

The Coordination of Deliberative Reasoning in a Mobile Robot
Patrick Ulam, Student Member, IEEE

Abstract— This paper examines the problem of how a
mobile robot may coordinate among multiple, possibly
conflicting deliberative processes for reasoning about object
interactions in a soccer domain. This paper frames
deliberative coordination as an instance of the algorithm
selection problem and describes a novel framework by which
a mobile robot may learn to coordinate its deliberative
reasoning in response to constraints upon processing as well
as the performance of each deliberative reasoner. Results of
the framework are described for a simulated soccer task in
which the robot must predict the motion of a fast moving
ball in order to prevent it from reaching the goal area.

I. INTRODUCTION

 A hallmark of human deliberative activity is its
flexibility, in part afforded by the multiple, overlapping
forms of reasoning found in domains ranging from spatial
and physical reasoning to logical reasoning. For example,
four independent ways of reasoning about object location
or three independent forms of physical reasoning may be
applied at different times and under different
circumstances (e.g. [1]). In almost all cases, different
forms of reasoning within a particular domain differ in
their accuracy, knowledge representation, or cognitive
resource consumption. These differences allow humans to
adapt their high-level reasoning in a manner that is in
alignment with their current goals, cognitive resources,
and environmental constraints.
 Being embedded in a physical environment, mobile
robots must plan and reason under similar constraints.
Their processing is inherently limited by their hardware
configuration and interaction with the physical world may
place hard temporal constraints upon both action and
deliberative activity. Because of this, it is likely that
mobile robots would also benefit from leveraging suites
of deliberative reasoners with differing performance
characteristics. Solely equipping a mobile robot with
multiple deliberative processes will not necessarily
provide significant benefit, however. It is necessary to
identify among these capabilities which deliberative
process is appropriate given the robot’s current goals,
abilities, and the constraints under which deliberative
activity will occur. We term this deliberative
coordination.
 Providing mobile robots with a means of
coordinating between multiple deliberative processes
would result in a number of benefits. The most important
of these benefits being an increase in the robot’s ability to
pursue and achieve high-level goals in a wider variety of

environments. With a framework capable of identifying
the need for, the appropriateness of, and the effectiveness
of particular deliberative processes, the robot can increase
its flexibility in pursuing high-level goals by adapting its
reasoning to meet the temporal or accuracy constraints
inherent in embodied, real-time, robotic systems. Further,
a principled framework for the use of multiple
deliberative processes in a mobile robot will increase the
robustness of the robot by better preparing it to react to
failures in its planning or reasoning.

Author is with the Mobile Robot Laboratory of the College of

Computing at the Georgia Institute of Technology, Atlanta, GA, USA.
(e-mail: pulam@cc.gatech.edu).

 This paper presents a framework by which a mobile
robot may learn to coordinate between multiple
deliberative processes, each of which may differ in
computational complexity, accuracy, and knowledge
requirements. The framework is described and evaluated
within the context of a simulated robotic soccer domain.
Within this domain, the benefit of the deliberative
coordination framework in terms of task performance and
resource minimization is demonstrated.

II. RELATED WORK
 Within the artificial intelligence community, it has
been long recognized that for many reasoning problems,
solution quality and the time spent obtaining a solution
can vary greatly based on the algorithm, the
representation of the problem, the algorithm parameters,
and numerous other factors [2]. Similar results are
described within machine learning through the ‘No Free
Lunch’ theorems developed for both supervised learning
and search [3]. Evidence such as this suggests that
leveraging suites of reasoning or learning algorithms
could serve to improve system performance by shoring up
the weaknesses of one particular algorithm with the
strengths of another.
 In order to leverage suites of deliberative reasoners, it
is necessary to identify which planner is appropriate for
the current goals of the robot. While this problem has not
been significantly explored in terms of robotic systems, a
growing body of work in the planning, machine-learning,
and meta-reasoning communities has been investigating
coordination from the perspective of algorithm selection
[1][4-6]. Algorithm selection, a necessary component of
many forms of deliberative coordination can be stated as:
given a problem set, a set of algorithms capable of solving
elements of the problem set, and a performance metric,
what is the mapping between the problem set and
algorithms that maximizes the performance metric? As
this problem is undecidable in its most general terms [5],
a number of researchers have examined how systems can
learn an approximate mapping from experience.

