
  

 

I. INTRODUCTION 

No longer does the idea of robot emotions seem far-

fetched; not their experiential side, of course, but rather 

those manifestations of emotion, especially in robots created 

in human likeness, which would be beneficial for successful 

interaction with people.  Nonetheless, the concept of robot 

emotions is still a new one, with a myriad of questions to be 

answered, not the least of which is: What is emotion? In 

robotics, it is often used as an umbrella term for all things 

affective, but based on our previous work (see [1] for a 

summary), we believe that it would be more beneficial to 

model each affective phenomenon explicitly. Going beyond 

emotions brings the entire spectrum of affect into play, 

providing a comprehensive framework with which human-

robot interaction could be improved. The robotic framework 

we propose that combines a number of different phenomena 

and emphasizes their interconnectedness and synergy is 

called TAME (Traits, Attitudes, Moods, Emotions). By 

using TAME, in this paper we’d like to address some of the 

open questions that arise in the area of implementing and 

testing humanoid affect.  

II. OVERVIEW OF TAME 

The idea behind TAME is simple: in both humans and 

animals, affect, of which emotions are, though integral, only 

a part, has been proven beneficial for survival. The same 

general mechanisms that help us live and prosper may 

facilitate both effectiveness and acceptance of humanoid 

robots, if such robots are expected to live among us. In 

particular, there are four different phenomena that can be 

classified as affective: personality Traits, affective Attitudes, 

Moods and Emotions, each performing its own role in 

humans and having distinct generation mechanisms. One 

dimension along which they differ is time, including both 

duration and rate of change. Emotions are the most short-

lived of the four, and are fast to rise and fast to decay; moods 

are longer in duration and change slowly and cyclically; 

attitudes, once formed, last for a while and are hard to 

influence; and finally, traits are more or less time-invariant. 

Another dimension of difference is object-specificity: 

emotions and attitudes arise in response to a specific object 
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or situation, whereas traits and moods are diffuse, global, 

and apply at all times. The combination for these four 

affective types should be especially beneficial for 

humanoids, as it is suitable for long-term interaction and 

development of companionship (through, e.g., attitudes). 

Psychological and mathematical foundations behind the 

framework have been discussed in more detail elsewhere ([2, 

3, 4]). In brief, the Affective Module containing the 

aforementioned four components fits within behavior-based 

robotic control [5] by first processing relevant perceptual 

input (be it color and distance to certain emotion-eliciting 

objects or level of light affecting moods) and then 

influencing behavioral parameters of affected low-level 

behaviors and/or the behavior coordination gains as they are 

comprised into behavioral assemblages (Figure 1). 

 

 

Figure 1: Conceptual View of TAME 

III. CHALLENGES OF HUMANOID AFFECT 

Although TAME covers a wider range of robotic 

behaviors than application of emotions only, similar 

implementation and assessment challenges remain. In the rest 

of the paper we will discuss what we believe these to be, and 

how they could be successfully addressed.   

A. Subtle and Volatile Nature of Affect 

Unlike other fields of robotics, e.g., vision or gait control, 

where the goals, tasks and measures are straightforward and 
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objective, the advantages of affect are much harder to 

quantify. In principle, affect influences many spheres of our 

lives and performs a multitude of functions, but when 

applied to humanoid robotics, it is often targeted towards 

communication between humans and robots. What 

advantages would it bring to human-robot interaction? What 

kind of tasks would benefit from its inclusion? Are there 

other functions than communicative that could be useful? 

What is the best way to show effectiveness of affective 

components and how to disambiguate between them? Most 

of these questions are asked in other areas of robotics, but 

the subtle and volatile nature of affect makes answering them 

in this case especially challenging.  

First of all, emotions are short-term and fleeting, and 

occur rather infrequently; therefore, it is unlikely that seeing 

a single expression of, for example, “joy”, in the entire 

interaction would make a large difference to a human.  

