicit scheduling algorithms and sched-
ule representation to guarantee future execution times.
This research has shown that option 2 is better than op-
tion 1, and it may be that further performance improve-
ments can be achieved by option 3. For a given safety



Computed Path Length

Path Length

° \
1 3 E 7 9 11 13
Processors

Round Robin

Dynamic

Fig. 3. Path length for runs with round robin and
dynamic scheduling for navigational threads on 1 to 13
processors

level, guaranteed scheduling would allow the programmer
to increase the period of an obstacle schema because he
would not have to consider the worst case execution delay
due to the size of the run queue.

The task timing model appropriate for guaranteed
schema schedulability decisions is the triple:(earliest start
time, maximum run time, deadline). The best effort
scheduling described above calculates the the minimum
amount of time until an obstacle can significantly affect
the robot’s path. This point in time defines the schema’s
deadline. Schema execution time can easily be calculated
since it tends to be fairly data independent. In this appli-
cation, the earliest start time is very flexible. It could any
time before ( deadline - run time ). However, since the
effect of a schema execution on the path of the robot is
directly related to the distance between the robot and the
obstacle, the starting time should only be early enough to
ensure it’s ability to be scheduled.

Coincidently, guaranteed scheduling also provides a
conceptually simpler programming model to the robotic
researcher. Rather than having to consider the possible
implications of all other tasks running on the system, the
programmer can build a behavior in relative isolation, as
the behavior concept intended.

In [10], Zhou describes a fast (O(nlogn)) dynamic
scheduler able to make hard scheduling guarantees. How-

ever, her initial multiprocessor implementation only allows
a single scheduler to be active at a time. Although actual
scheduling overhead is comparatively low, overall schedul-
ing latency could become unacceptable in the presence of a
large queue of tasks to be scheduled. A concurrent sched-
uler would allow multiple schedulers to be active simul-
taneously thereby increasing throughput and decreasing
latency. The design and implementation of a concurrent
scheduler is described below.

IV. A ScALABLE REAL-TIME MULTIPROCESSOR
SCHEDULER

Robot safety requires guaranteed deadlines for tasks
but optimal CPU utilization requires dynamic schedul-
ing. These are can be conflicting goals. Below, we de-
scribe the design and implementation of the mechanisms
and controls that permit multiple distributed schedulers
to cooperatively decide task allocation and scheduling.
The scheduler uses Zhou’s slot list algorithm[10] to per-
form uniprocessor schedulability analysis, and it employs
offers[3] to allocate tasks to processors. Furthermore,
scheduling latency is decreased by having multiple proces-
sors concurrently perform schedulability analysis for dy-
namically arriving tasks. Such concurrent schedulability
analysis must be performed without increases in unipro-
cessor task scheduling latency.

These goals determine some basic characteristics of the
multiprocessor scheduler.

1. All scheduling information required for uniprocessor
schedulability analysis and scheduling must be lo-
cal to each processor, thereby avoiding increases in
uniprocessor scheduling latency.

2. Local slot and task lists must be accessible to remote
Pprocessors.

3. The task arrival queue, called an offer queue, must
be shared by all cooperating processors.

Furthermore, contention of access to resources must be
minimized. Specifically schedulability analysis must be
performed by multiple schedulers such that they do not
typically access the same slot list, earliest deadline list, or
offer at the same time.

Figure 4 depicts the resulting distributed scheduler. It
has five major components:

Offer Queue A shared queue of offers waiting to be
scheduled. Each offer describes the execution time
characteristics of the offered task. Each offer con-
tains a bid for each processor on which schedulabil-
ity analysis of the offer succeeds. A bid describes the
circumstances under which the offered task can be
executed on a particular processor.

Slot List(SL) A local list of time intervals occupied on
this processor, in time order. Adjacent slots are
merged to reduce the time to perform schedulabil-
ity analysis.



Earliest Deadline List(EDL) A local list of tasks to

be executed on this processor, in deadline order.

Scheduler A procedure that accepts locally arriving
tasks or tasks in the offer queue, schedules them us-
ing the SL, and inserts them in an EDL.

Dispatcher A procedure that removes tasks from the lo-
cal EDL and executes them on the processor.

Processor 0

Processor 1

Offer Queue
TI _ T [
SL —}@@ »| Bids
- T r»o0-0|00-olog--olod o
|
: |
|
I —-Active

I — —inactive
|
|
|
|
|
—r

Fig. 4. Structure of the Multiprocessor Scheduler

The multiprocessor scheduler described here is used for
dynamic schema scheduling as follows. First the execution
of a schema is performed by a thread. Schema scheduling
corresponds to the creation and scheduling of a thread ex-
ecuting the schema’s code. Thread creation is performed
using the call cthread_fork(). If the schema is to be
executed on the same processor, the thread scheduling
analysis is performed by the local scheduler. Otherwise,
cthread_fork() generates an offer to be placed in the of-
fer queue. Any active scheduler may examine the offer
and schedule it using the SL on any processor. When
the offer has been scheduled, it is removed from the offer
queue. cthread_fork() then creates a task, places it in
the EDL on the processor where it has been scheduled,
and returns to the executing task. Finally, when the dis-
patcher reaches the task in the EDL, it is removed from
the EDL and executed.