 One such system, created by Fink, selected between
multiple search strategies in the Prodigy planning
framework [7]. Fink used a reward-based heuristic in
which a particular search strategy would receive a reward
for solving the search problem, discounted by the time
spent solving it. These rewards were then used to guide
selection for later problems. Within that work, however,
only the performance statistics over the entire problem
space were measured. Thus in this work, mappings from
the entire problem space to a single deliberative process
were made.
 Other work in algorithm selection has attempted to
learn a more fine-grained mapping between individual
problems and deliberative planners. The approach
typically taken and that used in this work is to use sets of
problem features to delineate groups of problems from
one another. A mapping between these problem features
and deliberative planners are then learned based on
statistical performance metrics. Typically the problem
features used tend to be domain general features
describing the structure of the input problem (e.g., the
number of predicates in the input or the –arity of the
predicates).

Examples of this approach include Leyton-Brown who
examined the use of linear-regression to identify the
relationship between domain specific problem features
and algorithm run-time in order to select the algorithm
best suited for a particular problem instance [8] and
Gagliolo and Shmidhuber examined algorithm selection
in the context of an n-armed bandit problem [2].

Most of these existing approaches to algorithm
selection typically utilize isomorphic problem, solution,
and knowledge representations. Because of this, in much
of this existing work, the primary difference between the
available algorithms/planners lies in the time necessary to
generate a solution. In robotics systems, may be desirable
to not only select deliberative process based upon the time
necessary to generate a solution but also upon the fidelity
of the solution necessary for a particular task.

III. A FRAMEWORK FOR DELIBERATIVE COORDINATION
IN A MOBILE ROBOT

 This section outlines the framework used for
deliberative coordination in this work and how it is
integrated within a three-tier mobile robot architecture.
The deliberative coordination process presented can be
roughly divided into three phases: problem clustering,
process selection, and process evaluation. Problem
clustering is the process of grouping the set of available
input problems addressable to the robot’s deliberative
reasoners into a finite number of problem classes. A
problem class is defined as a collection of problem
features, where problem features are finite valued
elements which serve to characterize the current input to
the deliberative processes. Each unique valuation of
problem features corresponds to a different problem class.
Figure 1 shows the relationship between problem features
and problem classes. Problem features can be any set of
sensory precepts or abstract meta-features that describe

the current goal of the robot. For example, if the robot’s
goal was to transport an object to another location,
problems features may consist of percepts describing the
environment or meta-features describing the actual input
to the planner that would generate the necessary plan (e.g.
the number of predicates in the planner input). Whatever
the problem features may be, however, they must
potentially serve as predictors of the planners’ or other
deliberative processes performance on the input.
 Each problem class has associated with it a set of
process profiles (more commonly known as algorithm
profiles in the any-time algorithm literature). These
process profiles store information about the estimated
quality of solution that will be generated by one of the
robot’s deliberative process as a function of the time the
robot spends reasoning with that process (e.g. Figure 2).
These may be given by the designer or learned from
experience. One technique by which the robot may learn
these profiles is described later in this section. These
process profiles can be formalized as the function

. This function can be interpreted as the
estimated solution quality for problems of class C, as
addressed by deliberative process d for t time units, where
the output of Q is a real number. Once the appropriate set
of profiles has been indexed by the problem class, the
robot may use this collection of profiles to select the
deliberative reasoner appropriate for its goals and any
constraints upon reasoning.

(, ,)Q C d t

 The final step in coordination is process selection.
During process selection, the robot activates one of the
deliberative processes to reason about the robot’s current
goal based upon their performance profiles (Q) for the
currently identified problem class and any constraints
upon reasoning. The constraints are used to determine the
function used to select the appropriate deliberative
process. For example, if there no were temporal
constraints upon the solution time the following function
would be used to select the deliberative process estimated
to produce the highest quality solution:
arg max (, ,)x

x

Q C d ∞ (d2, Figure 2). Selecting the

deliberative process estimated to produce the highest
quality solution by time t, on the other hand would be
formulated as arg (d1, Figure 2), while max (, ,)x

x

Q C d t

Problem Feature Values

f1 a, b
f2 c, d

Problem Class Feature Values

c1 (a,c)
c2 (a,d)
c3 (b,c)
c4 (b,d)

Figure 1. Depicts the relationship between problem features and
problem classes. A problem class is defined by a unique collection
of problem features.

selecting the fastest deliberative process estimated to
produce a solution of quality k would be formulated as:

