
This research is supported by DARPA/U.S. Army SMDC contract #DASG60-99-C-0081. Approved for Public Release;
distribution unlimited.

1

Selection of Behavioral Parameters: Integration of Discontinuous Switching via
Case-Based Reasoning with Continuous Adaptation via Learning Momentum

J. Brian Lee, Maxim Likhachev, Ronald C. Arkin

Mobile Robot Laboratory
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

Email: blee@cc.gatech.edu, maxim@cs.cmu.edu, arkin@cc.gatech.edu

Abstract

This paper studies the effects of the integration of
two learning algorithms, Case-Based Reasoning (CBR)
and Learning Momentum (LM), for the selection of
behavioral parameters in real-time for robotic
navigational tasks. Use of CBR methodology in the
selection of behavioral parameters has already shown
significant improvement in robot performance [3, 6, 7,
14] as measured by mission completion time and success
rate. It has also made unnecessary the manual
configuration of behavioral parameters from a user.
However, the choice of the library of CBR cases does
affect the robot's performance, and choosing the right
library sometimes is a diff icult task especiall y when
working with a real robot. In contrast, Learning
Momentum does not depend on any prior information
such as cases and searches for the "right" parameters in
real-time. This results in high mission success rates and
requires no manual configuration of parameters, but it
shows no improvement in mission completion time [2].
This work combines the two approaches so that CBR
discontinuously switches behavioral parameters based on
given cases whereas LM uses these parameters as a
starting point for the real-time search for the "right"
parameters. The integrated system was extensively
evaluated on both simulated and physical robots. The tests
showed that on simulated robots the integrated system
performed as well as the CBR only system and
outperformed the LM only system, whereas on real robots
it significantly outperformed both CBR only and LM only
systems.

Index terms: Learning Momentum, Case-Based
Reasoning, Behavior-Based Robotics, Reactive Robotics.

1. Introduction
This research is being conducted as part of a larger

robot learning effort funded under DARPA's Mobile
Autonomous Robotic Software (MARS) program. In our
project, five different variations of learning, including
learning momentum, case-based reasoning, and
reinforcement learning, are being integrated into a well -
establi shed software architecture, MissionLab [4]. These
learning mechanisms are not only studied in isolation, but

the interplay between these methods is also being
investigated.

This paper focuses on the interaction between two
such learning methods: case-based reasoning (CBR) and
learning momentum (LM). Both methodologies were
successfully used in robotic systems in different contexts
[2, 3, 8, 9, 10, 11, 12, 13, 14]. In this work these methods
are used to change behavioral parameters of a behavior-
based robotic system at run-time. Both algorithms have
already been shown, in isolation, to increase performance
in a robotic system in relation to navigating unknown
obstacle fields while trying to reach a goal position [2, 3,
6, 7, 14]. Learning momentum was shown to increase the
probabilit y that a robot would successfully reach the goal,
while case-based reasoning was shown to improve both
the robot’s probabili ty of reaching the goal as well as the
average time it takes for the robot to do so. Both
algorithms, however, have their drawbacks, and the
hypothesis of this research is that both algorithms could
complement each other and reduce these drawbacks by
running simultaneously and interacting with each other.

 Learning momentum as a stand-alone algorithm is
capable of executing only one strategy, and it therefore
has a problem when using a strategy in situations for
which a different strategy is better suited (see section 2.2
for an explanation on strategies.) Also, searching for the
"right" behavioral parameters usually takes too long. Both
of these problems result in long mission completion times
even though LM mission success rate is very high. CBR
can solve both of these problems by changing these
learning momentum strategies and by setting the
behavioral parameters in the right ballpark using the
library of cases in real-time.

