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Abstract— This paper examines the problem of how a 
mobile robot may coordinate among multiple, possibly 
conflicting deliberative processes for reasoning about object 
interactions in a soccer domain.   This paper frames 
deliberative coordination as an instance of the algorithm 
selection problem and describes a novel framework by which 
a mobile robot may learn to coordinate its deliberative 
reasoning in response to constraints upon processing as well 
as the performance of each deliberative reasoner.  Results of 
the framework are described for a simulated soccer task in 
which the robot must predict the motion of a fast moving 
ball in order to prevent it from reaching the goal area. 

I. INTRODUCTION 

 A hallmark of human deliberative activity is its 
flexibility, in part afforded by the multiple, overlapping 
forms of reasoning found in domains ranging from spatial 
and physical reasoning to logical reasoning.  For example, 
four independent ways of reasoning about object location 
or three independent forms of physical reasoning may be 
applied at different times and under different 
circumstances (e.g. [1]).  In almost all cases, different 
forms of reasoning within a particular domain differ in 
their accuracy, knowledge representation, or cognitive 
resource consumption. These differences allow humans to 
adapt their high-level reasoning in a manner that is in 
alignment with their current goals, cognitive resources, 
and environmental constraints. 
 Being embedded in a physical environment, mobile 
robots must plan and reason under similar constraints.  
Their processing is inherently limited by their hardware 
configuration and interaction with the physical world may 
place hard temporal constraints upon both action and 
deliberative activity.  Because of this, it is likely that 
mobile robots would also benefit from leveraging suites 
of deliberative reasoners with differing performance 
characteristics. Solely equipping a mobile robot with 
multiple deliberative processes will not necessarily 
provide significant benefit, however.  It is necessary to 
identify among these capabilities which deliberative 
process is appropriate given the robot’s current goals, 
abilities, and the constraints under which deliberative 
activity will occur.  We term this deliberative 
coordination. 
 Providing mobile robots with a means of 
coordinating between multiple deliberative processes 
would result in a number of benefits.  The most important 
of these benefits being an increase in the robot’s ability to 
pursue and achieve high-level goals in a wider variety of 

environments. With a framework capable of identifying 
the need for, the appropriateness of, and the effectiveness 
of particular deliberative processes, the robot can increase 
its flexibility in pursuing high-level goals by adapting its 
reasoning to meet the temporal or accuracy constraints 
inherent in embodied, real-time, robotic systems.  Further, 
a principled framework for the use of multiple 
deliberative processes in a mobile robot will increase the 
robustness of the robot by better preparing it to react to 
failures in its planning or reasoning. 
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 This paper presents a framework by which a mobile 
robot may learn to coordinate between multiple 
deliberative processes, each of which may differ in 
computational complexity, accuracy, and knowledge 
requirements.  The framework is described and evaluated 
within the context of a simulated robotic soccer domain.  
Within this domain, the benefit of the deliberative 
coordination framework in terms of task performance and 
resource minimization is demonstrated. 

II. RELATED WORK 
 Within the artificial intelligence community, it has 
been long recognized that for many reasoning problems, 
solution quality and the time spent obtaining a solution 
can vary greatly based on the algorithm, the 
representation of the problem, the algorithm parameters, 
and numerous other factors [2].  Similar results are 
described within machine learning through the ‘No Free 
Lunch’ theorems developed for both supervised learning 
and search [3].  Evidence such as this suggests that 
leveraging suites of reasoning or learning algorithms 
could serve to improve system performance by shoring up 
the weaknesses of one particular algorithm with the 
strengths of another. 
 In order to leverage suites of deliberative reasoners, it 
is necessary to identify which planner is appropriate for 
the current goals of the robot.  While this problem has not 
been significantly explored in terms of robotic systems, a 
growing body of work in the planning, machine-learning, 
and meta-reasoning communities has been investigating 
coordination from the perspective of algorithm selection 
[1][4-6].  Algorithm selection, a necessary component of 
many forms of deliberative coordination can be stated as: 
given a problem set, a set of algorithms capable of solving 
elements of the problem set, and a performance metric, 
what is the mapping between the problem set and 
algorithms that maximizes the performance metric?  As 
this problem is undecidable in its most general terms [5], 
a number of researchers have examined how systems can 
learn an approximate mapping from experience.   