 (d1, Figure 2). arg max [arg max((, ,))]x
x t

Q C d t k≥

In most cases, the quality of solution that would be
obtained using a process on a problem class would not be
known to the robot a priora. If these values are not
known by the designer, the robot may be able to learn
these values from experience. In order to do this, each
problem class and duration tuple are treated as single state
reinforcement learner (n-armed bandit) in which each of
the actions available from that state correspond to the
selection of a deliberative process for that problem class.
After a deliberative process has been selected for a
particular problem, the robot may evaluate the output of
that process and the evaluation will serve as feedback to
learn the deliberative process profiles. The feedback will
depend on the exact output of the deliberative process but
will pertain to the measured quality of solution generated
by the process. If the process output were a plan to be
executed by the robot, the evaluation may be based on the
success of the plan or how quickly the plan is
accomplished. If the process were to output a prediction
about the future state of the world, the evaluation may be
based on the accuracy of the prediction.

This feedback signal can then be used to update the
stored process profiles used by the robot for coordination.
In this work, this update occurs by computing the
exponential, recency-weighted average of the feedback
signals. This may be formulated as follows:

1 (,kQ C
+

is the time, C, is the problem class, d is the selected
deliberative process, and t is the amount of processing
time allocated for reasoning by the robot.

,) (, ,) [(, ,)],i k i k id t Q d t Q d tC r Cα= + − where k,

Figure 3 depicts how the deliberative coordination
framework described may be incorporated into a typical
three-layer hybrid reactive-deliberative architecture (see
[9] for a review). The deliberative layer contains one or
more deliberative processes that are used by the robot to
generate plans for the system or otherwise reason about
the robot’s goals. The deliberative processes are activated
via the coordination subsystem implemented as described
earlier in this section. Within the coordination module are
the process profiles describing the performance

Sequencing Layer

characteristics of the robot’s available deliberative
processes. The preprocessor module transforms incoming
perceptual data into problem features which the
coordinator may use to select the correct collection of
process profiles that will be used for deliberative
coordination. Any plans generated by the deliberative
layer are sent to the sequencing layer for realization by
the underlying behavioral control system of the robot.
The sequencing layer also monitors the progress of any
plans generated by the deliberative system in order to
provide feedback to the evaluation module. Finally, this
feedback is transformed into a reward signal which the
coordinator may use to update the process profiles stored
therein.

IV. SIMULATION EXPERIMENTAL VERIFICATION
In order to evaluate the deliberative coordination

framework, a series of simulation experiments were
conducted within a robotic soccer domain. The
simulation environment used was custom built and
incorporated NVidia’s PhysX dynamics engine to ensure
realistic physical behavior from both the robot and
environment. In this domain, a single goalie robot must
prevent a fast moving ball from entering a goal area
behind the robot. The environment in which this task
takes place is a 4m by 5m enclosed area. In addition to
the goalie robot, within this environment, 10 static players
are placed throughout. These players do not actively
interact with the ball but only serve as objects which may
alter the motion of the ball upon collision (Figure 5).

During this task, at 200ms intervals, the robot would
select one of its deliberative processes to predict the
future trajectory of the ball as well as the amount of time
that process would spend computing this prediction. The
selected process would then compute the ball’s trajectory,
and if the process predicts the ball would enter the goal
area, a plan would be generated for intercepting the ball.
At the end of this 200ms cycle, the process’s prediction is
then evaluated based on the actual distance of the ball

Figure 2. Sample process profiles used to perform deliberative
tion. coordina

Delib.

Processes

Process
Output

C
oo

rd
in

at
or

STM

Process
Evaluator

Activate

Reward

KB
Preprocessor

World State

Goals

Behavioral Layer

Deliberative

Goal

p

Problem
Features

p

Feedback

p

p b

Figure 4. High level architectural overview of coordination
framework.

from the predicted trajectory. This error is fed back to the
coordination module as described in Section III. The
three processes used for ball prediction will be detailed in
the following section.

The robot that serves as the goalie is based on the
specifications of a typical small-league soccer robot 20cm
in diameter with a maximum velocity of 2m/s and
maximum acceleration of 4m/s2. The ball that must be
prevented from entering the goal area is highly elastic
(coefficient of restitution 0.9), and begins each trial
moving at a speed ranging from 6 m/s to 8 m/s at a
random heading and position 4m from the goal area.

