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Abstract—We present a method for representing, 
communicating and fusing distributed, noisy and uncertain 
observations of an object by multiple robots. The approach 
relies on re-parameterization of the canonical two-
dimensional Gaussian distribution that corresponds more 
naturally to the observation space of a robot.  The approach 
enables two or more observers to achieve greater effective 
sensor coverage of the environment and improved accuracy 
in object position estimation.  We demonstrate empirically 
that, when using our approach, more observers achieve 
more accurate estimations of an object’s position. The 
method is tested in three application areas, including object 
location, object tracking, and ball position estimation for 
robotic soccer.  Quantitative evaluations of the technique in 
use on mobile robots are provided. 
 
Index Terms—distributed sensing, multi-robot coordination 

I. INTRODUCTION 

Typically, individual robots can only observe part of their 
environment at any moment in time.  In dynamic 
environments, information previously collected about 
currently unobservable parts of the environment grows 
stale and becomes inaccurate.  Sharing information 
between robots can increase the effective instantaneous 
visibility of the environment, allowing for more accurate 
modeling (at whatever level) and more appropriate 
response.  If it is processed effectively, information 
collected from multiple points of view can provide 
reduced uncertainty, improved accuracy and increased 
tolerance to single point failures in estimating the location 
of observed objects. 

In order to meet the time demands of a highly dynamic 
environment (e.g. robotic soccer), the information 
transmitted between robots must be minimal and the 
computational demands to combine their observations 
must be minimal.  Our approach makes use of a few 
easily obtainable parameters describing an observation 
and simple computations to meet these needs. We use 
two-dimensional statistical representations of target 
location observations generated by individual robots.  
These are combined independently on each robot to 
produce improved estimates of target locations. 

A more detailed version of this work is presented in a 
Carnegie Mellon University technical report [21]. 

II. BACKGROUND AND RELATED WORK 

Two areas of robotics research are related to this work:  
localization and distributed sensing. 

Two common probabilistic methods used for localization 
in robotics are Kalman filters [20] and Monte Carlo 
Localization [9].  Kalman filters have been used to 
localize robots within mapped environments.  Typically, 
this approach is used to fuse position estimates from 
multiple synchronous or asynchronous sensors on a single 
robot [10][13][15][19].  Monte Carlo localization has 
been specifically applied to the multiple robot localization 
problem [9].  While most of these approaches rely on 
previously obtained maps of the environment, some 
recent research has been ongoing in simultaneously 
mapping the environment while localizing the robot 
within it [3][8].  Kalman filters have also been used for 
object tracking in several methods.  A few examples are: 
estimation of error between different coordinate frames to 
determine the relative locations of objects [20], 
identification and prediction of future object locations 
[18][22], real-time tracking and camera pointing [23], and 
tracking for grasp using proximity sensors [17]. 

The ability to rapidly share distributed observations is 
critical in distributed dynamic tasks like robotic soccer. 
Most robot soccer team approaches use vision and/or 
sonar to localize and vision to locate objects in the 
environment.  Some share information for planning and 
dynamic role assignment (ART [16]) and others share 
information to fill in blank areas in the world model (CS 
Freiburg [10][11], RMIT [4], 5dpo [7]).  Sharing and 
merging overlapping information for object localization 
has received little attention.  Two of the few examples are 
the use of multiple sequential robot observations as input 
to Kalman filter tracking [5][6] and updating of grid cell 
occupancy probabilities using sequential observations 
from multiple robots [12]. 

The task we address is distinct from the others described 
above.  We focus on fusing multiple simultaneous 
observations of the same object from distributed vantage 
points (as opposed to observations from the same vantage 
point over multiple instants in time).  Our objective is to 
provide more accurate instantaneous estimations of the 
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location of dynamic objects that are simultaneously 
visible by multiple robots without relying on historical 
data.  Additionally, most probabilistic methods rely on 
decomposing the space into discrete cells.  Our approach 
does not require discretization, working in the continuous 
spatial domain. 