  

  One such system, created by Fink, selected between 
multiple search strategies in the Prodigy planning 
framework [7].  Fink used a reward-based heuristic in 
which a particular search strategy would receive a reward 
for solving the search problem, discounted by the time 
spent solving it.  These rewards were then used to guide 
selection for later problems.  Within that work, however, 
only the performance statistics over the entire problem 
space were measured.  Thus in this work, mappings from 
the entire problem space to a single deliberative process 
were made. 
 Other work in algorithm selection has attempted to 
learn a more fine-grained mapping between individual 
problems and deliberative planners.  The approach 
typically taken and that used in this work is to use sets of 
problem features to delineate groups of problems from 
one another.  A mapping between these problem features 
and deliberative planners are then learned based on 
statistical performance metrics.  Typically the problem 
features used tend to be domain general features 
describing the structure of the input problem (e.g., the 
number of predicates in the input or the –arity of the 
predicates). 

Examples of this approach include Leyton-Brown who 
examined the use of linear-regression to identify the 
relationship between domain specific problem features 
and algorithm run-time in order to select the algorithm 
best suited for a particular problem instance [8] and 
Gagliolo and Shmidhuber examined algorithm selection 
in the context of an n-armed bandit problem [2].   

Most of these existing approaches to algorithm 
selection typically utilize isomorphic problem, solution, 
and knowledge representations.  Because of this, in much 
of this existing work, the primary difference between the 
available algorithms/planners lies in the time necessary to 
generate a solution.  In robotics systems, may be desirable 
to not only select deliberative process based upon the time 
necessary to generate a solution but also upon the fidelity 
of the solution necessary for a particular task.   

III. A FRAMEWORK FOR DELIBERATIVE COORDINATION 
IN A MOBILE ROBOT 

   This section outlines the framework used for 
deliberative coordination in this work and how it is 
integrated within a three-tier mobile robot architecture.  
The deliberative coordination process presented can be 
roughly divided into three phases: problem clustering, 
process selection, and process evaluation.  Problem 
clustering is the process of grouping the set of available 
input problems addressable to the robot’s deliberative 
reasoners into a finite number of problem classes.  A 
problem class is defined as a collection of problem 
features, where problem features are finite valued 
elements which serve to characterize the current input to 
the deliberative processes.  Each unique valuation of 
problem features corresponds to a different problem class.  
Figure 1 shows the relationship between problem features 
and problem classes.  Problem features can be any set of 
sensory precepts or abstract meta-features that describe 

the current goal of the robot.  For example, if the robot’s 
goal was to transport an object to another location, 
problems features may consist of percepts describing the 
environment or meta-features describing the actual input 
to the planner that would generate the necessary plan (e.g. 
the number of predicates in the planner input).  Whatever 
the problem features may be, however, they must 
potentially serve as predictors of the planners’ or other 
deliberative processes performance on the input. 
 Each problem class has associated with it a set of 
process profiles (more commonly known as algorithm 
profiles in the any-time algorithm literature).  These 
process profiles store information about the estimated 
quality of solution that will be generated by one of the 
robot’s deliberative process as a function of the time the 
robot spends reasoning with that process (e.g. Figure 2).   
These may be given by the designer or learned from 
experience.  One technique by which the robot may learn 
these profiles is described later in this section.  These 
process profiles can be formalized as the function 

.  This function can be interpreted as the 
estimated solution quality for problems of class C, as 
addressed by deliberative process d for t time units, where 
the output of Q is a real number. Once the appropriate set 
of profiles has been indexed by the problem class, the 
robot may use this collection of profiles to select the 
deliberative reasoner appropriate for its goals and any 
constraints upon reasoning. 

( , , )Q C d t

 The final step in coordination is process selection. 
During process selection, the robot activates one of the 
deliberative processes to reason about the robot’s current 
goal based upon their performance profiles (Q) for the 
currently identified problem class and any constraints 
upon reasoning.  The constraints are used to determine the 
function used to select the appropriate deliberative 
process.  For example, if there no were temporal 
constraints upon the solution time the following function 
would be used to select the deliberative process estimated 
to produce the highest quality solution:
arg max ( , , )x

x

Q C d ∞  (d2, Figure 2).   Selecting the 

deliberative process estimated to produce the highest  
quality solution by time t, on the other hand would be 
formulated as arg  (d1, Figure 2), while max ( , , )x

x

Q C d t
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Problem Class Feature Values 

c1 (a,c) 
c2 (a,d) 
c3 (b,c) 
c4 (b,d) 

Figure 1. Depicts the relationship between problem features and 
problem classes.  A problem class is defined by a unique collection 
of problem features. 