Moods produce only subtle, incremental changes in a robot’s 

behavior as its environment changes, and would not be 

immediately noticeable to the observer. Attitudes, even 

though often quite explicit, don’t usually form in a single 

interaction, and traits are best displayed across a variety of 

tasks and situations. All this: the relative infrequency and 

short duration of emotions, subtlety of moods, slowly 

changing nature of attitudes, and constancy of traits make 

affective phenomena best suited for long-term human-robot 

interactions. Although this by no means renders short-term 

robotic affect useless, it nonetheless makes finding 

appropriate tasks and scenarios non-trivial, especially given 

that longitudinal studies, though ideal, are very time and 

resource consuming. Finally, to disambiguate between the 

advantages of the four affective phenomena present in 

TAME, an experimental setup akin to lesion studies would 

be required, where each component is tested separately first, 

and then in combination; this, again, adds substantially to the 

complexity of the evaluation process. 

B. Recognizing and Comparing Robot Affect 

As there are at least two parties to any interaction, before 

any testing can begin we need to make sure that human 

interaction participants can correctly “read” any affect 

exhibited by a robot. Humanoids are not people – so how do 

we express affective robotic phenomena in a manner that 

they can be successfully recognized as such by humans? This 

problem is alleviated in part by our own nature: people treat 

any interaction partners, including computers, as social 

actors, applying to them similar social rules, given even 

minimal cues [7].  Whether or not such cues are sufficient to 

identify the underlying emotion/mood/trait/attitude can tested 

in a number of ways. First, a formal user study with a real 

robot can be conducted with the goal of testing whether the 

expressions were recognized as intended; this method, 

though time-consuming, provides the best idea of what 

worked and what didn’t, and how to improve it. Another 

approach would be to conduct a small pilot study prior to the 

main one, in which affect recognition would be tested, along 

with other things; this method would save time and 

resources, would still involve real robot interaction, but 

would be more limited in its findings. Finally, an online 

survey could be done, in which participants would be asked 

to identify the affective states of a simulated robot, either in 

an interactive or passive way; this method, though the least 

costly, would also be the least informative.  

A related challenge is comparing robotic affect between 

various platforms, as different platforms mean different 

capabilities: what would “fear” look like in a humanoid with 

a human-like face vs. one without any changeable facial 

features? Would one platform be easier to work with than the 

other? How much would the participants be biased by such 

physical manifestations? For example, physical features of a 

robot made with an entertainment purpose in mind may 

provoke an instantaneous affective response, whether or not 

it was intended by the experimenter [3]. The aforementioned 

affect recognition testing may in part address this problem, 

as it would be known ahead of time whether the intended 

affect was recognized, along with any unintended 

impressions, therefore these perceived but unintended 

phenomena can be corrected for later use. 

C. Robot Affect Assessment 

The challenges described above make determining the 

benefits of adding affective capabilities to humanoids 

especially arduous. As such, there are no hard rules or even 

guidelines for metrics of effectiveness of robotic affect. Most 

often, it is assessed by purely subjective means or more 

established psychological or sociological tests; sometimes, 

observational means are used, and yet more rarely objective 

measures are employed. The following subsections will 

discuss these methods and their challenges in more detail. 

a) Subjective assessment 

 Such assessment includes:  

 Self-reported information in the form of robot- and 

task-specific questionnaires/interviews, asking the 

participants about the quality of their interaction, 

namely how pleasant, easy, and natural it was, and 

whether they could distinguish any emotions or other 

affect in the robot. This method allows querying 

people’s perceptions of their interaction, but is very 

subjective and makes it hard to compare findings from 

studies by different experimenters. 

 Psychological and sociological measures (specially 

developed and validated tests to measure different 

aspects of interaction).  These tests can be used to 

assess subjects’ mood, emotional state, attitudes, 

presence, acceptance, and many other subjective 

states. Examples of such measurement scales include: 

Goldberg’s Unipolar Big-Five Markers (personality) 

[8], Positive/Negative Emotionality Measure (current 

mood) [9], Self-Assessment Manikin (emotional 

response) [10], International Affective Picture System 



  

[11], etc. The advantage of these is their documented 

validity across participants, thus they provide a more 

or less reliable set of data allowing comparison of 

users’ internal state and perceptions. 

b) Observational means 

These means can be tentatively divided into purely 

subjective (qualitative), and those that cross the bridge 

between identifying an individual’s perception of the 

interaction and distinguishing quantifiable benefits. Provided 

affect expression in robots is successfully implemented, we 

would expect people to act differently in response to a 

humanoid always behaving in a repetitive unemotional way, 

and in response to one that changes its behavior and 

expressions according to external and internal stimuli. The 

list below discusses these methods in more detail: 

 Independent observer assessment – a person 

(preferably an ethnographer, sociologist or 

psychologist) qualitatively characterizes the nature of 

interaction either real-time or via video. In this case, 

although user bias is removed, interpretation bias is 

introduced. 