III. FUSING GAUSSIAN DISTRIBUTIONS 

A. Overview 

We represent a single observation of an object as a two-
dimensional Gaussian distribution (Figure 1).  The center, 
or mean, of the distribution is the estimated location of 
the object and the standard deviations along the major and 
minor axes of the distribution correspond to estimates of 
the uncertainty (or noise) in the observation along each 
axis. The distribution corresponds to the conditional 
probability that the object is in any location, given the 
observation. 

Provided two observations are independent and drawn 
from normal distributions, the observations can be merged 
into an improved estimate by multiplying the 
distributions.  To meet cycle time requirements of a 
highly reactive system, an efficient method of multiplying 
distributions is necessary.  We use a two-dimensional 
statistical approach, first introduced by Duffin [1], based 
on Bayes’ Rule and Kalman filters. In this approach, 
multi-dimensional Gaussian distributions can be 
combined using simple matrix operations.  Since 
multiplying Gaussian distributions results in a Gaussian 
distribution, the operation is symmetric, associative, and 
can combine any number of distributions in any order. 

Our approach, then, is to collect observations of multiple 
robots (as in Figure 2), then merge the corresponding 
Gaussian distributions to yield a better estimate of the 
location and uncertainty of the observed object.  

The canonical form of the two-dimensional Gaussian 
distribution depends on standard deviations, σ, a 
covariance matrix, C, and the mean, as shown [20]: 

where 

The parameterization of the Gaussian in this 
representation does not correspond to the parameters of 
our observations (Figure 1).  We address the problem 
through a transformation of parameters from observation 
form to canonical form.  In this form, distributions can be 
merged using matrix operations.  After the observations 
are merged, we extract the mean and standard deviations 
from the merged result (these correspond to the estimated 
location and uncertainty of the observed object). 

B. Mathematical Details 

We wish to determine the mean, standard deviations, and 
angle of the merged distribution to estimate object 
position and characterize the quality of the estimate.  We 
compute these same parameters from sensor readings 
(mean and angle) and models of sensor error (deviations).  
Thus, we require a method of determining combined 
parameters from those of individual distributions. 

The matrix formulation we use, adopted from Smith and 
Cheeseman [20], makes this computation relatively 
simple.  The mean, standard deviations, and orientation of 
the major axis are independent of scaling; they can be 
extracted from the merged covariance matrices without 
the need to consider absolute probabilities. 

The covariance matrix of an observation, C, is initially 
determined from the major and minor axis standard 
deviations in the local coordinate frame (designated L). 

Since observations may be oriented arbitrarily with 
respect to the global coordinate frame, they be 
transformed to this frame.  Rotation of X in equation 1 by 
leads to the following relationship: 
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Figure 1.  Gaussian distribution parameter
definition: mean (x, y), angle of major axis θ,
standard deviations along major and minor axes
σmaj and σmin, and distance to mean d.  

Figure 2.  Block diagram representing the multi-distribution merging 
process.  The multiplication step is conducted using the mathematical 
formulation described above.  Each subsequent distribution is merged 
with the previous merging result.
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where θ is the angle of the distribution’s principal axis 
with respect to the global x-axis.  This rotation 
accomplishes the transformation from observation 
parameters to the canonical form.  Once the observation is 
in the canonical form, we continue merging. 

Two covariance matrices are combined into a single 
covariance matrix representing the combined distribution: 

The mean of the resulting merged distribution, X, is 
computed from the individual distribution means and 
covariance matrices. 

The angle of the resulting principal axis is obtained from 
the merged covariance matrix: 

where A, B, and D represent the components of the 
covariance matrix (upper left, upper right/lower left, and 
lower right, respectively). 

Lastly, the resulting major and minor axis standard 
deviations are extracted by rotating the covariance matrix 
to align with those axes: 

and the resulting major and minor axis standard 
deviations can be directly computed from the covariance 
matrix by reversing Equation 2. 

C. Simulated Example 

Two robots at different locations observe a target object 
(Figure 3).  Each observation produces a Gaussian 
distribution of possible locations for the object; typically, 
each distribution will provide greater accuracy along a 
different direction than the other distributions.     