  

 
 
 
  
 
selecting the fastest deliberative process estimated to 
produce a solution of quality k would be formulated as: 

 (d1, Figure 2).    arg max [arg max( ( , , ) )]x
x t

Q C d t k≥

In most cases, the quality of solution that would be 
obtained using a process on a problem class would not be 
known to the robot a priora.  If these values are not 
known by the designer, the robot may be able to learn 
these values from experience.  In order to do this, each 
problem class and duration tuple are treated as single state 
reinforcement learner (n-armed bandit) in which each of 
the actions available from that state correspond to the 
selection of a deliberative process for that problem class.  
After a deliberative process has been selected for a 
particular problem, the robot may evaluate the output of 
that process and the evaluation will serve as feedback to 
learn the deliberative process profiles.  The feedback will 
depend on the exact output of the deliberative process but 
will pertain to the measured quality of solution generated 
by the process.  If the process output were a plan to be 
executed by the robot, the evaluation may be based on the 
success of the plan or how quickly the plan is 
accomplished.   If the process were to output a prediction 
about the future state of the world, the evaluation may be 
based on the accuracy of the prediction. 

This feedback signal can then be used to update the 
stored process profiles used by the robot for coordination.  
In this work, this update occurs by computing the 
exponential, recency-weighted average of the feedback 
signals.  This may be formulated as follows:

1 ( ,kQ C
+

is the time, C, is the problem class, d is the selected 
deliberative process, and t is the amount of processing 
time allocated for reasoning by the robot. 

, ) ( , , ) [ ( , , )],i k i k id t Q d t Q d tC r Cα= + − where k, 

Figure 3 depicts how the deliberative coordination 
framework described may be incorporated into a typical 
three-layer hybrid reactive-deliberative architecture (see 
[9] for a review).  The deliberative layer contains one or 
more deliberative processes that are used by the robot to 
generate plans for the system or otherwise reason about 
the robot’s goals.  The deliberative processes are activated 
via the coordination subsystem implemented as described 
earlier in this section.  Within the coordination module are 
the   process    profiles    describing   the   performance 
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characteristics of the robot’s available deliberative 
processes.  The preprocessor module transforms incoming 
perceptual data into problem features which the 
coordinator may use to select the correct collection of 
process profiles that will be used for deliberative 
coordination.  Any plans generated by the deliberative 
layer are sent to the sequencing layer for realization by 
the underlying behavioral control system of the robot.  
The sequencing layer also monitors the progress of any 
plans generated by the deliberative system in order to 
provide feedback to the evaluation module.  Finally, this 
feedback is transformed into a reward signal which the 
coordinator may use to update the process profiles stored 
therein. 

IV. SIMULATION EXPERIMENTAL VERIFICATION 
In order to evaluate the deliberative coordination 

framework, a series of simulation experiments were 
conducted within a robotic soccer domain.  The 
simulation environment used was custom built and 
incorporated NVidia’s PhysX dynamics engine to ensure 
realistic physical behavior from both the robot and 
environment. In this domain, a single goalie robot must 
prevent a fast moving ball from entering a goal area 
behind the robot.  The environment in which this task 
takes place is a 4m by 5m enclosed area.  In addition to 
the goalie robot, within this environment, 10 static players 
are placed throughout.  These players do not actively 
interact with the ball but only serve as objects which may 
alter the motion of the ball upon collision (Figure 5).   

During this task, at 200ms intervals, the robot would 
select one of its deliberative processes to predict the 
future trajectory of the ball as well as the amount of time 
that process would spend computing this prediction.  The 
selected process would then compute the ball’s trajectory, 
and if the process predicts the ball would enter the goal 
area, a plan would be generated for intercepting the ball.  
At the end of this 200ms cycle, the process’s prediction is 
then evaluated  based on the actual distance of the  ball  

Figure 2. Sample process profiles used to perform deliberative
tion. coordina
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Figure 4. High level architectural overview of coordination
framework. 



  

  
 
 

 
from the predicted trajectory.  This error is fed back to the 
coordination module as described in Section III.   The 
three processes used for ball prediction will be detailed in 
the following section. 

The robot that serves as the goalie is based on the 
specifications of a typical small-league soccer robot 20cm 
in diameter with a maximum velocity of 2m/s and 
maximum acceleration of 4m/s2.  The ball that must be 
prevented from entering the goal area is highly elastic 
(coefficient of restitution 0.9), and begins each trial 
moving at a speed ranging from 6 m/s to 8 m/s at a 
random heading and position 4m from the goal area. 