CBR by itself also has its own drawbacks. First, it
allows for parameter changes only when the environment
has changed enough to warrant a case switch. Thus, in
between the case changes, the parameters stay constant
even though the environment may change to some extent.
Second, and more importantly, the behavioral parameters
as defined by each case in the CBR library may not be the
best parameters for a particular environment the robot
operates in. This may happen either because the
environment suff iciently differs from the closest match in
the library or because the library itself is not particularly
well optimized for the robot architecture it targets. In
order to avoid such a situation, the library size should be

2

large, and a large number of experiments should be
conducted to establi sh an optimal set of parameters for
each case in the library. Even though this needs to be
done only once, this solution still may be infeasible and is
almost always impossible when working with a real robot
since conducting such experiments is costly and time-
consuming. As an alternative, learning momentum can
provide the continuous search for the best set of
parameters in-between case switches. Thus, the
hypothesis is that by integrating the learning momentum
and case-based reasoning methodologies together for the
selection of behavioral parameters, the best of both
algorithms can be achieved.

Additionally, this work is meant to be a foundation
for future work. Currently, the CBR algorithm uses a
static library of cases. In the future, CBR and LM will
interact together to both learn new cases and optimize
existing cases for the CBR library.

2. Overview of CBR and LM Algorithms
2.1. Framework

Both CBR and LM work as parameter adjusters to a
behavior-based system. The adjustment happens by
changing the parameters of individual behaviors that
contribute to the overall robot behavior. Since the system
is developed within a schema-based control architecture,
each individual behavior is called a motor schema. Each
active motor schema produces a velocity vector. A set of
active motor schemas is called a behavioral assemblage.
At any point in time, the robot executes a particular
behavioral assemblage by summing together weighted
vectors from all of the active schemas in the assemblage
and uses the resulting vector to provide the desired speed
and direction of the robot. The combined learning system
was tested on the behavioral assemblage that contains
four motor schemas: MoveToGoal, Wander,
AvoidObstacles and BiasMove schemas. The
MoveToGoal schema produces a vector directed toward a
goal location from the robot's current position. The
Wander schema generates a random direction vector,
adding an exploration component to the robot's behavior.
The AvoidObstacles schema produces a vector repelling
the robot from all of the obstacles that lie within some
given distance from the robot. The BiasMove schema
produces a vector in a certain direction in order to bias the
motion behavior of the robot.

For this assemblage the following parameters are
changed by CBR module:
<Noise_Gain, Noise_Persistence,
Obstacle_Sphere Obstacle_Gain,
MoveToGoal_Gain, Bias_Vector_Gain,
Bias_Vector_X, Bias_Vector_Y >
The gain parameters are the multipli cative weights of the
corresponding schemas. The Noise_Persistence parameter
controls the frequency with which the random noise
vector changes its direction. Obstacle_Sphere controls the
distance within which the robot reacts to obstacles with
the AvoidObstacles schema. Bias_Vector_X and
Bias_Vector_Y specify the direction of the vector
produced by BiasMove schema.

Learning Momentum has control over the same
parameters except for the parameters related to the
BiasMove schema: Bias_Vector_Gain, Bias_Vector_X
and Bias_Vector_Y .

2.2. Overview of Case-Based Reasoning
The detailed description of the CBR module used for

behavioral selection can be found in [3]. In this section,
only a high level overview of the module is given. The
overall structure of the CBR unit is similar to a traditional
non-learning case-based reasoning system [5] (figure 1).
The sensor data and goal information is supplied to the
Feature Identification sub-module of the CBR unit. This
sub-module computes a spatial features vector
representing the relevant spatial characteristics of the
environment and a temporal features vector representing
relevant temporal characteristics. Both vectors are passed
forward for a best matching case selection.

Case selection is done in three steps. During the first
stage of case selection, all the cases from the library are
searched, and weighted Euclidean distances between their
spatial feature vectors and the environmental spatial
feature vector are computed. These distances define
spatial similarities of cases with the environment. The
case with the highest spatial similarity is the best spatially
matching case. However, all the cases with a spatial
similarity within some delta from the similarity of the best
spatially matching case are selected for the next stage
selection process. These cases are called spatially
matching cases. At the second stage of selection all the
spatially matching cases are searched, and weighted
Euclidean distances between their temporal feature
vectors and the environmental temporal feature vector are
computed. These distances define temporal similarities of
cases with the environment. The case with the highest
temporal similarity is the best temporally matching case.
Again, all the cases with a temporal similarity within
some delta from the similarity of the best temporally
matching case are selected for the next stage selection
process. These cases are spatially and temporally
matching cases, and they are all the cases with close
spatial and temporal similarity to the current environment.
This set usually consists of only a few cases and is often
just one case, but it is never empty. At the last selection
stage a case from the set of spatiall y and temporally
matching cases is selected on random. Randomness in
case selection is introduced in order to exercise the