For this example, the robots are positioned with relative 
headings 90 degrees apart and looking directly at the 
target.  The target is located at a position (10,10).  The 
two simulated robot observations were drawn from a 
random normal distribution centered at the object’s true 
position.  The major and minor axis standard deviations of 
these distributions were (5,3) for robot 1 and (3,1) for 
robot 2.  Robot 1 reports a mean of (12.34, 9.02) and 
robot 2 reports a mean of (9.90, 11.69).  In the top of 

Figure 4, the distributions resulting from the individual 
measurements by robot 1 and robot 2 are shown. 

The result of merging distributions is shown in the bottom 
of Figure 4. It is easily observed that the implied 
uncertainty is reduced, and the resulting distribution is 
centered more accurately relative to the actual target 
position.  The merged mean is (9.97, 9.57), with major 
and minor axis standard deviations (0.89, 0.49). 

IV. ASSUMPTIONS 

The primary assumption upon which the mathematics is 
abased is that sensor errors are independent and 
distributed normally.  As demonstrated by the camera 
calibration procedure (see Hardware Platform section), 
this assumption approximately holds for this system. 

The robot coordinate frames are assumed to be 
coincident.  Without this, data are incompatible and the 
merging is meaningless. 

We assume robots to be perfectly localized.  Robot 
positional uncertainty is not taken into account in the 
generation of target location distributions, as at the 
current time our method of localization does not provide 
uncertainty estimates.  If the errors in localization can be 
modeled as a Gaussian, the mathematics to take this 
uncertainty into account is similar to that of the merging 
of measurement distributions.  The errors in robot 
configuration (x, y, θ) are geometrically mapped to 
standard deviations along axes oriented parallel to the 
major and minor axes of the measurement distribution.  
This creates a Gaussian approximation to localization 
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Figure 3.  Left: Two robots see a target from different positions.  Right:
The robots’ observations generate Gaussian distributions; uncertainty
(1-σ ovals shown) increases with distance. 

Figure 4.  Top:  The individual distributions, from observations, to be
merged.  Bottom:  Resulting merged distribution, with reduced error
and higher accuracy in the mean. 
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error.  The standard deviations of the observations can 
then be “grown” to accommodate positional error by 
merging it with the position distribution (re-centered at 
the measurement distribution’s mean).  Preliminary 
calibration of the Cye odometry indicates that a Gaussian 
approximation is likely reasonable. 

 Several additional assumptions were introduced for 
simplicity in experimentation and camera calibration.  
Measurements are assumed simultaneous.  High frame 
rates and low object speeds make this reasonable; largely 
different readings are not merged.  Camera parameter 
calibration assumes that objects are at a known height 
from the ground plane; unknown objects are therefore 
assumed to be on the ground plane.  This reduces the 
transformation from three dimensions to two.  This is not 
a highly restrictive limitation, as common obstacles, 
agents, landmarks (etc) in environments are generally on 
the ground plane.  Last, objects are assumed to be unique 
to avoid the necessity of solving the association problem. 

V. VALIDATION ON ROBOTS 

A. Hardware Platform 

The hardware platform used is a modified Cye robot, an 
inexpensive and commercially available platform (Figure 
5).  This platform consists of a drive section and a trailer.  
The drive section uses two-wheel differential drive and is 
equipped with a front bump sensor; the trailer is passive.  
On board the Cye is a motor controller processor.  High 
level commands and image processing algorithms are 
implemented in C and Java on a Pentium 266 (running 
Linux) using TeamBots [2].  A wide field-of-view NTSC 
video camera provides sensory input.  CMVision performs 
color analysis and color blob detection and merging [2].  
Robots communicate with wireless Ethernet. 

Camera calibration was conducted at two levels.  First, 
Flatfish [14] determined the parameters describing the 
aberrations of the lens.  These parameters enable mapping 
from pixel location to points in three-space. 