A.  cthreadfork()

/* Return TRUE if, before decisiontime, it is
determined that the amount of time stated
in runtime can be scheduled on processor node
between starttime and deadline to execute
func() on argument arg. Otherwise return
FALSE.

*/

RESULT
RTthread_fork ARGS((int (*func) (),
any_t arg,

unsigned int node, /* node mask or list head */

TIME starttime,
TIME runtime,

TIME deadline,

TIME decisiontime));

The result of schedulability analysis is a bid data struc-
ture. A bidis similar in concept to a bid in [8] in that a bid
represents the ability of a particular processor to execute
a particular task. However, the processes manipulating
a bid are considerably different. We assume a multipro-
cessor so that the same algorithm is used for both local
and remote scheduling; resource reservation is a parame-
ter of the scheduling policy; scheduling is a three rather
than four phase process; and bids may be generated by
one processor for another processor.

A bid describes the circumstances under which a task
can be executed on a particular processor. Upon com-
pletion of offer scheduling, an offer will contain a bid for
each processor! that can execute the function within the
given time constraints. cthread_fork() will accept the
best bid® and put a task in the EDL on the processor that
generated the best bid. It will reject all other bids.

Cthread_Fork () always
on or before decisiontime, whether schedulability anal-

returns

ysis succeeds or fails. Therefore, the forking procedure
can control the duration of analysis. Obviously, a longer
decisiontime may allow a more complete analysis than
a shorter decisiontime, and it will affect the likelihood
of the fork succeeding. However, due to other time con-
straints regarding it’s execution, a quick decision may be
more important to the forking procedure, than an optimal
schedulability analysis.

B.  Controlling Contention and Unnecessary Work

While offers in the offer queue must be accessible by all
processors, uncontrolled access could result in very slow
processing due to contention between processors for par-
ticular memory locations or mutex locks. At the other
extreme, restricting access to a single processor unneces-
sarily eliminates parallel scheduling analysis of an offer
that may be run on more than one processor.

The number of schedulers concurrently trying to an-
alyze a particular offer is controlled by a variable,
max_sched_active, in the offer data structure. The num-
ber of schedulers currently trying to schedule this offer is
tracked by another offer variable, sched_active. When a
scheduler is looking for an offer to schedule, if an offer’s
max_sched_activeis greater than sched_active then the

1Subject to node and the offer’s scheduling policy.
2Currently maximum laxity



scheduler will increment sched_active and begin schedul-
ing the offer. Otherwise, the scheduler will go to the next
offer in the offer queue.

A number of processors concurrently doing scheduling
analysis for a particular offer on a particular node achieve
no better performance, and probably worse, than a single
processor. They are no better because there is only one
possible result so they are all doing the same work. They
are probably worse, because they will be contending for
the same data. Faster offer scheduling requires that dif-
ferent processors schedule different offers or schedule the
same offer on different processors.

Checked is an offer variable that is bit mask of pro-
cessors this offer has been analyzed on. Checked ensures
that cooperating processors analyze an offer on different
processors. To minimize contention for the update lock,
checked is initially tested without locking. If this offer
has not been analyzed on one or more processors that this
scheduler analyzes for, it is accepted by the scheduler.
Later, as the scheduler attempts to analyze the offer on
a particular processor, checked is locked, tested, updated
and unlocked. Since max_sched_active limits the number
of schedulers concurrently scheduling an offer, contention
for the lock is limited. This two phased approach limits
both unnecessary work and contention, at the expense of
a scheduler sometimes accepting an offer for which it will
do no analysis.

V. SCHEDULER PERFORMANCE

Our initial experiments used a BBN Butterfly, however
that computer has been decommissioned. We are contin-
uing our development on our recently acquired Kendall
Square Supercomputer. Specifically, the scheduler perfor-
mance described below was obtained on our KSR which
has a 0.05usec clock cycle time. These basic performance
results demonstrate that the distributed scheduler’s mech-
anisms will deliver suitable performance for the Denning
mobile robot discussed in the next section.

offer selection 12usec
schedulability analysis  165usec
total offer scheduling 177usec
mutex lock processing 2usec

Specifically, on a single processor of a KSR, it takes
177usec’s to select an offer from the offer queue, perform
schedulability analysis, and remove the offer from the offer
queue.

