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Abstract

This article presents a new line of research investigating on-line learning mecha-

nisms for autonomous intelligent agents. We discuss a case-based method for dynamic

selection and modi�cation of behavior assemblages for a navigational system. The case-

based reasoning module is designed as an addition to a traditional reactive control sys-

tem, and provides more exible performance in novel environments without extensive

high-level reasoning that would otherwise slow the system down. The method is im-

plemented in the ACBARR (A Case-BAsed Reactive Robotic) system, and evaluated

through empirical simulation of the system on several di�erent environments, including

\box canyon" environments known to be problematic for reactive control systems in

general.
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1 Motivation

Autonomous robotics has received a great deal of attention in the recent past. However,

most current robotics systems are severely limited when performing in complex and dynamic

environments in the real world. It requires a great deal of careful design and tuning on the

part of the human designer to develop the control systems that drive such robots, and even

then these systems run into serious di�culties when faced with environments which are

di�erent from those that the designer anticipated. Furthermore, even if the designer could

anticipate and model all the relevant aspects of the operating environment of the robot, the

dynamic nature of the real world would render parts of this model obsolete. Clearly, the

ability to adapt to changes in the environment, and learn from experiences, is crucial to

adequate performance and survivability in the real world.

Machine learning and autonomous robotics have traditionally been two separate sub�elds

in arti�cial intelligence, with little cross-fertilization over the past several years. Although

several techniques for learning of control strategies have been developed in the machine

learning community, much of this work deals with simple, simulated, \blocks world" en-

vironments that have little to do with the real world.1 However, the two �elds are now

su�ciently mature to permit research which investigates theoretical constraints imposed by

the real world on the nature of the learning task. Such an e�ort would contribute to both

theories of learning as well as to theories of autonomous robotics and control, and would

also be a crucial prerequisite in the development of actual autonomous agents for a variety

of real-world application areas.

This article presents a case-based method for on-line selection of robotic control behav-

iors, and on-line adaptation of selected behaviors to the immediate demands of the envi-

ronment, within a reactive approach to autonomous robotic control. The method allows

an autonomous robot to automatically select appropriate behaviors and to adapt these be-

haviors dynamically based on the demands of the environment, and results in a substantial

improvement in performance. The method is applied to a robot navigation task in cluttered

environments, and evaluated empirically through extensive simulation.

1A notable exception is recent work on reinforcement learning (see discussion below). In contrast, the

research presented in this paper is based on work in case-based reasoning.

1



2 Overview

Reactive robotic control systems [Arkin, 1989; Brooks, 1986; Kaelbling, 1986; Payton, 1986]

have produced impressive results in the area of generating intelligent robotic action. Unlike

traditional approaches to robot control, these systems typically decompose actions into sim-

ple behaviors in order to produce rapid real-time response to the environment. Generally,

however, the behaviors available to such such a system are hard-wired and immutable. This

approach has some signi�cant shortcomings. Hard-wired behaviors are unable to handle en-

vironments which the initial programmer did not foresee. They are also incapable of taking

advantage of navigational successes; even if a behavior has proven extremely successful, it

is not used more than any other behavior in the system, nor is it altered to become even

more successful. In order to achieve more robust robotic control, we advocate the use of

sets of behaviors, called behavior assemblages, to represent appropriate collections of coop-

erating behaviors for complex environments, and that behavior adaptation be used to adapt

and �ne-tune existing behaviors dynamically in novel environments. There are two types of

behavior adaptations that might be considered. One option is to have the system modify

its current behavior based on immediate past experience. While useful, this is only a local

response to the problem. A more global solution is to have the system select completely

new assemblages of behaviors based on the current environment in which it �nds itself. A

robust system should be able to learn about and adapt to its environment dynamically in

both these ways.

Our research incorporates both behavior adaptation and behavior switching into a reactive

control framework. At the local level, this is accomplished by allowing the system to adapt

its current behavior in order to build momentum. If something is working well, the system

continues doing it and tries doing it a little bit harder; conversely, if things are not proceeding

well, the system attempts something a little di�erent. This technique allows the system to

�ne tune its current behavior patterns to the exact environment in which it �nds itself [Clark

et al., 1992]. For example, if the robot has been in an open area for a period of time and

has not encountered any obstacles, it picks up speed and does not worry as much about

obstacles. If, on the other hand, it is in a cluttered area, it lowers its speed and treats

obstacles more seriously. For behavior-based reactive systems, this readily translates into

altering the schema gains and parameters continuously, provided the system has a method for
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determining the appropriate modi�cations. Our system uses a case-based reasoning method

to retrieve behavior modi�cation rules. These rules are then used incrementally to alter the

gain and parameter values based on current environmental conditions and past successes.

The other method for behavior modi�cation in our system is at a more global level. If

the system is currently acting under the control of an assemblage of behaviors which are

no longer suited to the current environment, it selects a new assemblage based on what

the environment is now like. Applying this to the above example, assume that the robot

is in a very cluttered environment and is employing a conservative assemblage of motor

behaviors. It then \breaks out" of the obstacles and enters a large open �eld (analogous to

moving from a forested area into a meadow). If only local changes were allowed, the robot

would eventually adjust to the new environment. However, by allowing a global change to

take place, the system needs only to realize that it is in a radically new environment and

to select a new assemblage of motor behaviors, one better suited to the new surroundings

[Moorman and Ram, 1992]. Interestingly, case-based reasoning is used to realize this type

of modi�cation as well.

Assemblages of behaviors represent cases, or standard scenarios known to the system,

that can be used to guide performance in novel situations. As in a traditional case-based

reasoning system [Hammond, 1989; Kolodner, 1990; Kolodner, 1992; Riesbeck and Schank,

1989], a case is used to propose a plan or a solution (here, a behavior assemblage) to the

problem (here, the current environmental con�guration). However, our method di�ers from

the traditional use of case-based reasoning in an important respect. A case in our system

is also used to propose a set of behavior adaptations, rather than merely the behaviors

themselves. This allows the system to use di�erent \strategies" in di�erent situations. For

example, the system might use a \cautious" strategy in a crowded environment by gradually

slowing down and allowing itself to get closer to the surrounding obstacles. In order to permit

this, strategies suggest boundaries on behavioral parameters rather than precise values for

these parameters. Cases are used both to suggest behavior assemblages as well as to perform

dynamic (on-line) adaptation of the parameters of behavior assemblages within the suggested

boundaries.

The research presented here contributes to reactive control for autonomous robots in the

following ways. One, we propose a method for the use of assemblages of behaviors tailored to

particular environmental demands, rather than of single or multiple independent behaviors.
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Two, our system can select and adapt these behaviors dynamically without relying on the

user to manually program the correct behavioral parameters for each navigation problem.

Finally, our system exhibits considerable exibility over multiple domains. For example, it

performs well in uncluttered worlds, highly cluttered worlds, worlds with box canyons, and

so on, without any recon�guration.

The research also contributes to machine learning, and to case-based reasoning in partic-

ular, in several ways. One, our system uses case-based reasoning to suggest global modi�ca-

tions (behavior selection) as well as to suggest more local modi�cations (behavior adapta-

tion). The knowledge required for both kinds of suggestions are stored in a case, in contrast

with traditional case-based reasoning systems in which cases are used only to suggest so-

lutions, and a separate library of adaptation rules is used to adapt a solution to �t the

current problem. Two, the method represents a novel variation on case-based reasoning for

a new kind of task, one that requires continuous, on-line performance. The system must

continuously evaluate its performance, and continue to adapt the solution or seek a new one

based on the current environment. Furthermore, this evaluation must be done using the

simple perceptual features available to a reactive control system, unlike the complex the-

matic features or abstract world models used to retrieve cases and adaptation strategies in

many case-based reasoning systems. Finally, unlike traditional case-based reasoning systems

which rely on deep reasoning and analysis (e.g., [Hammond, 1989]), and unlike other ma-

chine learning \augmentations" to reactive control systems which fall back on non-reactive

reasoning (e.g., [Chien et al., 1991]), our method does not require the system to \stop and

think;" the system continues to perform reactively with very little performance overhead as

compared to a \pure" reactive control system.

The methods are fully implemented in ACBARR, A Case-BAsed Reactive Robotic sys-

tem. The system has been evaluated extensively and both qualitative and quantitative results

from several simulations are presented. ACBARR has been found to be robust, perform-

ing well in novel environments. Additionally, it is able to navigate through several \hard"

environments, such as box canyons, in which traditional reactive systems would perform

poorly.
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3 Background and related research

Before presenting the technical details of our system, we discuss previous research in reactive

control and in machine learning that forms the basis for our work.

3.1 Perception and reactive control

Reactive control [Arkin, 1989; Brooks, 1986; Brooks, 1989; Kaelbling, 1986; Payton, 1986]

is concerned with how to coordinate multiple motor behaviors. It is characterized by a

tight coupling between perception and action with little or no intervening representation.

This results in systems which do not perform detailed planning but are able to function in

dynamic and complicated environments. A key facet of this approach lies in the massive

reduction in computational load a�orded by the distributed mechanisms of schema-based

reactive control. This enables real-time operation of an autonomous robot.

\Pure" reactive control is characterized by a stimulus-response type of relationship with

the world, not unlike the viewpoint held by the behaviorist psychologists, epitomized by

Skinner [Skinner, 1974]. Mentalistic (representational) structures are denounced and the

robot reacts to the immediacy of sensory information in a very low-level non-cognitive man-

ner. Complex behaviors emerge as a combination of simple low-level responses to the rich

variety of stimuli the world a�ords. Typically this involves decomposition of tasks into a col-

lection of distributed parallel subtasks. Further, sensor data is normally channeled directly

to the individual subtasks, reducing signi�cantly the computational demand typically found

in navigational regimes requiring world model building.