 Behavioral analysis – this refers to analysis of micro- 

and macro-behaviors and speech utterances. In this 

case, the human-robot interactions are recorded; the 

behaviors to watch for are carefully selected and 

accurately described, and then are extracted from the 

video either automatically, or by independent human 

coders.  For example, suppose that the duration of 

mutual gaze is a good predictor of the quality of 

interaction – the longer the mutual gaze episodes, the 

more pleasant the interaction. Now we have a 

quantitative measure that would allow us to compare 

between robots that express affect and those that 

don’t. However, this method still suffers from 

interpretation bias: the definition of mutual gaze (e.g., 

angles, acceptable percent of deviation, minimum 

duration, etc.) needs to be worked out and adapted to 

the current experiment, and individual differences, 

such as personality and current state of mind have to 

be taken into account.   

 Physiological analysis - certain physiological 

responses (such as heart rate, skin conductance and 

temperature) can be measured before, during and after 

the interaction; such responses can be correlated with 

subjects’ emotional state and arousal level. Though 

seemingly more objective, this method still suffers 

from individual differences in responses and low 

reliability unless the equipment is individually 

calibrated. Additionally, the equipment is often 

cumbersome and its presence alone may influence the 

results. 

When combined with self-reported data, these methods 

can undoubtedly provide a clearer picture of the usefulness 

of humanoid affect. However, although some researchers 

believe that such behavioral and physiological measures are 

objective, it needs to be noted that interpretation bias should 

be carefully considered and removed to the greatest extent 

possible.  

c) Objective assessment  

Objective task-related measures allow quantifying benefits 

of robot affect through such variables as accuracy, 

performance success, time it takes to complete the task, 

resource usage and others, depending on a particular task 

and scenario. One clear-cut advantage of this method is the 

removal, to a large extent, of both subject and interpretation 

bias. We can measure two types of performance this way:  

 Directly influenced by robot affect – some affective 

phenomena are expected to provide task benefits 

regardless of whether any interaction is present. For 

example traits, in essence, suggest behavioral 

strategies optimized for certain types of tasks, 

environments and circumstances, and emotions help 

avoid pitfalls and attract attention to useful objects. 

This case is more straightforward and amenable to 

quantifiable assessment.  

 Indirectly influenced through participants’ behavioral 

changes – a person can change his/her actions in 

response to a robot’s affective behaviors, and this, in 

its turn, can lead to a change in overall performance. 

One notable example of this is presented in a very 

cleverly designed study [11], in which the authors 

measured task performance that changed as a result of 

a robot’s expression of anxiety during the scenario. In 

particular, as the robot’s anxiety (expressed by voice) 

increased, the participants were alerted to the 

impending deadline, and worked more efficiently.  

We believe that significant effort should be placed into 

developing objective measures for affective behavior 

assessment, especially given that the use of this method is 

almost non-existent in the current robot affect research (in a 

great part due to the challenges described earlier). Such 

measures would produce quantifiable and hopefully 

predominantly unbiased results. 

IV. CONCLUSION 

We are currently addressing the discussed open questions 

in humanoid emotions and affect by integrating the TAME 

framework within the Georgia Tech MissionLab
1
 [6] 

software system and prototyping it on a Nao humanoid robot 

(Fig. 2). This robotic platform is small, but sufficiently 

expressive, and we hope it will prove an adequate test bed 

for implementing humanoid affect and exploring the 

challenges and opportunities it provides. 

 

 
1 MissionLab is freely available for research and education at:  

http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/ 

http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/


  

 

Figure 2: Nao Robot (source Aldebaran Robotics) 
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