A. Deliberative Processes 
In the simulation experiments conducted, the robot was 

equipped with three different processes to predict the 
trajectory of the ball.  Each of these processes differ in the 
fidelity of prediction, the internal knowledge 
representation used to predict the future trajectory of the 
ball, and the amount of processing necessary to compute 
this future trajectory.  No claims as to the appropriateness 
of these processes or their knowledge representations are 
made by this work.  The processes used have been chosen 
solely so that they will differ from one another in terms of 
their computational cost when used by the robot and the 
accuracy of their predictions.  This is been done in an 
effort to simplify the evaluation of the presented 
framework and other processes may be substituted 
without loss of generality. 

The three processes used are termed the binary, 
qualitative, and quantitative processes respectively. Their 
names reflect the manner in which each process reasons 
about the motion of the ball and its reactions to collisions 
within the environment.  Each process is responsible for 
predicting the future trajectory of the ball and if that 
predicted trajectory results in the ball traveling to the goal 
area, generating a plan for the robot to intercept the ball.  
Details as to how each process do this follow. 

The binary process is the simplest of the three.  It 
makes its predictions about the future path of the ball 
based solely upon one factor, if the ball’s current path will 
enter the goal or not.  This simple reasoner assumes the 
ball will continue moving along its current path until it 
reaches an object in the environment (wall or static 
player) or the goal. If the ball will collide with the 

environment, no further prediction can be made by this 
process, so no interception plan is generated.  If the ball’s 
current path will take it to the goal area, a plan is 
generated to move the robot to an interception point just 
outside of the goal area. 

The remaining two process utilize information about 
the current motion of the ball and the direction of any 
potential collisions to predict the future ball trajectory.  
To do this, the qualitative and quantitative process both 
use the current motion of the ball (in terms of its 
horizontal and vertical velocity) and the direction in 
which the ball may collide with the environment 
(represented as the collision contact normal).  These two 
elements are shown in Figure 6. 

Goal Area 

Static 
Obstacles 

4m 

5m 

These processes then use this information to search 
their knowledge base for information pertaining to 
collisions with similar characteristics.  Once knowledge 
considering a similar collision is found, it is used to 
extrapolate the motion of the ball after the collision.  Both 
the qualitative and quantitative process may then use the 
resulting prediction recursively in order to increase the 
resulting prediction horizon (e.g. trajectory after 2 or 
more collisions). 

The primary difference between the qualitative and 
quantitative process lies in the internal format used to 
represent the ball and collision information as well as the 
knowledge used to describe ball-environment interactions.   
The qualitative process represents ball motion, collision 
normal, and knowledge using a sign calculus [10].  The 
quantitative process, however, stores these values in 
absolute numeric terms.  Examples of the internal 
representations used by the qualitative and quantitative 
process are shown in Figure 7.  

The time necessary for each deliberative process to 
compute its predictions is based upon the amount of 
knowledge each process must search in order to find a 
relevant match.  The qualitative process must execute 
approximately 100 search operations in order to find a 
matching knowledge element.  The quantitative process 
must search approximately 300 knowledge elements.  For 
the purposes of this experiment, one knowledge element 
may be examined in 0.1ms.  In addition, each process is 
assumed to result in 10ms of unavoidable overhead.  As a 
result, time necessary to predict a trajectory involving a 
chain of one, two, or three ball-environment interactions 
is shown in Figure 8. 

B. Simulation Experiment I 
 Two experiments were conducted.  The first 
experiment examined the ability of the system to learn  
 

 

 
 
 

Figure 5.  Typical environment used in experimental evaluation.
Red circles represent static players/obstacles in the field. 

Ball Contact Normal 
(Nx,Ny) y

Ball Motion 
(Vx,Vy) Obstacle x

Figure 6. The qualitative and quantitative deliberative processes use 
qualitative and quantitative representations of the ball velocity and 
contact normals in order to predict the ball's motion and generate an 
interception plan.



  

estimates of deliberative process solution quality  (process 
profiles) based on a limited number of perceptual features 
describing the current instance of the ball interception 
task.  The features used in this and experiment two are 
shown in Figure 9.  In order to learn the process quality 
profiles, the robot executed 180 trials of the interception 
task in which it used one of its deliberative processes to 
predict the ball trajectory and generate an appropriate 
interception plan.  A prediction and plan was made every 
200ms.  After each 200ms cycle, the prediction generated 
by the process was evaluated by measuring the Euclidean 
distance between the predicted position of the ball and the 
actual resulting position of the ball.  This error in 
prediction then served as a feedback signal to the 
coordination framework as described in Section III.  After 
each set of 30 trials, the process profiles learned by the 
robot (Q) were compared against this evaluation metric 
(the distance between the ball’s location predicted by a 
particular deliberative process and its actual position).  
This serves as a measure of how accurate the robot’s 
learned process profiles are to the actual solution quality 
generated by each process in a particular 200ms interval 
of the ball interception task. This training period was then 
repeated for each of the three deliberative processes.  