There are many representative examples of this form of navigation, a few of which will be

described here. Brooks' subsumption architecture [Brooks, 1986] has demonstrated robust

navigation for mobile vehicles in dynamically changing domains. It is a layered architecture,

well-adapted for hardware implementation [Brooks and Connell, 1986]. It has been used in

a wide range of robots, including legged ones [Brooks, 1989]. There is a deliberate avoidance

of world modeling which is captured by the statement that the world is its own best model

[Brooks, 1988].

Payton has described a collection of motor responses that are termed \reexive behav-

iors" [Payton, 1986]. These behaviors react directly to sensory information yielding intelli-
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gent emergent behavior. Payton, Brooks, and several other proponents of reactive control

incorporate the concept of arbitration. Multiple behaviors compete for control of the vehicle

with a winner-take-all mechanism deciding the result. Only one behavior dominates the ve-

hicle at any time, although the dominant behavior can change frequently in rapid response

to environmental sensing. Earlier work by Kadono� also employs an arbitration scheme

[Kadano� et al., 1986]. Kaelbling has developed a reactive architecture [Kaelbling, 1986]

that is an extension of Brooks' work. The emphasis is on embedded systems for real-time

control. A hierarchical competency level for behaviors is established which is mediated by

a high-level controller. Firby has developed a di�erent form of reactive control by utilizing

modules called RAPs (Reactive Action Packages) which encapsulate tasks for a robot [Firby,

1989]. Situation-driven execution via goal satisfaction is the predominant mode of operation.

Agre and Chapman in their PENGI system [Agre and Chapman, 1987] have used reactive

control in the domain of game playing. Several behaviors are active at any time, controlling

the strategies used by a video game penguin and its relationship with other objects and

entities in the world.

Reactive navigation in our system [Arkin, 1989] addresses reactive control in a manner

that is signi�cantly di�erent than the approaches described above. Arbitration is not used for

coordinating the multiple active agents; potential �eld formulations are employed to describe

the reactions of the robot to the world; and explicit representational knowledge is used to

select and con�gure both the motor and perceptual strategies used for reactive control.

Despite the assumptions of early work in reactive control, representational knowledge

is important for robot navigation. The fundamental problem lies in representing what is

appropriate for the task. Amarel's classic paper [Amarel, 1968] shows the importance of

appropriate knowledge representation for problem solving using arti�cial intelligence. The

question is, �rst, what needs to be represented for successful general-purpose mobile robot

navigation, and, second, how it is to be represented. Our answer to the �rst question is

threefold: motor behaviors that are used to describe the set of interactions the robot can

have with the world; perceptual strategies that provide the required sensory information to

the motor behaviors; and world knowledge (both a priori and acquired) that is used to select

(and recon�gure when necessary) the motor behaviors and perceptual strategies that are

needed to accomplish the robot's goals. The remainder of this section answers the question

as to how to represent this knowledge.
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3.2 Motor schemas

Our system is based on the Autonomous Robot Architecture (AuRA) that is implemented

on the Georgia Institute of Technology autonomous robots, George, Ren and Stimpy, three

Denning Mobile vehicles. In this system, each basic type of motor behavior is represented by

a schema. Motor schemas comprise a collection of individual motor behaviors each of which

reacts to sensory information gleaned from the environment. The output of each individual

motor schema is a velocity vector representing the direction and speed at which the robot

is to move given current environmental conditions. A partial listing of some of the available

motor schemas for our robot include:

� Move-Ahead: Directs the robot to move in a general compass direction.

� Move-To-Goal: Directs movement towards a discernible goal.

� Avoid-Static-Obstacle: A repulsion directed away from an observed barrier to

motion.

� Stay-On-Path: The robot moves toward the center of a path.

� Docking: Combines aspects of ballistic and controlled motion to achieve a safe tra-

jectory for mating with a workstation.

� Noise: A random process used for wander behavior and handling problems with local

minima.

� Move-Up: Move uphill on undulating terrain.

� Move-Down: Move downhill on undulating terrain.

� Maintain-Altitude: Follow isocontours on undulating terrain.

� Escape and Dodge: To avoid threatening objects.

� Avoid-Past and Probe: To explore new areas.

Each of these schemas is instantiated as separate asynchronous computing agents with

parameters reecting current world knowledge. The computations for each schema are very

simple, usually involving a couple of additions or subtractions and at most one or two

multiplications or divisions (with the exception of docking which includes a transcendental

function). It should be noted that the entire potential �eld is never computed by the robot;
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Figure 1: Box Canyon Runs a) Sphere of inuence = 10 b) Sphere of inuence = 35

only the point where the robot is currently located needs to be computed. Thus each

process is performing relatively simple mathematical operations, outputting a single vector

expressing the robot's desired motion for that behavior. The output of each primitive motor

schema is combined using vector summation and normalization (keeping the resultant vector

within the constraints of the actual robot's capabilities). This simple process can result in

quite complex trajectories and behaviors as illustrated in the simulations and experiments

reported in [Arkin, 1989].

To optimize system performance it is necessary to determine what gain values should

be used to accomplish a speci�c task in a given environment. For instance, an exploration

behavior can be observed by providing a relatively high gain and persistence to the Noise

schema with an accompanyingAvoid-Static-Obstacle schema [Arkin, 1989]. The task of

determining appropriate a priori gain values is non-trivial in highly cluttered environments.

For a given environment, this gain determination process involves empirical evaluation of

the system's performance. The process is repeated until further changes result in no visible

improvement. When structural environmental knowledge is available, this task becomes

simpler [Arkin, 1990], but for purely reactive systems with no knowledge of the world, highly

complex environments can produce di�culty in reaching near optimal solutions.
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Figure 2: No Box Canyon Runs a) Sphere of inuence = 10 b) Sphere of inuence = 35

Furthermore, once this \best set" of gain values is established for a given world, it will

likely be less e�cient for navigation in a di�erent environment. Figures 1 and 2 illustrate a

scenario where this is true. Figure 1 shows a box canyon where a high Avoid-Obstacle

sphere of inuence is necessary to produce a successful path. Figure 2 shows a slightly

di�erent picture where a high sphere of inuence results in a less than optimal path. The

relatively jagged paths in both of these sample runs were produced by high levels of Noise

being used. This was necessary in order to free the robot from local minima it may encounter.

Later in this paper, it will be seen that our on-line learning system smooths out the paths

by lowering the inuence of noise when it is not required.

Finally, in a complex environment, it may be di�cult to �nd one \right" set of gain values;

di�erent values may be appropriate for di�erent areas of the environment. Similar arguments

hold for other behavioral parameters as well. For all these reasons, it is important to develop

methods by which the reactive control system can select and adapt gain and other parametric

values automatically. The system presented here uses what we might call an adaptive reactive

control method to automatically select and adjust the appropriate behavioral parameters to

match the current task and environment.
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3.3 Case-based reasoning and machine learning

Machine learning is concerned with developing methods with which an intelligent system can

improve its own performance by learning new conceptual characterizations of the domain,

learning new control strategies, learning or improving domain theories and world models,

and combinations of these. There are two broad classes of learning algorithms, inductive (or

data-driven), and analytical (or theory-driven) [Michalski, 1983]. Inductive learning involves

building generalizations based on instances encountered by the system. For example, a

system could learn what a cup is by analyzing several examples and non-examples of cups

to determine the similarities and di�erences between them. This type of learning is also

known as similarity-based learning, and is data-driven in the sense that it relies on the data

encountered by the system. A special type of inductive learning, called conceptual clustering,

requires all the data to be present at once, rather than as one example at a time.

In contrast to inductive learning, analytical (or explanation-based) learning is theory-

driven and relies heavily on the knowledge already in the system. In explanation-based

learning, a system learns about a concept by attempting to build a causal explanation that

justi�es why a proposed example is indeed an example of the concept to be learned. Such

a system might learn about a cup, not by noticing similarities between several examples of

cups (e.g., that they all had handles), but by building a functional explanation of why a

given object satis�ed the requirements for \cupness" (e.g., cups have to be graspable, and a

handle serves that function) [Winston et al., 1983].

In some systems, examples are selected and presented by a teacher, as in Winston's

program which relied on a teacher to present an appropriate sequence of examples and non-

examples of the concept that the program was being taught [Winston, 1975]. Other systems

encounter examples during problem solving or understanding, such as Lebowitz's IPP system

[Lebowitz, 1983] or Ram's AQUA system [Ram, 1991; Ram, 1993] which learned by reading

newspaper stories. Some systems, such as Rajamoney's program [Rajamoney, 1989] and

Mitchell's LEX and LEX2 systems [Mitchell et al., 1986], create and explore their own

examples.

We view an intelligent system as one which cannot only perform the task it is programmed

with in real world situations that the designer anticipated, but one which can perform this

task, or pursue its goals, even in situations that are unusual, unexpected, and novel. For our
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navigation task, this means that the system must be able to learn during actual performance

on a wide range of problems. The ability to learn continuously in a changing environment has

been called \anytime learning" [Grefenstette and Ramsey, 1992]. Furthermore, we cannot

assume that the system will have all the knowledge needed to deal with the situation, even

if the situation itself was anticipated by the designer. Instead, the system will need to

perform its task to the best of its abilities based on its experiences with these types of

situations. In a reactive control system, this translates to a fundamental type of learning

which we call on-line adaptation. This is a fast, adaptive process which allows the system to

deal with the novel situation without having to perform a deep and extensive analysis of the

situation. Such a process pays more attention to the easily available (but perhaps super�cial)

aspects of the situation, and uses them to make quick decisions about performance. While

such a system does not necessarily \learn" new control strategies, it does \learn" about the

environment (or, equivalently, about behavioral parameters such as momentum appropriate

for the environment) and is able to adapt to it dynamically during the performance task.