A second calibration step characterizes systemic errors.  
Targets are placed at a set of fixed distances and angles 

relative to the robot and the distance and angle calculated 
by the vision system is recorded.  Comparing measured 
distance versus actual distance provides a mean bias as a 
function of measurement distance.  After correcting 
measurements for this bias, proportional errors are 
determined.   

A histogram of these sensing errors determined that the 
corrected distances are distributed about actual distance 
approximately normally (see Figure 6). From these errors, 
a standard deviation in percent distance can be directly 
determined.  A similar process was completed for angle, 
though no bias correction was conducted.  These 
deviation functions are used to compute parameters of the 
observation distributions. 

B. Experimental Setup 

To test the approach, an experiment was devised in which 
three robots track an object through several sequential 
points in the environment.  In this way, the accuracy of 
single-robot measurements can be directly compared to 
the accuracy obtained by combining data from two and 
three robots.  An illustration of this experimental setup is 
shown in Figure 7; each robot is 1.5 meters from the 
origin of the coordinate frame. 

Figure 7.  Experimental setup for validation. Ball locations marked as
circles along trajectory. Dotted lines show the global coordinate frame. 
 

Figure 5.  The modified Cye robot platform. 

Figure 6.  The histogram of distance error as a percent of distance
is approximately Gaussian. 



The ball was placed at a series of known discrete points 
along a trajectory.  At each point, the ball location 
measured by each robot was recorded.  These individual 
observations were merged together and in pairs. 

C. Experimental Results 

The experimental results are shown graphically in the 
following figures.  In Figure 8, example observed 
trajectories are shown.  An example trajectory seen by an 
individual robot is compared to the actual path of the 
target is shown at the top.  In the middle, a merged result 
from two robots is similarly compared.  The merged result 
from all three robots is shown at the bottom. 

In Figure 9, trajectory errors point-by-point and mean 
error are shown and compared for all single-robot, two-
robot, and three-robot measurements. 

While individual trajectories are sometimes accurate at 
single points, (in fact, occasionally more accurate than the 
combined information) the consistency of accuracy shown 
in the combined results is absent in the single-robot 
trajectories.  This is best characterized by plotting the 
mean error of single-robot observations, two-robot 
observations, and three-robot observations (Figure 10). 

It should be noted that improvement in x is of a smaller 
degree than that in y.  While this one experiment may not 
be typical, this is likely a result of the specific experiment 
configuration.  In this case, only one robot is aligned 
along the y-axis to improve accuracy along the x-axis, 
whereas two robots have better accuracy along the y-axis.  
This imbalance may be the cause of this discrepancy. 

VI. TEST APPLICATIONS AND RESULTS 

In each of these tests, robots begin in precisely known 
starting positions.  Deviations from these positions are 
small or zero.  Thus, assumptions on robot localization 
and coordinate frames hold.  All targets are constrained to 
the ground plane (except in soccer) to remain within the 
capabilities of the vision system calibration. 

A. Location and Retrieval of Unseen Targets 

This test application for this method demonstrates the 
ability to increase the effective field of view of agents.  In 
this experiment, one robot is positioned so that it can see, 

Figure 10.  Mean position error in x and y over all 
single observations, all 2-observation merges, and all 
3-observation merges. 

Figure 8.   Reported data versus actual ball position.  Top:
Robot 3’s estimate.  Middle:  Robots 2 and 3 merged estimates
Bottom:  Robots 1, 2, and 3 merged estimates. 

Figure 9.  Position error in x and y for each 
measurement.  Each merging lowers position error 
bounds and reduces outlier frequency. 
 



but not reach, the target object.  The other robot cannot 
initially see the target object, even with camera panning, 
but the path to the object is unobstructed (Figure 11). 

By sharing visual information, the unobstructed robot 
immediately obtains a target location without requiring 
random search.  The robot is able to successfully locate 
the object using information provided exclusively by the 
second robot.  Once the object is located, it effectively 
reaches and manipulates the target using the merged 
position provided by both robots. 