A. Deliberative Processes
In the simulation experiments conducted, the robot was

equipped with three different processes to predict the
trajectory of the ball. Each of these processes differ in the
fidelity of prediction, the internal knowledge
representation used to predict the future trajectory of the
ball, and the amount of processing necessary to compute
this future trajectory. No claims as to the appropriateness
of these processes or their knowledge representations are
made by this work. The processes used have been chosen
solely so that they will differ from one another in terms of
their computational cost when used by the robot and the
accuracy of their predictions. This is been done in an
effort to simplify the evaluation of the presented
framework and other processes may be substituted
without loss of generality.

The three processes used are termed the binary,
qualitative, and quantitative processes respectively. Their
names reflect the manner in which each process reasons
about the motion of the ball and its reactions to collisions
within the environment. Each process is responsible for
predicting the future trajectory of the ball and if that
predicted trajectory results in the ball traveling to the goal
area, generating a plan for the robot to intercept the ball.
Details as to how each process do this follow.

The binary process is the simplest of the three. It
makes its predictions about the future path of the ball
based solely upon one factor, if the ball’s current path will
enter the goal or not. This simple reasoner assumes the
ball will continue moving along its current path until it
reaches an object in the environment (wall or static
player) or the goal. If the ball will collide with the

environment, no further prediction can be made by this
process, so no interception plan is generated. If the ball’s
current path will take it to the goal area, a plan is
generated to move the robot to an interception point just
outside of the goal area.

The remaining two process utilize information about
the current motion of the ball and the direction of any
potential collisions to predict the future ball trajectory.
To do this, the qualitative and quantitative process both
use the current motion of the ball (in terms of its
horizontal and vertical velocity) and the direction in
which the ball may collide with the environment
(represented as the collision contact normal). These two
elements are shown in Figure 6.

Goal Area

Static
Obstacles

4m

5m

These processes then use this information to search
their knowledge base for information pertaining to
collisions with similar characteristics. Once knowledge
considering a similar collision is found, it is used to
extrapolate the motion of the ball after the collision. Both
the qualitative and quantitative process may then use the
resulting prediction recursively in order to increase the
resulting prediction horizon (e.g. trajectory after 2 or
more collisions).

The primary difference between the qualitative and
quantitative process lies in the internal format used to
represent the ball and collision information as well as the
knowledge used to describe ball-environment interactions.
The qualitative process represents ball motion, collision
normal, and knowledge using a sign calculus [10]. The
quantitative process, however, stores these values in
absolute numeric terms. Examples of the internal
representations used by the qualitative and quantitative
process are shown in Figure 7.

The time necessary for each deliberative process to
compute its predictions is based upon the amount of
knowledge each process must search in order to find a
relevant match. The qualitative process must execute
approximately 100 search operations in order to find a
matching knowledge element. The quantitative process
must search approximately 300 knowledge elements. For
the purposes of this experiment, one knowledge element
may be examined in 0.1ms. In addition, each process is
assumed to result in 10ms of unavoidable overhead. As a
result, time necessary to predict a trajectory involving a
chain of one, two, or three ball-environment interactions
is shown in Figure 8.

B. Simulation Experiment I
 Two experiments were conducted. The first
experiment examined the ability of the system to learn

Figure 5. Typical environment used in experimental evaluation.
Red circles represent static players/obstacles in the field.

Ball Contact Normal
(Nx,Ny) y

Ball Motion
(Vx,Vy) Obstacle x

Figure 6. The qualitative and quantitative deliberative processes use
qualitative and quantitative representations of the ball velocity and
contact normals in order to predict the ball's motion and generate an
interception plan.

estimates of deliberative process solution quality (process
profiles) based on a limited number of perceptual features
describing the current instance of the ball interception
task. The features used in this and experiment two are
shown in Figure 9. In order to learn the process quality
profiles, the robot executed 180 trials of the interception
task in which it used one of its deliberative processes to
predict the ball trajectory and generate an appropriate
interception plan. A prediction and plan was made every
200ms. After each 200ms cycle, the prediction generated
by the process was evaluated by measuring the Euclidean
distance between the predicted position of the ball and the
actual resulting position of the ball. This error in
prediction then served as a feedback signal to the
coordination framework as described in Section III. After
each set of 30 trials, the process profiles learned by the
robot (Q) were compared against this evaluation metric
(the distance between the ball’s location predicted by a
particular deliberative process and its actual position).
This serves as a measure of how accurate the robot’s
learned process profiles are to the actual solution quality
generated by each process in a particular 200ms interval
of the ball interception task. This training period was then
repeated for each of the three deliberative processes.