Current
environment

Feature
Identification

Spatial Features &
Temporal Features

vectors

Spatial Features Vector
Matching

(1st stage of Case Selection)

Temporal Features Vector
Matching

(2nd stage of Case Selection)

Set of
Spatially
Matching

cases

Set of
Spatially and Temporally

Matching cases

Case switching
Decision tree

Case
Adaptation

Case Library

All the cases
in the library

Best Matching or
currently used case

Case
Application

Case ready
for application

Case Output Parameters
(Behavioral Assemblage

Parameters)

CBR Module
Random Selection

Process
(3rd stage of Case Selection)

Best Matching
case

Figure 1. High-level structure of the CBR Module

3

exploration of cases with similar features but different
output parameters.

The case switching decision tree is then used to
decide whether the currently applied case should still be
applied or should be switched to the case selected as the
best matching one. This protects against thrashing and
overuse of cases. If a new case is to be applied, then it
goes through the case adaptation and application steps.
At the adaptation step, a case is fine-tuned by slightly
readjusting the behavioral assemblage parameters
contained in the case to better fit the current environment.
At the application step these parameters are passed on to
the behavioral control module, which uses these
parameters in the evaluation of the current behavioral
assemblage.

2.3. Overview of Learning Momentum
The detailed description of the learning momentum

module used for behavioral parameter adjustment can be
found in [2]. In this section, only a high-level overview of
the module is given. LM is basicall y a crude form of
reinforcement learning. Currently, LM is used in
behavior-based systems as a means to alter a robot’s
behavioral parameters at run time instead of keeping hard-
coded values throughout the duration of its mission.
Different values for these parameters are appropriate for
different environments; LM provides a way for the values
to change in response to what the robot senses and the
progress it makes.

To work, a LM-enabled system first keeps a short
history of pertinent information, such as the number of
obstacles encountered and the distance to the goal. This
information is used to determine which one of four pre-
defined situations the robot is in: no movement, progress,
no progress with obstacles, or no progress without
obstacles. The robot has a two-dimensional table, where
one dimension’s size is equal to the number of possible
situations, and the other is equal to the number of
changeable behavioral parameters. For each parameter,
the parameter type and situation is used to index into the
table to get a value, or delta, that is added to that
particular parameter. In this way, the robot may alter its
controller to more appropriately deal with the current
situation. For example, if the robot were making progress,
then the move-to-goal behavior would be weighted more
heavily. If, however, obstacles were impeding the robot,
then the wander and avoid-obstacles behaviors would be
weighted more heavily.

There are currently two LM strategies: ballooning
and squeezing. These strategies, which did not change
dynamically in the previous work, define how the robot
deals with obstacles. When a ballooning robot is impeded
by obstacles, it increases the obstacle’s sphere of
influence (the radius around the robot inside of which
obstacles affect the robot's behavior). This pushes the
robot out of and around box canyon situations. A
squeezing robot, on the other hand, decreases the sphere
of influence, allowing itself to move between closely
spaced obstacles.

Learning momentum was shown to increase a robot’s
probabilit y of successfully navigating an obstacle field,
but there was an accompanying increase in the time it
took to do so. Most of this time increase came from the
usage of one strategy (ballooning or squeezing) in
situations better suited for another strategy.

3. Implementation
The CBR and LM algorithms themselves were not

changed for the integration. Rather they remain the exact
same algorithms as reported previously [2, 3]. Since this
previous work was already performed within the
Missionlab mission specification system developed at the
Georgia Tech Mobile Robot Lab, the process of
integrating both algorithms to work together in the
context of Missionlab was relatively simple. Existing
versions that already had these stand-alone algorithms
incorporated into them were easil y merged to create a
single system with both algorithms incorporated into it.