Since adaptation relies more on the features of the situation rather than on a deep causal

analysis, one might expect to use similarity-based learning techniques as the underlying basis

for a theory of adaptation. For example, reinforcement learning is an exploratory, trial-and-

error method which allows a robot to improve its control strategies using feedback from the

environment in the form of a simple scalar reward (e.g., [Sutton, 1992]). However, as with

most forms of inductive learning, this approach requires either the presence of a benevolent

teacher who presents the \right" set of problems to the system to train on, or large numbers

of su�ciently varied training examples.

Analytical learning methods rely on a di�erent assumption: the presence of a domain

theory that provides a complete and correct causal model of the domain. While most of the

work in induction has been in concept formation, explanation-based learning has also been

applied to the learning of control strategies [Minton, 1988; Mitchell et al., 1986]. Bennett

described a robotic arm controller based on an explanation-based learning system which uses

approximations to deal with inconsistencies between its internal theory of actions such as

grasping and real-world experience [Bennett, 1990]. Mitchell's Theo-Agent architecture is

an explanation-based learning system which learns to be more reactive by generating rules

from explanations of failure [Mitchell, 1990]. The minimal deliberation approach proposed

by Chien combines reaction-based control with a classical planning system to create plans
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for dealing with situations where reaction rules fail [Chien et al., 1991].

The problemwith using explanation-based learning methods for reactive control is twofold.

First, these methods involve deep reasoning and are typically too slow for the fast, reexive

behavior required in reactive control systems. Second, these methods rely on a detailed

theory of the domain, and possibly a detailed knowledge of the features of input situations;

neither is available in a reactive control system. Instead, an on-line method for improving

the performance of a reactive system must not slow down the system too much from pure

reactive speeds, nor must it rely on perceptual input or knowledge of features or inference

rules other than those that the input perceptual system in such a system can provide. Unlike

the above systems, which require extensive domain knowledge in the non-reactive planning

systems in order to deal with limitations in reactive control, our approach does not fall back

on slow non-reactive techniques for improving reactive control.

Much of the other work in applying machine learning to robotic control is not based

on reactive control systems, but is aimed at systems which improve navigational ability

by learning environmental features [Zelinsky, 1988] or developing models of actions in the

environment [Christiansen et al., 1990]. The behavior based learning system proposed by

Maes is a distributed algorithm in which the behaviors learn when to become active based

on feedback during execution [Maes and Brooks, 1990]. One di�erence between this and our

work is that our system learns varying levels of behavior \activation" rather than merely

active versus inactive; also, our method is not based on statistical information.

A recent approach in learning that cuts across the traditional inductive/analytical learn-

ing dichotomy derives from Schank's work on dynamic memory [Schank, 1982]. Case-based

reasoning and learning programs deal with the issue of using past cases to understand, plan

for, or learn from novel situations [Hammond, 1989; Kolodner, 1990]. The intent behind

case-based reasoning is to avoid the e�ort involved in re-deriving these lessons, explanations

or plans by simply reusing the results from previous cases. Case retrieval and case modi�ca-

tion rely both on similarity between situations, as in inductive learning, and causal theories,

as in analytical learning. Both types of methods are also used for learning in case-based

reasoning systems (e.g., [Hammond, 1989; Ram, 1993; Veloso and Carbonell, 1993]).

Hammond's CHEF program is an example of early work in the application of CBR to

non-real-time and non-reactive planning problems [Hammond, 1989]. However, learning

and adaptation in CHEF is done through explanation-based reasoning, which requires a
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detailed model of the domain. This is exactly what reactive planning systems are trying

to avoid. Kopeikina, Brandau and Lemmon describe an application of CBR to real-time

control [Kopeikina et al., 1988]. Their system, though not intended for robotics, is designed

to handle the special issues of time-constrained processing and the need to represent cases

that evolve over time. They suggest a system that performs the learning task in batch

mode during o� peak hours. In contrast, our approach combines the learning capabilities of

case-based reasoning with the on-line, real-time aspects of reactive control.

3.4 Case-based reasoning for real-time reactive control

When a robot encounters di�culties during performance, it typically does not have the

luxury of stopping and deliberating. It must adapt to the situation, go on with its task as

well as it can, and learn from one or more experiences to improve its ability to deal with a

similar situation in the future. A critical aspect of a learning system for robotic control is

that the learning process must not interfere with the system's reactive response. A robot

operating in a potentially hostile environment cannot stop to update a model when new

information is found. This aspect of robotic systems is a central motivation for the current

work, but it also provides an important constraint on machine learning methods that are

developed in this domain.

In our ACBARR system, case-based reasoning is used on-line during the performance

of the reactive control task to select and adapt navigational behaviors represented as motor

schemas. Unlike traditional case-based reasoning systems which rely on cases to suggest

solutions (here, behaviors) but on rules to adapt them, our method uses cases for both

purposes. The reasoning process is shallow and fast, yet considerable power is derived from

the strategies packaged in the system's cases.

The hope in case-based reasoning is that past experiences will be applicable to new

situations; what worked in the past on a certain problem will more than likely work on

a new problem which is similar to the previous one. The quality of the solution which a

case-based reasoning program will generate is dependent on the following factors:

� the actual experiences (cases) which the system has had

� the representation of the cases
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� the ability to recognize that a new situation is like a previous one (case retrieval)

� the methods for application of an existing case to a new situation

� the ability to evaluate the e�cacy of the case, and to decide when a new or di�erent

case might be needed

Each of these issues must be addressed in any case-based reasoning system. A suitable

representation for cases, based on the features available for the task domain, must be devel-

oped. One of the key issues in case-based reasoning is that of retrieval. This process depends,

in part, on how well the system's cases are stored in memory. Ideally, similar things should

be grouped together. However, the selection of the proper set of features to index the cases in

memory is a di�cult problem and an ongoing research issue. This indexing problem has been

approached in a variety of ways (e.g, [Domeshek, 1992; Kolodner, 1992]), but each indexing

method is chosen to be e�cient for a given problem or situation. There are other problems

inherent to the case-based paradigm which must be handled for ACBARR to be e�ective.

There is the question of knowing when to adapt and when to switch cases, and evaluating

the e�cacy of the case currently being used. There is also the problem of partial matching:

what to do if there are no complete matches in the case library when attempting to perform

a retrieval. In order for global behavior switching to be implemented, all of these problems

with case-based reasoning must be handled in some way. These issues are addressed in the

next section.

4 Technical details: The ACBARR system

ACBARR is a combination of a schema-based reactive control system with a case-based

reasoning module. Figure 3 illustrates the system's high-level architecture. Data about the

world is gathered by the ENVIRONMENTAL MONITOR, and combined with the robot's

status gathered by the INTERNAL MONITOR which represents how well the robot is

moving in relation to the world. The system uses this environmental information in several

ways. The ADAPTOR adjusts the gain values of the active motor schema based on the

recommendations of the current case. The FAILURE IDENTIFIER monitors the feedback

for a failure situation. If it determines that the current schema assemblage is inadequate,

14



Traditional reactive controller

Environmental
monitor

Motor
control

CASE
LIBRARY
of
KNOWN
BEHAVIORS

Adjustment
module

Case
selector

(environment)

best case

adjustment

rules

Failure
identifier

failure signal

environmentinternal

environment

environment

environment

indices

REAL WORLD

external    environmentmotor   control

module

adjustments  and   feedback

control   data

environment

control schemas

Figure 3: System architecture

the CASE SELECTOR chooses a better case from the case library, which suggests a new

parameter sets and associated ranges for parameter adaptation.

A case within ACBARR's case library represents an assemblage of behaviors which is

well suited for a particular environment. It contains information both about the desired

behaviors and about the environment in which it should be applied, which acts as the index

for that case. The behavior information contains the new limits for each schema gain value

and how each is allowed to change while this case is active. The environmental section

represents the environment and movement status of the robot under which to apply this

set of gain behaviors. To switch to a case, the case selector has to determine which index

environment in the stored cases best matches the current environment and the evaluator has

to determine whether the case switch is appropriate.

In order to understand the process more fully, we now present the details of how each of

15



the components of the ACBARR system operates.

4.1 Reactive control

The following motor schemas were used in this research:

� Avoid-Static-Obstacle: Repel from object with variable gain and sphere of inu-

ence. Used for collision avoidance.

Omagnitude =

8>>>><
>>>>:

0 for d > S

S�d

S�R
�G for R < d � S

1 for d � R

Odirection = From center of obstacle towards robot

(1)

where:

S = Adjustable sphere of inuence (radial extent of force from

center of obstacle)

R = Radius of obstacle

G = Adjustable gain

d = Distance of robot to center of obstacle

� Move-to-Goal: Attract to goal with variable gain. Set high when heading for a

particular goal.

Vmagnitude = Adjustable gain value

Vdirection = Direction towards perceived goal
(2)

� Noise: Random wander with variable gain and persistence. Used to overcome local

maxima, minima, cycles, and for exploration.
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Nmagnitude = Adjustable gain value

Ndirection = Random direction, persists for Npersistence steps

Npersistence = Adjustable persistence value

(3)

Move-To-Goal creates an attraction between the robot and the desired goal location,

Avoid-Static-Obstacle creates a repulsive force between the robot and an obstacle, and

Noise provides for random uctuations on the robot's movement. The Noise schema is

particularly important for escaping from equilibrium points in the force �eld. If caught at

such a point, the random nature of the noise should free the robot. The vectors from the

active sources are added, forming a resultant movement vector for the robot to use. We

assume that there is one goal and multiple obstacles.

Each motor schema has one or more behavioral parameters associated with it. Gain values

determine the impact level that a particular schema has on the overall system behavior. For

example, a high goal gain will cause theMove-to-Goal schema to have a more pronounced

e�ect on the system movement. In addition to the three gain values, there are two other

numerical values associated with these schemas. Noise has a persistence as well as a gain;

since noise is a random e�ect, the amount of time which a given level of noise a�ects the

system is variable. Finally, the sphere of inuence parameter limits the area which the robot

is able to receive the e�ects from the various obstacles around it.