C. Simulation Experiment II
The second experiment examines the utility of the

proposed coordination framework in terms of task
performance and resource minimization. Using the

Representation Ball
Motion
(Vx, Vy)

Contact
Normal
(Vx, Vy)

Resulting
Motion
(Vx, Vy)

Qualitative (+,-) (-.+) (-.-)
Quantitative (2.0,-10.0) (-0.71, 0.71) (-7.7, -2.1)

Figure 7. Example of the knowledge representation used by the
qualitative and quantitative deliberative processes.

Deliberative
Process

1 Collision 2 Collision 3 Collision

Binary 10ms N/A N/A
Qualitative 20ms 30ms 40ms
Quantitative 40ms 70ms 100ms

Figure 8. The time necessary for each deliberative process to
predict the ball's motion and generate an interception plan for a
trajectory that results in the specified number of collisions.

Problem
Feature

Description Values

Ball Distance Distance between the
ball and the robot

Short (0 to 1m)
Medium (1 to 2m)

Far (>2m)
Ball Speed Speed of the ball within

the environment
Slow

Medium
Fast

Impeding Wall
Collision

Will the ball’s current
trajectory result in a

collision with the wall

True
False

Impending
Object Collision

Will the ball’s current
trajectory result in a

collision with an object

True
False

Direction of
Ball Movement

Is the ball moving
towards the goal or not.

Towards Goal
Away from Goal

Figure 9. Problem features and used in the ball interception task.

process profiles learned in experiment one, the robot
executed 20 runs of the ball interception task. Each run
consisted of 100 trials. During the execution of each trial
in experiment two, however, the robot would use the
learned process profiles to select which deliberative
process to use for predicting the ball trajectory and
generating the appropriate interception plan. The
deliberative process for each 200ms interval was selected
using the process profiles so that the highest quality
prediction was made in the least amount of time. This
process is discussed in Section III. After the process to
generate the interception plan is selected, the robot
follows the plan until the start of the next 200ms cycle in
which the coordination process begins once more. The
trial ends when the ball is intercepted, enters the goal
area, or stops moving. The robot’s performance in the
interception task is measured in terms of the number of
successful interceptions and the total amount of time
spent generating plans to intercept the ball. The robot’s
performance using the proposed coordination framework
was compared against three controls: a robot that always
used the fastest deliberative process (binary process), a
robot that always used the deliberative process with the
most accurate predictions (quantitative process for 10ms),
and a robot that randomly selects the process to generate
the interception plan.

V. RESULTS
For experiment 1, the root mean squared error between

the learned process profiles and the actual solution quality
resulting from using a deliberative process in experiment
one is shown in Figure 10. As can be seen, the estimated
solution quality for each of the possible process profiles
converges to between one and two. This indicates that the
robot successfully learns the quality of prediction to
expect from each deliberative process. While the process
quality estimates learned by the system converge to
values reasonably close to the actual values, and these
estimates improve with experience, they alone are not
suitable to determine if the process profiles learned are of
any value to the robot. In order to determine this, the
performance of the robot when using these estimates for
deliberative coordination needs to be examined. The
results from experiment two shown in Figures 10 and 11
provide such an examination.
 Depicted in Figure 11 are the statistics concerning the
performance of the robot in the object interception task
measured in terms of the percentage of successful ball
interceptions that occurred. The bars in this figure denote
95% confidence intervals. As can be seen in the figure,
the proposed coordination framework results in the
highest success rate for the object interception task (70%).
It should be noted, however, that the difference between
the task success rate for the proposed framework and
control which always selected the most accurate process
(the quantitative process applied for 10ms) is not
statistically significant. It should also be mentioned that
in a number of trials (~20%), interception failure were
due to the physical limitations of the platform. In these

trials, when the ball was initialized at a high velocity (7-
8m/s) and with a unobstructed initial heading directed
towards the goal, the physical characteristics of the robot
were the limiting factor preventing interception and not
necessarily the deliberative processes (e.g. the robot was
physically unable to travel to the interception location in
time). These high ball velocities were deemed acceptable,
however, in order to ensure that the task remained both
reasonably challenging and time critical. 0