The parameters that are controlled by LM remain the
same as described in Section 2.1. CBR, on the other hand,
now controls not only the parameters described in Section
2.1 but also some of the values (i.e., search deltas and
bounds) used by the LM algorithm. This in effect controls
LM strategies such as ballooning versus squeezing in run-
time (a capability LM did not have on its own). For
example, if the robot finds itself in a situation where the
front is totally blocked, the CBR module may change the
deltas in the LM module so that a ballooning strategy is
used instead. Conversely, if the robot finds itself in a
situation where the environment is traversable but the
obstacle density is high, the CBR module may change the
deltas in the LM module so that a squeezing strategy is
used.

Both algorithms utilize the robot’s global
“blackboard” space to store the behavioral parameters that
they control. Thus every time CBR decides to switch a
case, it overwrites the parameters stored in the
"blackboard" space with the behavioral parameters
suggested by the selected and adapted case and specifies
what strategy the LM should use to fine-tune those
parameters. Afterwards, every few robot cycles, learning
momentum retrieves the behavioral parameters from the
"blackboard" space, adapts them based on the sensor data
and robot progress and stores the parameters back. At the
same time, the behavioral control module (Core

CBR Module

LM Module

Sensors

Core Behavior-Based Controller

Behavioral
Parameters

Actuators

Updated Parameters
Updated Deltas

and Parameter Bounds

Figure 2. A high level diagram of Core/CBR/LM controller
interaction.

4

Behavior-Based Controller) also reads the behavioral
parameters from the "blackboard" space and uses them for
the evaluation of the behavioral assemblage every robot
cycle. Figure 2 depicts this architecture.

4. Simulation Tests
The system was first evaluated in simulated

environments. MissionLab provides a simulator as well as
data logging capabilities, allowing an easy collection of
the required statistical data.

The system was evaluated on two different types of
environments. First, the tests were conducted on
heterogeneous environments such as the one shown in
Figure 3, which shows a screenshot of the MissionLab
simulator after the robot completed its mission. Black
dots of various sizes represent obstacles and the curved
line across the picture depicts the trajectory of the robot
after it completed its mission. In these environments the
obstacle pattern and density changes as the robot traverses
the test course toward its goal. The size of the mission
area is 350 by 350 meters. The tests were also conducted
on a set of homogeneous environments such as the one
shown in figure 4. In these environments the obstacle
density is constant throughout the whole area. The size of
the mission area shown is 150 by 150 meters.

Point A in Figure 3 is magnified to show the robot's
behavior in a rather large and narrow box canyon created
by obstacles. Here the CBR module recognizes that the
robot is stuck for some period of time and the area around
the robot is full y obstructed by obstacles. Therefore, it
selects a case called FULLOBSTRUCTION_LONG-
TERM_BALLOONING. The case sets the Noise_Gain
and Noise_Persistence to large values. It also sets the
learning momentum module to use the ballooning
strategy. As the robot gets out, the CBR module switches
the case to SEMICLEARGOAL, for which the
Noise_Gain is set to a very small value. The

Obstacle_Sphere is reduced as well . As a result, once it is
out of the box canyon, the robot proceeds along a
relatively straight line toward its goal, as can be seen on
the top picture of point A in Figure 3.

Figure 4 shows a test run of a simulated robot that
employs both CBR and LM modules within a
homogeneous environment. The obstacle density in this
environment is twenty percent. As before, point B shows
the place where the robot becomes stuck and searches for
a set of behavioral parameters that would allow it to
proceed. The increase in Obstacle_Gain,
Obstacle_Sphere, Noise_Gain and Noise_Persistence
allows the robot to escape the local minimum. Otherwise,
the rest of the robot trajectory is a smooth curve with a
very good travel distance.