C. Simulation Experiment II 
The second experiment examines the utility of the 

proposed coordination framework in terms of task 
performance and resource minimization.  Using the 
 

Representation Ball 
Motion 
(Vx, Vy) 

Contact 
Normal 
(Vx, Vy) 

Resulting 
Motion 
(Vx, Vy) 

Qualitative  (+,-) (-.+) (-.-) 
Quantitative (2.0,-10.0) (-0.71, 0.71) (-7.7, -2.1) 

Figure 7. Example of the knowledge representation used by the 
qualitative and quantitative deliberative processes. 

Deliberative 
Process 

1 Collision 2 Collision 3 Collision 

Binary 10ms N/A N/A 
Qualitative 20ms 30ms 40ms 
Quantitative 40ms 70ms 100ms 

Figure 8.  The time necessary for each deliberative process to 
predict the ball's motion and generate an interception plan for a 
trajectory that results in the specified number of collisions. 

Problem 
Feature 

Description Values 

Ball Distance Distance between the 
ball and the robot 

Short (0 to 1m) 
Medium (1 to 2m) 

Far (>2m) 
Ball Speed Speed of the ball within 

the environment 
Slow 

Medium 
Fast 

Impeding Wall 
Collision 

Will the ball’s current 
trajectory result in a 

collision with the wall 

True 
False 

Impending 
Object Collision 

Will the ball’s current 
trajectory result in a 

collision with an object 

True 
False 

Direction of 
Ball Movement 

Is the ball moving 
towards the goal or not. 

Towards Goal 
Away from Goal 

Figure 9. Problem features and used in the ball interception task. 

process profiles learned in experiment one, the robot 
executed 20 runs of the ball interception task.  Each run 
consisted of 100 trials.  During the execution of each trial 
in experiment two, however, the robot would use the 
learned process profiles to select which deliberative 
process to use for predicting the ball trajectory and 
generating the appropriate interception plan.  The 
deliberative process for each 200ms interval was selected 
using the process profiles so that the highest quality 
prediction was made in the least amount of time. This 
process is discussed in Section III.  After the process to 
generate the interception plan is selected, the robot 
follows the plan until the start of the next 200ms cycle in 
which the coordination process begins once more.  The 
trial ends when the ball is intercepted, enters the goal 
area, or stops moving.  The robot’s performance in the 
interception task is measured in terms of the number of 
successful interceptions and the total amount of time 
spent generating plans to intercept the ball.  The robot’s 
performance using the proposed coordination framework 
was compared against three controls: a robot that always 
used the fastest deliberative process (binary process), a 
robot that always used the deliberative process with the 
most accurate predictions (quantitative process for 10ms), 
and a robot that randomly selects the process to generate 
the interception plan. 

V. RESULTS 
For experiment 1, the root mean squared error between 

the learned process profiles and the actual solution quality 
resulting from using a deliberative process in experiment 
one is shown in Figure 10.  As can be seen, the estimated 
solution quality for each of the possible process profiles 
converges to between one and two.  This indicates that the 
robot successfully learns the quality of prediction to 
expect from each deliberative process. While the process 
quality estimates learned by the system converge to 
values reasonably close to the actual values, and these 
estimates improve with experience, they alone are not 
suitable to determine if the process profiles learned are of 
any value to the robot.  In order to determine this, the 
performance of the robot when using these estimates for 
deliberative coordination needs to be examined.  The 
results from experiment two shown in Figures 10 and 11 
provide such an examination. 
 Depicted in Figure 11 are the statistics concerning the 
performance of the robot in the object interception task 
measured in terms of the percentage of successful ball 
interceptions that occurred.  The bars in this figure denote 
95% confidence intervals.  As can be seen in the figure, 
the proposed coordination framework results in the 
highest success rate for the object interception task (70%).  
It should be noted, however, that the difference between 
the task success rate for the proposed framework and 
control which always selected the most accurate process 
(the quantitative process applied for 10ms) is not 
statistically significant.   It should also be mentioned that 
in a number of trials (~20%), interception failure were 
due to the physical limitations of the platform.  In these 