If one has the proper set of gain values, optimal behavior can be achieved for the system

in question for a given environment and task. The process of selecting the proper set of

values, unfortunately, is not a simple one. The traditional method has been to select a set of

starting values for the gains. Then, the system is run on a task in a particular environment.

The actual performance is then compared with the desired performance and the set of gain

values is adjusted accordingly. When no further increase in performance can be achieved

between two successive runs, the training is declared complete. In ACBARR, the system can

be set up with any set of values for a run. Its cases allow it to select appropriate values and

adapt these values dynamically based on its perception of the environment and its evaluation

of its progress.
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4.2 Environmental information

One of the goals of reactive control is to produce \intelligent" behavior without resorting

to higher-level reasoning processes, such as completely mapping a new environment and

then planning a near-perfect path through the obstacles. There are two problems with

high-level reasoning. First, it involves a large amount of overhead in the system, both in

terms of processing resources and time. This means that the robot cannot immediately

function in a new environment; it must �rst map and analyze the world around it. Second,

if the environment is dynamic, the robot is faced with a changing world in which its world

model may be become partially incorrect or obsolete. Reactive systems handle both of these

problems. Although case-based reasoning requires some higher-level reasoning, we did not

want to have to add so much processing requirements that these bene�ts were outweighed.

Furthermore, the environmental information represented in the system must be obtainable

through perceptual input during the normal reactive control process. With this in mind, the

following environmental information is maintained about the world:

� Clutter is a metric of how many obstacles there are within the sphere of inuence of

the robot. To aid in partial matching for case selection, the exact number is converted

into a class number representing a range of similar clutters. For example, for the

purposes of selecting a strategy to use, seven obstacles and eight obstacles would be

treated the same.

� Wander is a measure of how e�cient the robot's current path is. This is determined

by examining the ratio of the robot's current path length over the actual distance

between the initial position and the goal.

� Maxxed is a binary value representing whether the noise persistence has stayed at its

upper bound for a signi�cant period of time.

� Clear-To-Goal is a binary value which, if true, indicates that the robot is facing

the goal and there are no obstacles between it and the goal along a straight line path.

� Senses-goal is a binary value which represents whether the goal is within the robot's

sphere of inuence with nothing between the goal and the robot.
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� Goal-Nearby is a binary value which indicates that the robot senses the goal but

there are obstacles between the two.

� Goal-Direction is a value, in radian angle measure, which represents the direction

of the goal relative to the current position and heading of the robot.

� Circles is a rough metric of how much the robot has recently traveled over the same

piece of ground (e.g., how much it is running around in circles).

� Granny is a binary variable which determines when particularly careful behavior

should be employed. It will result from long-term poor performance by the system,

which will indicate that no known case is working.

Each of the items on the above list is information which is readily available, either directly

from the robot's sensors or from a straight-forward mathematical calculation of sensor data.

No higher level processing is required to produce this information.

4.3 Movement information

In addition to the information which ACBARR maintains concerning its external environ-

ment, it also needs information involving its internal environment. This is knowledge of how

the current case behavior is performing, in terms of the robot's movement towards the goal

position. In particular, there are four situations to which ACBARR needs to pay attention

in order to evaluate its current progress:

� No-Movement: The robot's average step size has dropped below a certain threshold.

M < Tmovement (4)

where:

M = Step size averaged over Hsteps steps

Tmovement = Movement threshold
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� Movement-Toward-Goal: The robot's step size and rate of approach to the goal

are both above some threshold.

M � Tmovement

P =
Hdistance

Hgoal

� Tprogress

(5)

where:

Hdistance = Distance travelled over Hsteps

Hgoal = Decrease in distance to goal over Hsteps

Tprogress = Progress threshold

� No-Progress-With-Obstacles: The robot is moving but not toward the goal and

there are several obstacles within the its sphere of inuence.

M � Tmovement

P =
Hdistance

Hgoal

< Tprogress

Ocount � Tobstacles

(6)

where:

Ocount = Average number of obstacles within sphere of inuence

over Hsteps steps

Tobstacles = Obstacle count threshold

� No-Progress-No-Obstacles: The robot is moving but not toward the goal and

there are no obstacles within its sphere of inuence.

M � Tmovement

P =
Hdistance

Hgoal

< Tprogress

Ocount < Tobstacles

(7)
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4.4 Short-term memory

ACBARR employs a primitive short-term memory mechanism in order to recognize whether

or not the robot is running in circles. In our use here, the memory is primitive as a matter of

choice. It was designed to keep the overhead of ACBARR's additions to pure reactive control

as small as possible, since to maintain an in-depth model of a dynamic environment while

running in real-time would require considerable space and time resources. As a compromise,

ACBARR's short-term memory only keeps track of the robot's travels within a small window

of the entire world. The window represents a small geographic area. As long as the robot

remains within the same window, its steps is kept tracked of. If ACBARR determines that

the robot has been moving an excessive amount within the window, it declares that the robot

is running in circles. If the robot moves out of the window, a new window is established and

the old one is forgotten. A window, while �xed in size, is not �xed in relation to location in

the world. When a new window is established, it is always done with the center located at

the robot's current position. If the windows were static in location, it would be possible for

the robot to wander in circles between two windows and never have this detected. Short-term

memory has also been utilized in other systems based on the AuRA architecture to provide

information about spatial occupancy of recently visited areas [Arkin, 1990; Balch and Arkin,

1993].

4.5 Case representation

A case entry in ACBARR consists of three parts. The �rst part represents the types of

environments in which the case is applicable, and is used to determine which case to switch

to. This may be thought of as the \index" to the case. The second part details how

the various parameter values can change and what their limits are, and is used to apply

new parameter values and to adapt them. Finally, the third part contains bookkeeping

information about the case, including information about past experiences with the case.

A sample case is shown in Figure 4. The �rst section of the case contains information

about the types of environment that this behavior is well suited for. This is a combination

of the environment knowledge along with the movement information. For the binary values,

an entry of �1 indicates that the system does not care about this parameter. The sample

case is best suited for a non-cluttered (\open �eld") environment. In such an environment,
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Environmental and Movement Information

Parameter Value

clutter 0.0

wander 0.0

clear-to-goal ag �1

goal-nearby ag �1

circles 0

granny 0

no-movement ag �1

movement-to-goal ag 1

no-progress-with-obstacles ag �1

no-progress-with-no-obstacles ag �1

Behavioral Parameters

Parameter Delta Limits Range

goal gain [0.0 0.05] [0.05 2.0]

noise gain [�0.05 0.0] [0.01 1.5]

noise persistence [�1.0 0.0] [1.0 5.0]

object gain [�0.01 �0.01] [1.0 5.0]

sensible distance [�1.0 0.0] [2.0 5.0]

Bookkeeping Information

Parameter Value

case number 1

case goodness 0.9

average step size 0.5

dynamic obstacles 0

initial distance to goal 37.56

obstacle danger 0.5

goal importance 1.0

Figure 4: Sample ACBARR case
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the robot should be making progress towards the goal and not wandering or running in

circles. The case doesn't care if the goal can be sensed directly or not, nor does it care about

the other three movement ags. If these conditions are satis�ed, the system will switch to

this case and use the behavioral parameters recommended by the third section of the case.

Additionally, the system will continue to adapt these parameters as long as the case is in

use.

The second section of a case contains the information describing the bounds on each gain

value in the system. Each value is associated with two numeric ranges. The �rst describes

the limits for the changes which the system is allowed to make on each value. In the sample

case, noise persistence has a limit on changes of [�1.0 0.0]. The system is, therefore, allowed

to alter the noise persistence value by a number from �1.0 to 0.0. If a constant change is

desired, then the endpoints of the range simply need to be equal. The rest of the data for

each value is the range which that value is allowed to change. For noise persistence, this

range is [1.0 5.0]. The system is allowed to change the value of noise persistence by a real

number from �1.0 to 0.0, as long as the value remains between 1.0 and 5.0. These two

ranges, then, represent behavior which will successively decrease the value until it reaches

its lower bound; behavior such as this would be acceptable in an open �eld.

The third and �nal table contains bookkeeping information about the case. In the current

example, this tells us that this is case 1 (Clear-Field; see section 4.6) which has a goodness

rating of 90%. The average step size was 0.5, there were no dynamic obstacles, and that

the system was initially 37.56 distance units from the goal. Finally, the obstacle danger was

0.5, and the goal importance is 1.0. These last two values are intended to allow the system

to navigate in environments where, for example, some obstacles are more dangerous than

others and need to be treated in a special manner. In the current ACBARR implementation,

most of this information is unused. However, it is included in the case description for future

extensions of the system.
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4.6 The case library

A reactive robotic simulator2 was �rst run several hundred times in order to gain insight

into the types of behavior di�erent environments would call for. This initial attempt to

conceptualize the various schemas resulted in ten strategies being identi�ed, each being

represented as a case in the format discussed earlier:3

1. Clear-Field: In an open environment, the system should pay no attention to obsta-

cles (since there won't be any), increase the goal gain, and lower the noise gain and

noise persistence.

2. Ballooning: When there are relatively few obstacles, the system attempts to swing

around them in a wide way (increase obstacle gain).

3. Squeezing: When there are many obstacles, the system attempts to �nd a path by

squeezing between obstacles (lower obstacle gain, increase goal gain).

4. Hugging: When there are many obstacles and the system is currently faced with an

obstacle directly in its path, it attempts to hug the side of the obstacle as it makes its

way around it.

5. Shooting: Regardless of the number and size of the obstacles surrounding the robot,

if the system sees its goal and there are no obstacles in the way, it adopts an extreme

version of the Clear-Field strategy and goes directly to it.

6. Wall-Crawling: If there is an obstacle the system cannot seem to get around by

Hugging, it checks to see if it is actually in front of a wall. The system considers

to be trapped by a wall if Hugging has failed and if the incoming vectors from the

obstacles are localized in front of it. In this situation, it determines which direction

the shorter side of the wall lies by looking at the vectors coming at it from each side

of a centerline straight ahead, and travels for a distance in that direction. Since the

system is limited to sensory data which would be available to a reactive system, this

heuristic is not foolproof; however, it has proven e�ective in the tested environments.