Figures 5 through 8 show the results of tests
conducted on the integrated CBR with LM, CBR only,
LM only and a system without any adaptation algorithms
(non-adaptive). Figures 5 and 6 show the performance of
a simulated robot on a navigational task in heterogeneous
environments. Overall, the results for 37 missions in
heterogeneous environments were gathered. The
performance of a robot is represented by the time steps
that it takes for a robot to complete its mission as well as
the percent of completed missions. Thus, in Figure 5 the
least amount of time on average for mission completion is
required for systems that use either CBR module or CBR
and LM modules together to adapt the behavioral
parameters. These systems also have a very high
probabilit y of mission completion as shown in Figure 6,
and therefore present the best performance. A robot that
employs only the LM algorithm, on the other hand, has
the longest average time of mission completion but is also
very good in terms of mission completion rate. It
correlates with the results reported in [2] on the
performance of a system with LM adaptation only.
Finally, the non-adaptive system takes longer to complete
its mission than the system with both LM and CBR
together and also fail s to complete more missions than
any of the adaptive systems.

Figures 7 and 8 report the results of tests in
homogeneous environments such as the one shown in

Point A

Figure 3. Robot run with CBR integrated with LM algorithm in
a heterogeneous simulated environment. Point A is magnified

at the top of the figure.

Point B

Figure 4. Robot run with CBR integrated with LM algorithm in a
homogeneous simulated environment.

5

Figure 4. In each of the figures, the first row is for an
environment with a 15% obstacle density and the second
(farther) row is for an environment with 20% obstacle
density. For each environment, fifty runs were conducted
for each algorithm to establi sh statistical significance of
the results. In these tests, a system that employs both
CBR and LM on average completes its missions in the
shortest time (Fig. 7) as well as having an almost 100
percent completion rate (Fig. 8). As before, a system with
only the LM algorithm has the best completion rate but on
average takes a very long time to complete a mission. A
non-adaptive system takes longer to complete its mission
than either the integrated LM-CBR or CBR-only systems.
More importantly, a non-adaptive system exhibits only 46
percent mission completion rate for denser environments
(Fig. 8).

According to these results, a robot that uses both
CBR and LM algorithms shows a significant
improvement over non-adaptive or the LM-only
approach. However, it shows just a slight improvement
over a system that uses the CBR-only approach for the
selection of behavioral parameters. The reason for this is
that in simulated environments it is relatively easy to find
the best set of parameters for each case in the library as in
these tests. What LM provides, on the other hand, is a

search for a best set of parameters for a particular
environment in real-time, and therefore is most beneficial
when manually establi shing an optimal library of cases is
diff icult. Such is the case when one works with real
robots. Conducting experiments on a real robot in order to
establi sh a best library of cases is usually unreasonable
due to the number of experiments required. Instead, cases
are chosen based on a limited number of experiments
coupled with the knowledge derived from extensive
simulation studies. Then the real-time adaptation of
parameters as provided by the LM algorithm can be
beneficial. This point is seen in the next section where the
real robot experiments are presented.

5. Robotic Tests
This section describes the methods and results of

experimentation on a physical robot.

5.1. Experiment Setup
After concluding experiments on a simulated robot,

the system was moved to an ATRV-Jr robot for
experimentation on a physical robot. Some behavioral
parameters on the non-integrated systems (non-adaptive,
LM only, and CBR only) were hand-adjusted to improve
the robot performance so that the CBR-LM integrated
system could be tested against systems that were believed

CBR & LM
integrated CBR only

LM only
None

15% Obstacle density

20% Obstacle density0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

Adaptation algorithm

Figure 7. Average number of steps of a simulated robot in
homogeneous environments

CBR & LM
integrated CBR only

LM only
None

15% Obstacle density

20% Obstacle density0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Adaptation algorithm

Figure 8. Mission completion rate of a simulated robot in
homogeneous environments

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

CBR & LM
integrated

CBR only LM only None

Adaptation algorithm

Figure 5. Average number of steps of a simulated robot in
heterogeneous environments

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

CBR & LM
integrated

CBR only LM only None

Adaptation algorithm

Figure 6. Mission completion rate of a simulated robot in
heterogeneous environments

6

to be near-optimal for their respective algorithms.
Because the ballooning strategy of LM performed so
poorly in preliminary runs, only the squeezing strategy
was used on LM-only system. Also, for the systems with
CBR enabled (both stand-alone and integrated with LM),
a different case library was used for the real robot than
was used in simulation. Since there are important
differences in size and movement capabilities of
simulation and physical robots, the library of cases had to
be changed. Therefore, whereas the library of cases used
for simulation robot was well optimized as a result of
numerous experiments, the library of cases for the real
robot was only based on a few robot experiments and the
simulated robot experiments. As a result, the library of
cases was not necessarily optimal, stressing the advantage
of having Learning Momentum to optimize the
parameters online.