Figure 5 shows the multiprocessor performance of the
scheduler. The single processor times here are approxi-
mately 25% longer than the uniprocessor times above be-
cause in these experiments the offer list was created on a
processor that was not otherwise involved in the experi-
ment. On the KSR, a remote memory access takes four
times as long as a local memory access. In a multiproces-
sor system, it may not be usual to analyze offers on the
same processor that generated the offer. In this plot then,

Tinme to Schedul e 1056 Tasks
700000 T T T

T T

total execution —
l'inear speedup ----

N offer select -----

600000 [+ ave. wasted i

500000 -

400000

C ocks/ 8

300000

200000 -

100000

4 5
Nunber of Processors

Fig. 5. Multiprocessor Performance

linear speedup is calculated from the execution time on
a single processor. It is significant that more processors
have only a small affect on the time required to select an
offer from the centralized queue. This is because there is
no locking associated with selecting an offer. Offers are
only flagged when they are selected. At the end of offer
analysis mutual exclusion locks ensure that the offer is ac-
tually taken by only one processor. This approach does
result in some wasted time when two or more processors
simultaneously analyze the same offer. However, as in-
dicated by the average wasted time in the figure above,
this time is relatively small while there are less than eight
processors. This experiment shows that this scheduler de-
sign provides good performance for a system of less than
eight processors and 100% scheduling overhead. Scala-
bility should improve significantly when tasks are being
executed and the percentage of scheduling overhead falls.

VI. CONCLUSIONS AND FUTURE WORK

Dynamic scheduling of schemas offers significant perfor-
mance enhancement for an example navigational task on
uni- and multiprocessors. However, robot safety demands
that the scheduler provide guarantees regarding schema
deadlines. A prototype concurrent scheduler with run
time guarantees has been designed and implemented. Ini-
tial data indicates that our approach will provide low-
latency scheduling services.

Our goal is to map the control system to a Denning
MRV-2 robot at the Georgia Tech Mobile Robot Labo-
ratory. The MRV-2 is a holonomic vehicle with three-
wheeled locomotion. It can move up to 4 feet per second.
[ts primary sensor system is a ring of 24 ultrasonic range
sensors, which report ranges to objects up to 200 times
per second.

The control system will be restructured to utilize real
sensory data rather simulated data. A parallel planner will
be included to provide for capability in more complicated
situations. The system will make full use of computing
resources by dynamically balancing “planner” threads and



“motor” threads. In the worst case where robot safety
requires the motor threads to monopolize resources, the
planner will effectively be paused. If the quality of the
existing plan is discovered to be poor, the robot will be
slowed. Slowing the robot will reduce the demand motor
threads place on the system, thus freeing resources for
planning.

The strategy is attractive for several reasons:

e Planning and execution are directly integrated.

e There is no hard and fast schedule; threads are sched-
uled dynamically as planning needs change.

e Safe speed for the robot is automatically balanced
with computational resources.

REFERENCES
[1] J. Albus, H. McCain, and R Lumia. Nbs standard

reference model for telerobot control system archi-
tecture (nasrem). NBS Technical Note, Washington,
D.C., 1987.

[2] R.C. Arkin. The impact of cybernetics on the de-
sign of a mobile robot system: A case study. IFEF
Transactions on Systems, Man, and Cybernetics,
20(6):1245-1257, Nov/Dec 1990.

[3] Ben Blake and Karsten Schwan. Experimental eval-
uation of a real-time scheduler for a multiprocessor
system. IEFE Transactions on Software Engineering,
17(1):34-44, Jan. 1991.

[4] R. Brooks. A robust layered control system for a
mobile robot. [EEE Jour. of Robotics and Auto.,
RA-2(1):14, 1986.

[5] R.J. Clark, R.C. Arkin, and A. Ram. Learning mo-
mentum: On-line performance enhancement for re-
active systems. In IFEE Conf. on Robotics and Au-
tomation, pages 111-116. IEEE, May 1992. Nice,
France.

[6] N. Nilsson. Shakey the robot. SRI International Tech.
Note 323, 1984.

[7] D. Payton. Internalized plans: A representation for
action resources. In P. Maes, editor, Designing Au-
tonomous Agents. MIT Press, 1991.

[8] K. Ramamritham and J. A. Stankovic. Dynamic
task scheduling in distributed hard real-time systems.

IEEE Software, 1(3), 84.

[9] Karsten Schwan, Harold Forbes, Ahmed Gheith,
Bodhisattwa Mukherjee, and Yiannis Samiotakis. A ¢
thread library for multiprocessors. Technical Report
TR-91/02, Georgia Institute of Technology, Atlanta,
GA 30332-0280, January 1991.

[10] Hongyi Zhou, Karsten Schwan, and Ahmed Gheith.
The dynamic synchronization of real-time threads for
multiprocessor systems. In Symposium on Ezperi-
ences with Distributed and Multiprocessor Systems,
Newport Beach, pages 93—-107. Usenix, ACM, March.
1992.