2The simulator was written in standard C with an X-Windows interface. All test runs described were

performed on Sun SparcStation 1s. For more information concerning the simulator, see [Clark et al., 1992].

3The representations of all ten cases are presented in the appendix.
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7. Random: The system raises the noise gain and goal gain, leaves the obstacle gain at

a medium level, and wanders for a period of time. This is useful for exploration.

8. Granny: AfterHsteps, the system reconsiders the environment by actually attempting

to build a limited model of it. It concentrates on the location and sizes of the obstacles

within its sphere of inuence and attempts to choose the direction which o�ers the

best success possibilities while deviating the least from the goal direction.

9. Maxxed: If a value has remained at its maximum level for a period of time, the

system increases the maximum by some � value.

10. Repulsion: In certain situations, the system considers moving away from the goal for

a period of time. If, for example, the system senses the goal and there is a large obstacle

between the two, it may decide to \back away" for a distance before attempting to get

to the goal. This is accomplished by setting the goal gain to a negative amount.

4.7 Indexing and case selection

Since there is a limited number of cases in the library, there is little need at this stage for

a sophisticated indexing scheme. As a result, ACBARR employs a at memory model of

the case library [Kolodner, 1992]. Cases are located by a sequential search of the memory

for index matches. Although generally an ine�cient method, this su�ces for the current

system without signi�cant slow-down. If ACBARR was extended to include several dozen

or possibly hundreds of cases, a better indexing scheme would need to be implemented.

There are no restrictions placed on the relationship between cases and known environ-

ments. Multiple cases may be stored for the same environment, and a case may apply to

multiple environments. Both of these scenarios are handled by the system in a uniform

manner.

4.7.1 When to select a new case

A important issue in case-based reactive control is determining when to switch cases. The

simplest method is to look for a new case everyHsteps steps, and to switch cases if the current

case does not match the environmental conditions as well as one of the other cases in the case
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library. In the extreme, with Hsteps = 1, this method ensures that the best case will always

be in place, and the system will always use the optimal navigational strategy. However, the

strategy of switching every Hsteps steps is pessimistic. It assumes that the environment will

vary in fewer than Hsteps steps, so that the cost incurred in searching for a new case will be

justi�ed even if the current case does not obviously appear to be failing.

A second method is to select a new case only if the current case is failing in some manner.

This is an optimistic strategy. It assumes that a given case is \good enough" as long as it

does not actually fail. In order for this method to be e�ective, the system needs a good

heuristic to determine when the current case is not leading to good performance. ACBARR

makes use of its STM and environmental knowledge to check for failing cases. There are

two criteria for failing. The �rst is excessive wandering by the robot, as determined by the

Wander parameter in the environment data. If the value of this parameter rises above

a given threshold, the system tries to �nd a new case. The second failure criterion is the

condition of running around in circles. This is kept track of by the short-term memory

which tracks the robot's movement over a limited area of terrain. If the robot is not making

progress out of an area, failure can be assumed.

Unless speci�ed otherwise, ACBARR uses the failure-driven strategy for case switching.

This design decision was based on extensive empirical evaluation of both strategies. As shown

in section 5.4, the failure-driven strategy achieves respectable results with little overhead.

However, both strategies are available in the system to allow the user to specify the strategy

of choice.

4.7.2 Case matching

Another important issue in ACBARR, and indeed in any case-based reasoning system, is

that of selecting the best case from the case library. Once ACBARR has decided to look for

a new case, it uses a Goodness-Of-Match metric to �nd the case that best matches the

current environment. In the at indexing scheme, this is done using a matching algorithm

that compares the current environment, as perceived by the robot, to each known case.

If corresponding internal values in the two are equal, the Goodness-Of-Match value is

incremented by 1.0. Near matches are handled through partial credit. If, for example,

the current environment is very cluttered and the case being considered is just moderately
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cluttered, the Goodness-Of-Match value is incremented by 0.5. Finally, a special case

occurs when the current environment has the Clear-To-Goal ag set to 1 and so does

the case being compared. In this situation, 3.0 is added to the match value. The system,

therefore, \looks for" the situation of having a clear path to the goal and attempts to exploit

this. After all cases have been examined, the one with the best match is chosen. Although

this is a relatively simple matching algorithm, it works well in ACBARR is due to the limited

number of cases. Due to the numerical nature of the matching procedure, partial matches

are taken care of as well as total matches. If no total match is found which has a high

Goodness-Of-Match rating, a partial match can be chosen.

Occasionally, the best matching case may turn out to be the case already in use. In

such a situation, the system could either choose the best alternative case from the library

or continue to use the current case. Suppose the system is currently making use of case 1.

At some point, the system determines that a new case is needed and selects the best one

from the library, which turns out to be case 1 again. Obviously, case 1 may not actually be

the best case for the given environment; otherwise, why did it fail? On the other hand, the

matching criteria may not be in error; this environment may be a uke. ACBARR uses both

of these approaches. Generally, when confronted with a failure, ACBARR chooses the best

case. This may turn out to be the current one, which is �ne. If the cause of the failure was

excessive wandering, ACBARR will elect to choose the best case not equal to the current

one. The philosophy behind this design decision was that in such a situation, the same case

is not likely to be helpful since the system has already exceeded the wandering limit for this

case.

4.8 Case application

Once the best case is retrieved, ACBARR makes use of it in step-by-step movement. Each

case contains a set of modi�cations which can be performed on the gains in the system, as

well as the minimum and maximum values of each. ACBARR uses this information, along

with information about its own movement in order to make the local adjustments to its

behavior.

An overall algorithm depicting this sequence of case retrieval and use is presented in

Figure 5.
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MAIN-LOOP {
environment = Examine-Environment ();
movement = Examine-Movement ();
current-case = Select-Case (environment, movement);
DO {

IF (granny = TRUE) {
new-vector = Determine-Best-Path-Vector (environment); /* lengthy */
robot.movement = Add-Vector (robot.movement, new-vector);

}

obstacle-vectors = Determine-Obstacle-Influence (environment);
robot.movement = Add-Vector (robot.movement, obstacle-vectors);
robot.movement = Add-Vector (robot.movement, random-noise-vector);

Update-Robot-Position ();
Update-Short-Term-Memory ();

environment = Examine-Environment ();
movement = Examine-Movement ();
if (New-Case-Needed (environment, movement))

current-case = Select-Case (environment, movement);

Adjust-Gain-Values (current-case)
} UNTIL (goal-reached OR number-steps > maximum-steps-allowed)

} /* end MAIN-LOOP */

Select-Case {
best-case = current-case;
best-case-match = -1.0;

FOR (each-case in CaseLibrary) DO {
goodness = 0.0;

FOR (each-factor in environment) DO {
if (each-factor = each-case.factor)

goodness = goodness + [0.5 to 3.0] ; /* add from 0.5 to 3.0 */
/* depending on factor */

}

FOR (each-factor in movement) DO {
if (each-factor = each-case.factor)

goodness = goodness + 1.0;
}

if (goodness > best-case-match) {
best-case = each-case;
best-case-match = goodness;

}
}

}

New-Case-Needed {
if (environment.wander > WANDER_LIMIT) OR

(environment.senses-goal = TRUE) OR
(environment.clear-to-goal = TRUE) OR
(running-in-circles) OR /* determined by examining short-term memory */
return NEED-NEW-CASE;

else
return KEEP-OLD-CASE:

}

Figure 5: Case retrieval and use algorithm
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5 Evaluation

In order to evaluate the proposed methods, we performed extensive simulations with the

ACBARR system to evaluate its performance both qualitatively and quantitatively. The

performance was compared with the unenhanced reactive control system. Qualitative results

were obtained using prede�ned environments that represented problems that are known to

be di�cult for reactive control systems. Quantitative results were obtained using several

randomly generated environments with di�erent densities and con�gurations of obstacles.

5.1 Simulation environment

In order to facilitate our work in adaptive control systems for autonomous navigation, we

have developed a simulation environment that includes both a graphical interface and batch

mode. This system allows us to visually evaluate the progress of a simulated robot while it

runs through a prede�ned world. It also displays a history of values as they are adjusted by

the system to facilitate the identi�cation of successful adjustment rules. The batch mode

facility allows us to run several simulations to gather statistics on the system's average

performance over a range of environments.

The simulation window displays the current obstacles as circles, each with varying radius.

As the robot navigates this world, a line is drawn indicating the robot's progress from start

to goal. At the top of the window is a set of numbers displaying the current control values.

These values are updated each time the ADAPTOR is called. This display also indicates the

number of steps, total distance traveled, distance to goal, and number of obstacle contacts.

Below the numerical display is a set of �ve line graphs that provide a history of the control

values as they are adjusted throughout the run.

5.2 Qualitative evaluation

Reactive control systems have di�culty with local maxima. For example, in a box canyon sit-

uation, the system, without a global picture of the entire world, does not have the knowledge

to \back out" of the canyon and go around it. This has been referred to as the \y-at-a-

window" problem, [Arkin, 1989]. Usually, a high level of random noise is used to try to kick
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Figure 6: Box canyon | ACBARR

the system out of the box canyon. However, apart from being ine�cient and unpredictable,

this method su�ers from the problem that such a high level of noise deteriorates performance

in other environments, such as \quasi" box canyons where the system could squeeze through

the obstacles if obstacle avoidance and noise were suitably low. The adaptive strategies

encoded in ACBARR's cases can handle both types of situations. ACBARR learns about its

current environment and adapts to it dynamically, using an appropriate level of noise, ob-

stacle avoidance, and so on. The same method can also handle other di�cult environments,

such as \walls".