The robot’s mission during the outdoor experiments

was to navigate first a small area fill ed with trees (some
artificial obstacles were also used to increase diff iculty),
and then to traverse a relatively clear area to finally reach
a goal. The straight-line distance from the start position to
the goal was about 47 meters.

Data was gathered from ten runs for each of the four
types of systems: non-adaptive, LM enabled, CBR
enabled, and both LM and CBR-enabled. An individual
run was considered a failure if the robot ran for ten
minutes without reaching its goal. Runs where the robot
became disoriented (i.e., the robot thought it was facing a
different direction than it reall y was) were discarded and
redone, isolating and removing data points resulting from
hardware failures.

5.2. Robotic Results
The results summarized in figure 10 show that there

is an increase in the performance of the integrated system
over both the non-integrated and non-adaptive ones. In
particular, the non-adaptive system took the longest to
complete the mission. These results are inconsistent with
the simulation results in that, in simulations, LM-only
took the longest time.

One of the probable explanations is that usually non-
adaptive systems would either find a good path to the
goal, or they would not reach the goal at all. This meant
that the average number of steps to completion for the
successful runs is relatively low, but so is the case for
success rates. In these experiments, however, there were
no failures. All valid runs got to the goal. That fact,
coupled with the fact that the non-adaptive robots usually
got stuck for short periods of time in box-canyon areas,
would drive up the average time to completion for the
series of non-adaptive runs. On the other hand, the
average time to completion for the LM-only runs was
driven down because only the squeezing strategy was
used in an environment where ballooning really wasn’ t
needed. (Using one LM strategy in places where the
other was more appropriate was found to be a major cause
of delay in a learning momentum system [2].) The test
environment was not large enough to significantly suffer
from not being able to switch strategies for the LM-only
system.

Another observation is that the robot using both CBR
and LM performed significantly better than the robot
using only CBR. This observation again differs from the
simulation results, which showed that the addition of LM
to CBR provided only small performance increase over
CBR-only systems. As mentioned previously, in
simulation experiments the CBR library for simulations
was well optimized manually before the experiments,
whereas for the physical robot experiments the library
was not as optimal since case optimization is a very costly
and time-consuming operation. Instead, whenever the
CBR module set up the behavioral parameters after
selecting a new case, the LM module fine-tunes them in
run-time until the set of "right" parameters is found.

6. Conclusion
Both case-based reasoning and learning momentum

have separately been shown to increase performance
when applied to behavior-based systems [2,3]. Those
algorithms have now been shown also to further improve
performance when used in tandem in a behavior-based
control system. Still while the integration of CBR and

0

200

400

600

800

1000

1200

1400

CBR-LM CBR LM non-adaptive

Figure 10. Average steps to completion of a real robot using
different learning strategies.

Figure 9. ATRV-Jr during one of its test runs

7

LM improves the performance over that of either
algorithm when used alone, a significant performance
increase is by no means guaranteed. While physical robot
experiments indeed show a significant improvement, the
simulation results must not be overlooked. Simulation
results seem to indicate that if a robot is using CBR with a
case library that is well tuned for the robot characteristics,
the addition of LM does not necessaril y result in
improvement. Instead one of the conclusions is that LM is
most beneficial when the CBR case library is not near
optimal. Thus the main benefit from having LM
integrated with CBR is that the library no longer requires
careful optimization. As the manual optimization requires
numerous experiments and therefore is very often
impossible when dealing with real robots, the addition of
the LM algorithm proves to be important.

Other conclusions that can be drawn from this work
are the potential benefits of LM in the process of
dynamically updating the CBR case library. Currently we
are working on adding such capabili ties to CBR as
learning new cases, optimizing existing cases, and
forgetting old ones. However, because LM already
performs the parameter search at run-time, the results of
these searches could be valuable for the optimization of
cases. As LM finds new sets of the "right" parameters,
they could be used to update the existing cases in the
library for retrieval whenever the robot encounters a
similar environment later. This cooperation would both
optimize the library of cases and speed up the search
performed by LM. This possibilit y provides fertile ground
for future work.