  

trials, when the ball was initialized at a high velocity (7-
8m/s) and with a unobstructed initial heading directed 
towards the goal, the physical characteristics of the robot 
were the limiting factor preventing interception and not 
necessarily the deliberative processes (e.g. the robot was 
physically unable to travel to the interception location in 
time).  These high ball velocities were deemed acceptable, 
however, in order to ensure that the task remained both 
reasonably challenging and time critical.  0
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While the performance of the coordination framework 
and the accuracy-based control were not statistically 
significant, the computational cost of the two (measured 
in total computation time), significantly differ.  The 
computational load of each system is shown in Figure 12.  
As can be seen in this figure, the total time spent by the 
robot performing reasoning for each set of 100 trials when 
using the coordination framework is almost half that used 
by the accuracy- based control.  This result, coupled with 
those shown in the previous figure demonstrate that the 
deliberative coordination in a mobile robot may have a 
significant impact both in terms of task success and in 
resource minimization. 

 
Figure 10. Depicts the RMS between learned solution quality 
estimates for using each deliberative process (Q) and actual solution 
quality generated by each process. 
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VI. DISCUSSION AND CONCLUSION 
The simulation results depict that the proposed 

coordination framework results in performance matching 
that of the most accurate control in the domain tested 
while reducing the amount of computation necessary to 
achieve that performance. The benefit afforded by the 
coordination framework, however, is dependent on the 
properties of the domain in which the robot will be 
deployed.  In the domain examined, robot soccer, high 
performance is preferable.  Thus, deliberative behavior 
that maximizes performance while minimizing the 
computation necessary to achieve that performance will 
allow the robot to spend additional processing time upon 
other tasks (e.g. perception).  Alternate domains, 
however, may place a premium on computation reduction 
(and its potential power savings).  Such tradeoffs are 
domain dependent but can be incorporated into the 
proposed framework by modifying the process selection 
function described in Section III. 

While flexible in this regard, the coordination 
framework also has several limitations.  In particular, 
coordination requires the robot possess knowledge 
concerning the performance characteristics of its available 
deliberative processes.   This knowledge may be difficult 
for the designers to provide and thus necessitate 
significant amounts of training.  As a result, the approach 
is likely best suited to domains in which such training is 
feasible.  Exploring the sensitivity of the framework to 
inaccurate or incomplete performance estimates may help 
better characterize this limitation and is one of several 
avenues of future research that are being pursued.  

 
Figure 11. Task performance in terms of the percentage of 
successful interceptions.  The control are described in Section 4C. 
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Figure 12.  The average amount of time spent reasoning by each 
deliberative process over 100 trials.  Bars indicate 95% confidence 
intervals 

[2] Gagliolo, M. and J. Schmidhuber, "Learning dynamic algorithm 
portfolios." Annals of Mathematics and Artificial Intelligence 47(3-4): 
295 – 328, 2006 
 [3]Wolpert, D, “The lack of a priori distinctions between learning 
algorithms.” Neural Computation 8(7): 1341-1390, 1996.  
[4] Rice, J.R., “The algorithm selection problem.” Advances in 
Computers, 15:65-118, 1976. 
[5] Guo, H. Algorithm selection for sorting and probabilistic inference: 
A machine learning-based approach. PhD Thesis, Kansas State 
University. 
[6] Cox, M.T., “Metacognition in computing: a selected research 
review.”  Artificial Intelligence 169(2):104-141. 
[7] Fink, E. How to solve it automatically: Selection among problem 
solving methods.AIPS, 1998. 
[8] Leyton-brown, K., Nudelman,E., Andrew, G., Mcfadden, J., 
Shoham, Y. A portfolio approach to algorithm selection. IJCAI 
2003.1542-1543, 2003. REFERENCES 
[9] Arkin, R.C. Behavior based robotics. MIT Press, 1998. 

[1] Newcombe, N. S. and J. Huttenlocher , Making Space: The 
development of spatial representation and reasoning. Cambridge, MIT 
Press, 2000.  

[10] Kleer, J.D., Multiple representations of knowledge in a mechanics 
problem solver, IJCAI-77, p. 299-304, 1977. 


	I. INTRODUCTION
	II. Related Work
	III. A Framework for Deliberative Coordination in a Mobile Robot
	IV. Simulation Experimental Verification
	A. Deliberative Processes
	B. Simulation Experiment I
	C. Simulation Experiment II

	V. Results
	VI. Discussion and Conclusion