Performance evaluation: Figures 6 through 8 illustrate sample runs that demonstrate

the qualitative improvement in ACBARR, as compared with the unenhanced reactive control

system shown in �gures 1 and 2. The ACBARR system did not fail to �nd the goal in any

test run. Paths chosen in no clutter to low cluttered environments were particularly e�cient.

ACBARR was able to successfully navigate the standard box canyon problem (�gure 6), the

quasi-box canyon problem (a box canyon with an exit, �gure 7), and the wall environment

(�gure 8) autonomously.
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Figure 7: Quasi-box canyon | ACBARR

Figure 8: Wall environment problem | ACBARR
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Figure 9: Box canyon | No cases, no adjustments allowed

Figure 10: Box canyon | No cases, but adjustments are permitted
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Method evaluation: In addition to evaluating the performance of the ACBARR system

as a whole, several ablation studies [Cohen and Howe, 1988] were also performed in which

the system was tested without one or more of its components in order to evaluate their

impact. These studies lend insight into why the method works. Figure 9 shows the sys-

tem's performance on the box canyon world with neither local adjustments nor global cases

available to the system. As can be seen, the robot achieves an equilibrium point and stays

there. Figure 10 shows the results of the system being run on the same world, this time with

adjustments permitted. The goal is reached, although the path is wasteful. Comparing these

results with those of �gure 6, which shows the complete ACBARR system's performance, we

can see that the system achieves its goal with a fairly good path with the bene�ts of both

adjustments and case knowledge.

5.3 Quantitative evaluation

Several simulations were performed in batch mode to evaluate the improvement in perfor-

mance yielded by our case-based method for on-line adaptation. The simulator has the

potential for an almost unlimited number of environments with various sizes, numbers and

con�gurations of obstacles. The clutteredness of an environment can be characterized by its

obstacle density, which is the fraction of available space that is occupied by obstacles. We

created 100 random worlds, each with three obstacle density levels. These density levels re-

ected an easy world (10%), a medium cluttered world (25%), and a di�cult, fairly cluttered

world (50%). Across the 100 worlds were ones where there were many small obstacles making

up the density percentage as well as worlds where the indicated density was the result of a

few large obstacles. These 300 di�erent environments were an attempt to subject ACBARR

to a wide range of possible worlds. Finally, since each run of the system varies from the

others due to the randomness of the noise parameters, we ran each simulation a total of �ve

times and averaged the results. We collected data on total time needed to complete the nav-

igational problem, the ratio of distance actually travelled to the straight-line distance from

start to goal, the number of steps taken by the robot, and time per step of robot action.

These results are depicted in �gure 14 through �gure 13. In the graphs, ACBARR-F is the

ACBARR system utilizing a switch-on-failure case switching strategy, ACBARR-S is the

same system with the switch-per-step strategy, and REACTIVE-10 and REACTIVE-50 are
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systems utilizing \pure" reactive control.4 The reactive-only systems were hand-con�gured

to be e�cient at navigating in environments with 10% clutter (the REACTIVE-10 system)

and 50% clutter (the REACTIVE-50 system) respectively; however, as the results demon-

strate, they were less exible and did not perform as well in environments for which they were

not explicitly intended. These simulations demonstrate a substantial improvement with the

ACBARR systems over reactive control alone; they performed better with respect to several

metrics and over a wide range of environments.

Number of robot steps: The steps metric illustrates the speedup in the actual number

of robot steps required to reach the goal. The number of steps taken by the various systems

is depicted in �gure 11. The two ACBARR variants are almost identical, with ACBARR-S

edging out ACBARR-F in the 50% cluttered world. The two REACTIVE systems had the

worst performance, as shown in the �gure. REACTIVE-10 performed well in worlds with 10%

clutter, for which it was designed, but deteriorated signi�cantly on highly cluttered words.

For 50% cluttered worlds, this system follows paths of over 1100 steps on average as compared

with the approximately 100-step paths found by the ACBARR systems. REACTIVE-50

performed reasonably well on 50% cluttered worlds as well as less cluttered worlds, but the

ACBARR systems were about twice as good. The results show that ACBARR's methods

allow it to perform well on less cluttered worlds, and are exible enough to carry over to

highly cluttered worlds without signi�cant degradation in performance. It remains as good

as or better than a purely reactive system tailored to each type of environment. Intuitively,

this is to be expected since ACBARR is able to switch strategies and select the appropriate

parameter values (which have to be hand-coded in a purely reactive system) for di�erent

situations.

Distance: Another useful metric for evaluating the performance of the system is the ratio

of the actual distance travelled during the navigational task (the \path length") to the

straight-line distance between the start position and the goal. This metric gives us an idea

of how much \wasted motion" the system performed. Ideally, this value should be 1.0 in a

world with no obstacles. Obviously, if the environment is cluttered, the ratio will in general

4The schema parameters used to con�gure the REACTIVE systems, as well as the case representations

used for the ACBARR systems, are presented in the appendix.
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Figure 11: Robot steps

be greater than 1.0, no matter how good the navigational system is. Values closer to 1.0 are

better than those farther away.

As shown in �gure 12, in the 10% cluttered worlds, all four variants performed the task

with little wasted motion, although both ACBARR systems were slightly better than the

better of the reactive control systems. When we consider the 25% cluttered worlds, however,

we see that REACTIVE-10, the reactive system that was con�gured for 10% worlds, is

beginning to lose in this area, navigating along paths which were over three times the length

they needed to be. REACTIVE-50 performs better but still not as well as the ACBARR

systems. Finally, the most convincing portion of the �gure is in the section for 50% cluttered

worlds. REACTIVE-10 reached the goal along paths which were almost ten times as long as

they needed to be. REACTIVE-50, which was hand-coded for such environments, performed

better, but still not as well as the ACBARR systems. Notice also that at this level of

obstacle density, ACBARR-F is worse than ACBARR-S. Case switching on every step allows

ACBARR-S to �nd shorter paths than ACBARR-F can.

Since ACBARR is able to switch strategies and select the appropriate parameter values

for di�erent situations, one would intuitively expect its performance graph to lie at or below
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Figure 12: Path length over actual distance

the best non-adaptive system that was individually tuned for each type of environment. This

is empirically demonstrated by the results in �gure 12.

Time per step: The time per step metric is another interesting evaluation metric since

it allows us to evaluate the overhead of the extra processing in the ACBARR systems. We

measured the average time the systems took in order to make each step of the journey.

As intuition would predict, �gure 13 shows that ACBARR-S took the longest amount of

time per step. This is due to the case switching taking place at each step. ACBARR-F

was the second slowest, with the two REACTIVE systems being the fastest. While the

di�erences seem minute, if a navigational task were to take hundreds to thousands of steps,

the di�erences could begin to have an impact on overall system time in a simulated system.

This e�ect is evaluated in the following experiment; however, as argued below, we expect

this computation time not to be the dominant factor in an actual robot.

Time to completion: The time metric illustrates the speedup in the total navigational

time, as measured by the actual time taken to reach the goal (�gure 14). In the 10% worlds,
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Figure 13: Time per step

although all four systems performed well, the REACTIVE-10 system took the least time to

get to the goal. This advantage of the REACTIVE-10 system breaks down in more cluttered

worlds, where the additional processing performed by the ACBARR systems begins to pay

o�. The REACTIVE-50 system was designed for highly cluttered worlds and performs

somewhat better than the ACBARR systems in these worlds as well as less cluttered worlds.

It should be noted, however, that the simulated time metric is not a realistic indicator of

performance of a physical robot in the real world. In a simulated environment, perception

and movement are instantaneous. However, in the real world, sensing is at least an order of

magnitude slower than the ACBARR computations (which are on the order of 5{10 ms per

cycle, as shown in �gure 13). Physical movement of the robot is also relatively slow. Since

ACBARR's paths are considerably shorter (�gure 12) and require less robot steps (�gure 11),

the processing overhead in ACBARR is negligible compared to the improved performance

that results from the better navigational paths that are created.
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Figure 14: Total time to completion

5.4 Discussion

Considering all four data graphs together allows us to draw conclusions about the overall

performance of ACBARR as seen against the reactive control system which it augments.

Both ACBARR versions take more time to \ponder" each move they are going to make.

This means that for worlds with few obstacles, a purely reactive system may be able to

navigate to the goal in less overall time than the ACBARR systems. However, its path

will be a little more jagged than the ACBARR systems, and it will use more steps to reach

the goal, but overall its performance is fairly respectable. If the path quality or the actual

number of steps taken is of importance, the ACBARR systems are better even at lower

obstacle densities. This is the case with physical robots in which perception and movement

time far outweigh the computation time required to adapt schema parameters.

The bene�ts of the extra time per step taken by the ACBARR systems begin to be

revealed in more cluttered environments. The 25% cluttered worlds show this beginning.

The paths created by the ACBARR systems are much shorter than the purely reactive

systems, and they require fewer robot steps to complete the navigation task. Notice that, in
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these worlds, ACBARR-F is slightly faster than ACBARR-S; both systems are faster than

REACTIVE-10, though not quite as fast as REACTIVE-50.

The most convincing evidence for the case-based ACBARR systems can be seen in the

highly cluttered worlds. Compared to ACBARR-F and ACBARR-S, the REACTIVE-10

system performs extremely badly in 50% cluttered worlds, being beaten in length of path,

time to completion, and number of steps required. Also, it is in this class of worlds that

ACBARR-S's higher time per step value begins to bene�t the system even in a simulated en-

vironment. While it is possible to design a purely reactive system (REACTIVE-50) that will

perform better along the simulated time metric, ACBARR outperforms that system along

the distance and steps metrics. To compare the two ACBARR case-switching strategies,

note that while ACBARR-F continues to perform respectably in highly cluttered worlds,

ACBARR-S manages to complete the navigational task in less time, creating a better path,

while using fewer steps.