Acknowledgments
This research is supported under DARPA's Mobile
Autonomous Robotic Software Program under contract
#DASG60-99-C-0081. The authors would also like to
thank Dr. Douglas MacKenzie, Yoichiro Endo, Alex
Stoytchev, William Halli burton, and Dr. Tom Collins for
their role in the development of the MissionLab software
system. In addition, the authors would also li ke to thank
Amin Atrash, Jonathan Diaz, Yoichiro Endo, Michael
Kaess, Eric Martinson, and Alex Stoytchev for their help
with real robot experiments.

References
[1] Arkin, R.C., Clark, R.J., and Ram, A., “Learning

Momentum: On-line Performance Enhancement for
ReactiveSystems,” Proceedings of the 1992 IEEE
International Conference on Robotics and
Automation, May 1992, pp. 111-116.

[2] Lee, J. B., Arkin, R. C., “Learning Momentum:
Integration and Experimentation,” Proceedings of the
2001 IEEE International Conference on Robotics and
Automation, May 2001, pp. 1975-1980.

[3] Likhachev, M., Arkin, R.C., “Spatio-Temporal
Case-Based Reasoning for Behavioral Selection,”
Proceedings of the 2001 IEEE International
Conference on Robotics and Automation, May 2001,
pp. 1627-1634

[4] MacKenzie, D., Arkin, R.C., and Cameron, R.,
“Multiagent Mission Specification and Execution,”
Autonomous Robots, Vol. 4, No. 1, Jan 1997, pp. 29-
52.

[5] Kolodner, J., Case-Based Reasoning, Morgan
Kaufmann Publishers, San Mateo, 1993.

[6] Ram, A., Arkin, R. C., Moorman, K., and Clark,
R. J., “Case-based Reactive Navigation: a Method
for On-line Selection and Adaptation of Reactive
Robotic Control Parameters,” IEEE Transactions on
Systems, Man and Cybernetics - B, Vol. 27, No. 30,
1997, pp. 376-394.

[7] Ram, A., Santamaria, J. C., Michalski, R. S., and
Tecuci, G., “A Multistrategy Case-based and
Reinforcement Learning Approach to Self-improving
Reactive Control Systems for Autonomous Robotic
Navigation,” Proceedings of the Second International
Workshop on Multi strategy Learning, 1993, pp. 259-
275.

[8] Vasudevan, C., Ganesan, K., “Case-based Path
Planning for Autonomous Underwater Vehicles,”
Autonomous Robots, Vol. 3, No. 2, 1996, pp. 79-89.

[9] Kruusmaa, M., Svensson, B., “A Low-risk
Approach to Mobile Robot Path Planning,”
Proceedings of the 11th International Conference on
Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, Vol. 2, 1998, pp.
132-141.

[10] Gugenberger, P., Wendler, J., Schroter, K.,
Burkhard, H. D., Asada M., and Kitano, H., “AT
Humboldt in RoboCup-98 (team description),”
Proceedings of the RoboCup-98, 1999, pp. 358-363.

[11] Veloso, M. M., Carbonell , J. G., “Derivational
Analogy in PRODIGY: Automating Case
Acquisition, Storage, and Utilization,” Machine
Learning, Vol. 10, No. 3, 1993, pp. 249-278.

[12] Pandya, S., and Hutchinson, S., “A Case-based
Approach to Robot Motion Planning,” 1992 IEEE
International Conference on Systems, Man and
Cybernetics, Vol. 1, 1992, pp. 492-497.

[13] Langley, P., Pfleger, K., Prieditis, A., and Russel,
S., “Case-based Acquisition of Place Knowledge,”
Proceedings of the Twelfth International Conference
on Machine Learning, 1995, pp. 344-352.

[14] Chalmique Chagas N., Hallam, J., “A Learning
Mobile Robot: Theory, Simulation and Practice,”
Proceedings of the Sixth Learning European
Workshop, 1998, pp.142-154.