B. Blind Robot Target Tracking 

This experiment is designed to test increased effective 
field of view, rapid target acquisition, and tracking using 
a merged position.  In this experiment, three robots are 
positioned around a target area.  A target (soccer ball) is 
moved throughout the target area, and all three robots 
track the ball using the position obtained by merging all 
three observations.  The robots are able to track the target 
in most cases, even at higher speeds.  When one robot 
loses sight of the target, it immediately looks in the 
correct direction and quickly recovers the object.  Even 
when the target travels within the line of sight of a single 
robot (with diminished accuracy in this dimension), the 
additional point of view typically makes up for this lack.   

One of the robots is subsequently blindfolded by covering 
the camera (with a box, for example, as in Figure 12).  
For convenience, these robots are typically positioned at 
relative headings of 90 degrees.  The ability of the blinded 
robot to track the ball using only the merged position 
from the other two is not substantially diminished. 

 

C. Robot Soccer 

This approach to distributed sensing was applied to the 
CMU Hammerheads RoboCup middle-sized team in 2000 
(Figure 13).  At each cycle, robots would transmit the 
position of the ball, if visible, so that it could be combined 
with all other current observations.  Widely conflicting 
observations (for example, distributions with means 
differing by at least 2 standard deviations) were not 
merged.  This eliminates confusion resulting from false 
targets (or more generally, multiple targets) and data 
collected in incompatible coordinate frames.  This, in 
theory, would provide robots far from the ball with more 
accurate positions and allow robots that could not see the 
ball to quickly locate it. 

The CMU Hammerheads 2000 team robots were localized 
entirely by on-board odometry.  This odometry drifts over 
time, leading to differences in coordinate frames.  As a 
result, the primary impact of distributed sensing was to 
provide a starting point for robots to locate balls that had 
become invisible.  This use of shared information did 
allow robots to more quickly locate a lost ball during 
competition when it was not entirely obstructed.  Despite 

Figure 13.  A test run of robot soccer.  Attacker (right) attempts to score 
on blue goal defender (left). 

Figure 11.  Unseen target location and pushing experiment setup. 
Top left:  Robot 1 (closer) cannot see target from its starting location, 
even with camera panning.  Top Right:  Robot 1 proceeds directly to 
the target without searching, given the target location by Robot 2. 
Below::  Robot 1 pushes target to goal using a merged target position .

Figure 12.   Blind robot ball tracking experiment setup.  Top:  In this
experiment, three robots track the ball with at a location generated by
combining all three observations.  Bottom:  In this experiment, a robot is
blinded (for example, a box covers the left robot’s camera) and it still
successfully tracks the ball with combined data from the remaining two.



the discrepancy in coordinate frames, the coordinate 
frames were generally coherent enough that when a robot 
looked at a potential target position, the ball became 
visible within the camera’s wide field of view. 

VII. CONCLUSIONS 

We present a method for using a simple representation of 
two-dimensional Gaussian distributions to fuse target 
position estimates from two or more robot agents.  This 
approach is based on accepted Bayes’ Rule and Kalman 
filter theory and implements real-time sensor data fusion 
on a reactive multi-robot system for several different 
applications.  The successful ability to fuse these 
statistical measurements and the ability to receive position 
estimates on targets not visible allows our robots to 
quickly acquire targets and to more accurately estimate 
object position.  While this work is used vision for 
sensing, the approach can be applied to any sensor or 
suite of sensors that can be modeled by approximately 
Gaussian distributions. 

This approach to distributed sensing and information 
sharing is very promising based on the applications 
presented here: unseen target location, accurate target 
acquisition and manipulation, and robot soccer.  However, 
several extensions of this work are necessary for 
practically implementing this method of distributed 
sensing and information sharing.  Even in well-localized 
systems, disparity between coordinate frames can arise.  
Such disparity must be accommodated and/or corrected.  
Autonomous re-merging of coordinate frames using 
sensors will be investigated.  Additionally, well-localized 
robots still maintain some uncertainty in position, as 
computed by the localization.  The accommodation of 
robot positional uncertainty will be incorporated into the 
target position distributions.  Lastly, it may be possible to 
remove the ground plane for unknown objects; this 
involves a different method of transforming pixel location 
into world coordinates and requires further research. 
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