2

4

6

30 60 90 120 150 180

RM
S
Er
ro
r

Training Trials

RMS Error Between Learned Process Quality and
Actual Process Quality

Binary

Qualitative
(2ms)
Qualitative
(3ms)
Qualitative
(4ms)
Quantitative
(4ms)
Quantitative
(7ms)
Quantitative
(10ms)

While the performance of the coordination framework
and the accuracy-based control were not statistically
significant, the computational cost of the two (measured
in total computation time), significantly differ. The
computational load of each system is shown in Figure 12.
As can be seen in this figure, the total time spent by the
robot performing reasoning for each set of 100 trials when
using the coordination framework is almost half that used
by the accuracy- based control. This result, coupled with
those shown in the previous figure demonstrate that the
deliberative coordination in a mobile robot may have a
significant impact both in terms of task success and in
resource minimization.

Figure 10. Depicts the RMS between learned solution quality
estimates for using each deliberative process (Q) and actual solution
quality generated by each process.

0.701952
0.560309 0.617903

0.6971

0

0.2

0.4

0.6

0.8

Coord. Framework Fastest Random Most Accurate

Percentage of Successful Ball Interceptions vs.
Deliberative Process Selection Method

VI. DISCUSSION AND CONCLUSION
The simulation results depict that the proposed

coordination framework results in performance matching
that of the most accurate control in the domain tested
while reducing the amount of computation necessary to
achieve that performance. The benefit afforded by the
coordination framework, however, is dependent on the
properties of the domain in which the robot will be
deployed. In the domain examined, robot soccer, high
performance is preferable. Thus, deliberative behavior
that maximizes performance while minimizing the
computation necessary to achieve that performance will
allow the robot to spend additional processing time upon
other tasks (e.g. perception). Alternate domains,
however, may place a premium on computation reduction
(and its potential power savings). Such tradeoffs are
domain dependent but can be incorporated into the
proposed framework by modifying the process selection
function described in Section III.

While flexible in this regard, the coordination
framework also has several limitations. In particular,
coordination requires the robot possess knowledge
concerning the performance characteristics of its available
deliberative processes. This knowledge may be difficult
for the designers to provide and thus necessitate
significant amounts of training. As a result, the approach
is likely best suited to domains in which such training is
feasible. Exploring the sensitivity of the framework to
inaccurate or incomplete performance estimates may help
better characterize this limitation and is one of several
avenues of future research that are being pursued.

Figure 11. Task performance in terms of the percentage of
successful interceptions. The control are described in Section 4C.

20760

3798

14573

35351

0

10000

20000

30000

40000

Coord.
Framework

Fastest Random Most Accurate

Ti
m
e
(m

s)

Total Time Spent via Deliberative Processes in
Interception Task

Figure 12. The average amount of time spent reasoning by each
deliberative process over 100 trials. Bars indicate 95% confidence
intervals

[2] Gagliolo, M. and J. Schmidhuber, "Learning dynamic algorithm
portfolios." Annals of Mathematics and Artificial Intelligence 47(3-4):
295 – 328, 2006
 [3]Wolpert, D, “The lack of a priori distinctions between learning
algorithms.” Neural Computation 8(7): 1341-1390, 1996.
[4] Rice, J.R., “The algorithm selection problem.” Advances in
Computers, 15:65-118, 1976.
[5] Guo, H. Algorithm selection for sorting and probabilistic inference:
A machine learning-based approach. PhD Thesis, Kansas State
University.
[6] Cox, M.T., “Metacognition in computing: a selected research
review.” Artificial Intelligence 169(2):104-141.
[7] Fink, E. How to solve it automatically: Selection among problem
solving methods.AIPS, 1998.
[8] Leyton-brown, K., Nudelman,E., Andrew, G., Mcfadden, J.,
Shoham, Y. A portfolio approach to algorithm selection. IJCAI
2003.1542-1543, 2003. REFERENCES
[9] Arkin, R.C. Behavior based robotics. MIT Press, 1998.

[1] Newcombe, N. S. and J. Huttenlocher , Making Space: The
development of spatial representation and reasoning. Cambridge, MIT
Press, 2000.

[10] Kleer, J.D., Multiple representations of knowledge in a mechanics
problem solver, IJCAI-77, p. 299-304, 1977.

	I. INTRODUCTION
	II. Related Work
	III. A Framework for Deliberative Coordination in a Mobile Robot
	IV. Simulation Experimental Verification
	A. Deliberative Processes
	B. Simulation Experiment I
	C. Simulation Experiment II

	V. Results
	VI. Discussion and Conclusion