The above results are signi�cant and consistent with the commonly held belief that more

analysis will lead to a better result. If the result is better enough so that it counteracts

the additional overhead, the extra analysis is worth it. This brings up an interesting point

with regards to future enhancements of the system. As the case library grows and becomes

more complex, the amount of time needed to perform a case switch will also increase. This

means that the disparity between the two case switching strategies in terms of time needed

per step will increase. While the two methods are fairly close today, future versions of the

system with more complex cases will cause the switch-on-failure strategy to become the clear

method of choice.

It should be noted that while ACBARR does improve performance over the non-adaptive

reactive systems that it was compared with, the actual quantitative improvement shown in

the graphs depends on the particular parameter settings used for the reactive systems. How-

ever, one of the major bene�ts of our approach is exibility. As is evident from the graphs,

ACBARR performs extremely well across a wide range of environments, from relatively un-

cluttered to highly cluttered, with a wide range of obstacle con�gurations, from random to

box canyons to walls.

The results also show support for another of our claims; namely, that ACBARR's case

based additions do not signi�cantly slow the system from pure reactive speeds. Due to the

better quality of produced paths, the ACBARR systems generally completed a world in
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less time than the REACTIVE-10 system, and was not much slower than the REACTIVE-

50 system. While the time per step value was slightly higher for the ACBARR systems,

they produced signi�cantly more e�cient paths. If the actual number of steps taken is of

importance, for example, on an actual robot where the physical time to carry out a step and

the time to sense and process perceptual input far exceed the computation time to compute

the direction and size of the step, the ACBARR systems are a signi�cant improvement over

traditional non-adaptive reactive control.

6 Limitations and future work

The results show that case-based reasoning can provide substantial bene�ts for a reactive

control system in terms of its ability to navigate di�cult environments as well as in terms

of quantitative measures of its performance. The bene�ts arise from the higher-level strate-

gies that are implemented, however, without in-depth or high-level reasoning. Case-based

reasoning provides a method for fast retrieval of these strategies based on simple cues from

the environment. The strategies, in turn, allow the system to \learn" about its environment

and adapt to it.

While our experiments showed that the methods were in fact a substantial improvement

over non-adaptive approaches, they also pointed out the need for further research. Let us

discuss some of the problems that we encountered.

6.1 Distribution of cases used by ACBARR

In our empirical tests, we noticed an interesting result that is worth mentioning. When

using the failure-driven case switching method, the system would generally use only a subset

of its stored possible strategies during test runs. We attempted to de�ne this behavior

further by running more extensive simulations on various random worlds with ACBARR-S.

The simulations revealed exactly how many cases were utilized and what percentage of the

time each was being used. We found that out of our ten cases, only �ve were ever used.

Part of the reason for this is methodological; the cases were added incrementally as new

situations were discovered which warranted new behavior patterns. We began with only

two cases, Ballooning and Squeezing, and built the library up from that point. The
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problem, then, is that some of our later cases made earlier cases superuous. For example,

the Maxxed cases was added to ACBARR to handle a speci�c environmental problem.

Later, when Wall-Crawling was added, Maxxed ceased to be used as often as it was

used earlier. As it turned out, Wall-Crawling can handle most situations that Maxxed

can.

The solution to the methodological problem is to go back and revise the case library to

exclude redundancies. However, it is still likely that the system would use some of its cases

more often than others. There are two reasons for this. First, ACBARR-F only switches

cases if the current case is failing in some way. This means that the optimal strategy is

not always in place. If the current case is \good enough," the system will not bother to

switch to the optimal one. For example, if the system initially chooses to make use of

the Clear-Field case, it will continue to do so until there is a clear failure. In order

to determine whether this was indeed the explanation for this behavior, we compared this

with the alternative case switching method in which a new case was selected every Hsteps

steps. Many more cases are utilized if this method is used. The second explanation for

why only a subset of strategies were being used is the robustness of several of the strategies

involved. In particular, Clear-Field, Hugging, and Wall-Crawling are especially

robust and can account for the majority of behaviors noted in the system. The only way

to force ACBARR to reconsider all its cases is to set Hsteps to 1, in other words, to use the

ACBARR-S method. This results in higher overhead which, as discussed earlier, only pays

o� in very highly cluttered environments.

6.2 Single strategy or multiple cases?

In our research, we assumed that a set of strategies would be needed to deal with the wide

range of problem situations that are possible in the ACBARR world. However, it is possible

that a single reactive control strategy could be developed which would be able to handle

the same range of situations which ACBARR can handle. The issue, then, is: why add

additional processing to the system if such a strategy could be discovered? There are several

reasons. First, it is highly unlikely that an all-encompassing strategy such as this could

be discovered. It would require considerably e�ort to develop such a strategy, and no such

strategy has been proposed thus far. ACBARR enables a system to produce respectable

performances with less than optimal cases. Second, if such a strategy became available,

41



it could easily be added to ACBARR's case library. If the switch-on-failure strategy were

employed, then this powerful strategy would stay in place until it failed (if it failed). While

ACBARR does have some increase in time per step for a switch-on-failure strategy, this

e�ect should be small enough to ignore in this scenario. Third, since worlds are dynamic,

even if a good strategy that covered a wide range of situations was found, the system might

need to switch to a di�erent strategy in an unexpected situation that was outside the scope

of the initial strategy. Finally, ACBARR can provide a framework to test the e�ectiveness

of any such strategy. A fairly robust strategy could be developed to the point where the

researcher is happy with it. It could then be added to the ACBARR system, which would

then be allowed to operate in hundreds of simulated worlds. These simulations could then be

examined to see if there were any environmental situations which caused the strategy being

tested to be switched out. This information would then guide the researcher if s/he wished

to further improve the strategy.

Thus our claim, which is supported by the evidence we have discussed, is that ACBARR

adds robustness to any pure reactive control system, regardless of how robust the existing

behavior already is. A perfect set of cases is not necessary to realize the bene�ts of the

approach. ACBARR also provides a test-bed for new strategies to be researched as they are

developed.

6.3 Initial case selection

An important research issue at this point is where the set of cases in the library comes from.

For now, these cases are coded by hand. This is not the optimal solution for two reasons.

One, it allows human biases to enter the process. To illustrate this point, consider our

own experiences. At �rst, we believed that Ballooning and Squeezing were relatively

robust, general-purpose strategies. As pointed out earlier, however, these did not turn out

to be the strategies used most often by the system. Luckily, there is enough variety within

the hand-created cases to allow the system a relatively comprehensive selection, and the

empirical evaluations demonstrate that the set of cases we have identi�ed is indeed a good

one. Yet, the nagging question remains: Is there a behavior even more robust and applicable

than Hugging, for instance which we have overlooked? A second potential problem is

that a completely novel situation unseen by the human teacher may not be handled in the

best way. There is still the possibility that ACBARR will fail in certain environments,
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although no such failures were identi�ed in the extensive empirical testing. If the system

had the ability to learn its own cases, this potential problem could be alleviated. At the very

least, the system needs to be able to add new cases to an already existing library; for some

applications, it may be desirable to produce a system which could learn all of its cases from

scratch. We are currently developing a system which is capable of automatic case learning

through navigational experiences.

6.4 Implementation on a physical system

Another area of future work involves the actual implementation of the ACBARR system

on a real robot. The work to date has been restricted to the simulator. The transfer to a

physical robot should not be di�cult, in part because AuRA is already implemented on a

physical system, George. Every e�ort was made in the system so that it performed in a way

suitable for both a simulated world and the real world. Part of the remaining challenge is to

�nd su�ciently varied domains to test these ideas e�ectively using the robot.

7 Conclusions

The objective of our research e�ort is to develop mechanisms for learning and adaptation

that can be used by an intelligent agent to learn from its experiences in a complex and

dynamic environment, and to develop corresponding mechanisms for planning and action

in such environments that support learning. The methods presented in this article were

developed as part of this on-going e�ort. Case-based reasoning allows a reactive system

derive the bene�ts of higher-level reasoning without sacri�cing the real-time response and fast

performance. It allows the system to learn about and adapt to its environment dynamically,

drawing on the power of analytical learning without sacri�cing the speed of similarity-based

comparisons. Due to these properties, combining case selection and behavioral adaptation

based on environmental demands with traditional reactive robotic control systems should

theoretically lead to better performance, and the empirical data supports this claim as well.

The methods presented in this article are fully implemented in the ACBARR system. By

adding basic environmental data to the system, we have realized substantial improvements

in its performance without sacri�cing the inherent bene�ts of reactive control. Although the
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ACBARR system is not a pure reactive control system as normally de�ned, it combines the

best features of that paradigm with the bene�ts of case-based reasoning. The performance

of the system is tightly coupled with the adequacy of the cases in its library. As pointed

out, the cases currently in use have proven to be extremely robust, making failure in new

environments unlikely. This results in ACBARR being a highly e�cient, adaptive control

system.
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Appendix

The following schema parameter values were used to con�gure the non-learning reactive systems, REACTIVE-
10 and REACTIVE-50. REACTIVE-10 was hand-tuned to perform well in lightly cluttered worlds (here,
10% clutter), and REACTIVE-50 was hand-tuned to perform well in highly cluttered worlds (here, 25% and
50% clutter).

Parameter REACTIVE-10 REACTIVE-50

goal gain 1.0 1.0
noise gain 0.3 1.0
noise persistence 2.0 8.0
object gain 1.1 1.1
sensible distance 5.0 5.0

The ACBARR system was con�gured with the following 10 cases, as discussed in section 4.6. In the
current implementation, two of the cases contain procedural information which cannot be readily captured
in our case representation format (see below).

1. Clear-Field: In an open environment, the system pays no attention to obstacles (since there won't
be any), increases the goal gain, and lowers the noise gain and noise persistence.

Environmental and Movement Information
Parameter Value

clutter 0.0
wander �1
clear-to-goal ag 1
goal-nearby ag 1
circles 0
granny �1
no-movement ag �1
movement-to-goal ag 1
no-progress-with-obstacles ag �1
no-progress-with-no-obstacles ag �1

Behavioral Parameters
Parameter Delta Limits Range

goal gain [0.5 0.5] [4.0 4.0]
noise gain [�0.05 �0.05] [0.0 1.0]
noise persistence [�1.0 �1.0] [1.0 1.0]
object gain [0.0 1.0] [0.0 5.0]
sensible distance [�0.5 �0.5] [0.0 4.0]

Bookkeeping Information
Parameter Value

case number 2
case goodness 0.9
average step size 0.5
dynamic obstacles 0
initial distance to goal 36.5
obstacle danger 0.5
goal importance 1.0
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2. Ballooning: When there are relatively few obstacles, the system attempts to swing around them in
a wide way by increasing obstacle gain.

Environmental and Movement Information
Parameter Value

clutter 2.0
wander �1
clear-to-goal ag �1
goal-nearby ag �1
circles 1
granny �1
no-movement ag �1
movement-to-goal ag �1
no-progress-with-obstacles ag 1
no-progress-with-no-obstacles ag �1

Behavioral Parameters
Parameter Delta Limits Range

goal gain [�0.05 �0.05] [0.05 2.0]
noise gain [0.0 0.05] [0.01 1.5]
noise persistence [1.0 1.0] [1.0 5.0]
object gain [0.01 0.01] [�1.0 �1.0]
sensible distance [0.0 1.0] [2.0 5.0]

Bookkeeping Information
Parameter Value

case number 0
case goodness 0.2
average step size 0.5
dynamic obstacles 0
initial distance to goal 37.56
obstacle danger 0.5
goal importance 1.0

3. Squeezing: When there are many obstacles, the system attempts to �nd a path by squeezing between
obstacles by lowering obstacle gain and increasing goal gain.

Environmental and Movement Information
Parameter Value

clutter 2.0
wander �1
clear-to-goal ag �1
goal-nearby ag �1
circles �1
granny �1
no-movement ag �1
movement-to-goal ag �1
no-progress-with-obstacles ag 1
no-progress-with-no-obstacles ag �1
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Behavioral Parameters
Parameter Delta Limits Range

goal gain [0.05 0.05] [0.05 2.0]
noise gain [0.0 0.0] [0.01 1.5]
noise persistence [�1.0 0.0] [1.0 5.0]
object gain [�0.01 �0.01] [�1.0 �1.0]
sensible distance [�1.0 0.0] [2.0 5.0]

Bookkeeping Information
Parameter Value

case number 1
case goodness 0.1
average step size 0.5
dynamic obstacles 0
initial distance to goal 37.56
obstacle danger 0.5
goal importance 1.0

4. Hugging: When there are many obstacles and the system is currently faced with an obstacle directly
in its path, it attempts to hug the side of the obstacle as it makes its way around it.

Environmental and Movement Information
Parameter Value

clutter 2.0
wander �1
clear-to-goal ag 0
goal-nearby ag 1
circles �1
granny �1
no-movement ag �1
movement-to-goal ag �1
no-progress-with-obstacles ag �1
no-progress-with-no-obstacles ag �1

Behavioral Parameters
Parameter Delta Limits Range

goal gain [5.0 5.0] [5.0 5.0]
noise gain [0.0 0.0] [0.0 0.0]
noise persistence [1.0 1.0] [1.0 1.0]
object gain [0.0 5.0] [0.0 5.0]
sensible distance [0.0 0.0] [0.0 2.0]

Bookkeeping Information
Parameter Value

case number 4
case goodness 0.9
average step size 0.5
dynamic obstacles 0
initial distance to goal 37.56
obstacle danger 0.5
goal importance 1.0

50



5. Shooting: If the system sees its goal and there are no obstacles in the direct path, it ignores any
obstacles that might be around, adopts an extreme version of the Clear-Field strategy, and goes
directly to the goal.

Environmental and Movement Information
Parameter Value

clutter 1.0
wander �1
clear-to-goal ag �1
goal-nearby ag 1
circles 0
granny �1
no-movement ag �1
movement-to-goal ag 1
no-progress-with-obstacles ag �1
no-progress-with-no-obstacles ag �1

Behavioral Parameters
Parameter Delta Limits Range

goal gain [0.5 0.5] [4.0 4.0]
noise gain [�0.05 �0.05] [0.0 1.0]
noise persistence [�1.0 �1.0] [1.0 1.0]
object gain [0.0 1.0] [0.0 5.0]
sensible distance [�0.5 �0.5] [0.0 4.0]

Bookkeeping Information
Parameter Value

case number 6
case goodness 0.9
average step size 0.5
dynamic obstacles 0
initial distance to goal 36.5
obstacle danger 0.5
goal importance 1.0

6. Wall-Crawling: If there is an obstacle the system cannot seem to get around by Hugging, it
checks to see if it is actually in front of a wall. The system considers to be trapped by a wall if
Hugging has failed and if the incoming vectors from the obstacles are localized in front of it. In
this situation, it heuristically determines in which direction the shorter side of the wall lies by looking
at the vectors coming at it from each side of a centerline straight ahead, and travels for a distance
in that direction. This is done by creating a \pseudo-goal" which is located towards an estimated
shorter side of the wall. When it reaches this pseudo-goal, the original goal is reinstated. Thus
Wall-Crawling behavior is similar to Hugging, but with a varying goal. Pseudo-goal creation is
currently implemented in a procedural manner.
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Environmental and Movement Information
Parameter Value

clutter 2.0
wander �1
clear-to-goal ag 0
goal-nearby ag 1
circles �1
granny �1
no-movement ag �1
movement-to-goal ag �1
no-progress-with-obstacles ag �1
no-progress-with-no-obstacles ag �1

Behavioral Parameters
Parameter Delta Limits Range

goal gain [5.0 5.0] [5.0 5.0]
noise gain [0.0 0.0] [0.0 0.0]
noise persistence [1.0 1.0] [1.0 1.0]
object gain [0.0 5.0] [0.0 5.0]
sensible distance [0.0 0.0] [0.0 2.0]

Bookkeeping Information
Parameter Value

case number 10
case goodness 0.9
average step size 0.5
dynamic obstacles 0
initial distance to goal 37.56
obstacle danger 0.5
goal importance 1.0

7. Random: The system raises the noise gain and goal gain, leaves the obstacle gain at a medium level,
and wanders for a period of time. This is useful for exploration.

Environmental and Movement Information
Parameter Value

clutter �1
wander 1
clear-to-goal ag �1
goal-nearby ag �1
circles 1
granny �1
no-movement ag �1
movement-to-goal ag 0
no-progress-with-obstacles ag �1
no-progress-with-no-obstacles ag �1

Behavioral Parameters
Parameter Delta Limits Range

goal gain [�0.5 0.5] [0.0 6.0]
noise gain [�0.1 0.1] [1.0 4.0]
noise persistence [�2.0 2.0] [1.0 10.0]
object gain [�0.5 0.5] [1.0 5.0]
sensible distance [�0.5 0.5] [1.0 5.0]
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Bookkeeping Information
Parameter Value

case number 5
case goodness 0.9
average step size 0.5
dynamic obstacles 0
initial distance to goal 37.56
obstacle danger 0.5
goal importance 1.0

8. Granny: After Hsteps, the system reconsiders the environment by actually attempting to build
a limited model of it. It concentrates on the location and sizes of the obstacles within its sphere
of inuence and attempts to choose the direction which o�ers the best success possibilities while
deviating the least from the goal direction.

Environmental and Movement Information
Parameter Value

clutter 2.0
wander �1
clear-to-goal ag 0
goal-nearby ag 0
circles �1
granny 1
no-movement ag �1
movement-to-goal ag �1
no-progress-with-obstacles ag 1
no-progress-with-no-obstacles ag �1

Behavioral Parameters
Parameter Delta Limits Range

goal gain [0.0 0.05] [0.05 2.0]
noise gain [0.0 0.0] [0.5 0.5]
noise persistence [0.0 0.0] [1.0 1.0]
object gain [�0.1 0.1] [1.0 5.0]
sensible distance [�.1 0.1] [1.0 5.0]

Bookkeeping Information
Parameter Value

case number 11
case goodness 0.9
average step size 0.5
dynamic obstacles 0
initial distance to goal 36.5
obstacle danger 0.5
goal importance 1.0

9. Maxxed: This case also contains procedural information. As with other cases, it is triggered given a
certain environmental condition. Triggering is also a�ected when ACBARR notices that a value has
stayed at a maximum point for a period of time. At that point, ACBARR enacts a procedure which
increases the allowable range of the parameter which has maxxed out.
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Environmental and Movement Information
Parameter Value

clutter �1
wander �1
clear-to-goal ag �1
goal-nearby ag �1
circles 1
granny 0
no-movement ag �1
movement-to-goal ag 0
no-progress-with-obstacles ag �1
no-progress-with-no-obstacles ag �1

10. Repulsion: In certain situations, the system considers moving away from the goal for a period of
time. If, for example, the system senses the goal and there is a large obstacle between the two, it may
decide to \back away" for a distance before attempting to get to the goal. This is accomplished by
setting the goal gain to a negative amount.

Environmental and Movement Information
Parameter Value

clutter �1
wander 0
clear-to-goal ag 0
goal-nearby ag 1
circles �1
granny �1
no-movement ag �1
movement-to-goal ag �1
no-progress-with-obstacles ag 1
no-progress-with-no-obstacles ag �1

Behavioral Parameters
Parameter Delta Limits Range

goal gain [�1:0 �1.0] [�1:0 �1:0]
noise gain [0.0 0.0] [0.0 0.0]
noise persistence [1.0 1.0] [1.0 1.0]
object gain [0.0 5.0] [0.0 5.0]
sensible distance [0.0 5.0] [0.0 5.0]

Bookkeeping Information
Parameter Value

case number 3
case goodness 0.9
average step size 0.5
dynamic obstacles 0
initial distance to goal 36.5
obstacle danger 0.5
goal importance 1.0
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