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Abstract

To demonstrate the flexibility and portability of both a
schema-based software architecture and a message-passing
hardware architecture, the two were integrated within a very
short period to be used in a mobile robot competition.  The
experience confirmed the advantages of onboard
computational capability in mobile systems.

1  Introduction

Autonomous machines with sensory, manipulative, and
locomotive capabiliti es are a significant class of intelli gent
systems holding great promise for performing hazardous or
mundane tasks.  Although much work has been performed
with isolated aspects of intelli gent machines, including
vision, sonar, manipulator control, and knowledge-based
reasoning, the algorithms are often not considered within the
context of a complete machine.  In many prior efforts, both
software architectures and hardware architectures have been
developed to meet the requirements of specific projects, with
littl e regard to reusabilit y in other applications.  Often,
experimental systems are not robust, faili ng due to relatively
minor environmental variations or task redefinitions.  This
paper describes the integration of two separate efforts to
address these problems.  One is a reactive software
architecture which has been demonstrated to perform a
variety of tasks well , and the other is a targeted, yet flexible,
computer architecture that provides modularity and
expandability.

2  Background

Most of the earliest work with intelli gent machines relied
on direct programming in declarative languages [22, 23, 24].
This resulted in software architectures that could only
accommodate certain situations, and even then only in a “do
this, then do this”  fashion.  There has been a gradual trend
toward reactive software architectures, which combine
relatively simple behaviors to implement complex tasks.

Since these simple components are designed to respond to
general stimuli i n “common-sense”  fashion, greater
robustness is achieved, even when a higher level of
deliberative behavior is added.

From a hardware architectural standpoint, many early
autonomous machines relied on offboard control, since the
necessary computers were so large.  Then, as
microprocessors became widely available to provide onboard
intelli gence in relatively small packages, many more projects
began.  Even today, however, many mobile robots depend on
detached workstations, because of the increasing
computational demands and the need for sophisticated user
interfaces.  It has become increasingly evident that
autonomous machines must incorporate multiprocessor
architectures, but it is not quite clear what form the
architectures should take.

The majority of these specialized multiprocessor
architectures have taken a hierarchical form, often a simple
tree [14, 22, 24].  In the context of an intelli gent machine, the
processing tasks closest to the environment (i.e., the “ low-
level”  tasks) tend to map most obviously into a tree.  Higher
levels of thought prefer to describe both perceptions and
actions in concise symbolic terms, while environmental
interactions tend to involve large amounts of data, often to or
from loosely-coupled subsystems.  It is thus advantageous to
have multiple perceptual processes and multiple control
processes running simultaneously, each having extensive
interaction with the environment, but littl e interaction with
each other.  Communication with higher levels is less
frequent, and the messages tend to contain condensed
information in a symbolic format.  Intermediate levels of
processing act to integrate data (on the sensory side) or to
coordinate simple tasks (on the control side).  In this simple
paradigm, only one highest-level, or reasoning, task is
required.   Unfortunately, this process usually forms a
computational bottleneck, since it is an integral part of every
sensor/control path.

More recently, hierarchical designs have emphasized
connection across the hierarchy, as in the NASA/NBS
standard reference model for telerobot architectures



(NASREM) developed by Albus [1] and the
Multi resolutional Control Architecture of Meystel [21].
These architectures allow nested control loops via distinct
task levels within the hierarchical structure, providing higher
bandwidth for low-level tasks that require shorter response
times.  Each higher level in the hierarchy thus provides for
increasing levels of abstraction in perception, reasoning, and
control, and each maintains a model of the world appropriate
for its purposes.  No clear consensus exists, however, for the
number and type of levels to use in such architectures.

The hierarchical viewpoint is increasingly being
challenged by reactive approaches.  The concept of schemas,
as typified by Lyons [20] and Arkin [2, 3], implements
sensor-effector connections in a more flexible fashion.  A
schema is a pattern of behavior exhibiting a stimulus-
response characteristic.  Typically, each schema monitors
only a portion of the available input data and produces an
output which may have to be combined, superimposed, or
otherwise reconciled with other outputs.  Schemas may
communicate with other schemas or with sensors and
effectors.    Normally, an intelli gent machine would create
instances of predefined schemas as necessary to produce
more complex behaviors.  Such apparent complexity arises
both from the abilit y of schemas to use other schemas and
from the parallel actions of independent schemas.

Another significant reactive approach is the subsumption
architecture developed by Brooks [9, 10, 11].  Multiple
levels of competence are defined, connecting input and
output in a layered system.  Higher levels of competence
inhibit or subsume all l ower levels, and the hardware usually
provides direct support for this subsumption characteristic by
implementing each level within its own processing
subsystem.  This structure allows a machine to be developed
in stages, building each level on top of a machine that
already functions at some given degree of competence.
Another advantage is that the lower levels still exhibit useful
behaviors that are activated in the absence of any
inhibition from above.  For example, a low-level
obstacle avoidance behavior is still useful even
when a path planner exists to provide
intermittent goals.

In spite of the emergence of these promising
approaches, there is still a considerable amount
of disarray in the overall architectural scene. The
key limitations of much of the previous work,
including both hardware and software
considerations, have been:

• reliance on offboard computational
facilities and radio communication,

• ad hoc, inflexible hardware architectures,
• lack of inherent support for parallelism,
• awkward development environments, and
• lack of portability.

These limitations hamper the development of reusable,
modular hardware and software components, and they have
thus slowed the development of a significant commercial
market in sophisticated autonomous machines.

3  AuRA – the Autonomous Robot Architecture

AuRA is a hybrid architecture encompassing aspects of
both deliberative and reactive control. It consists of 5 major
subsystems:

• Perception – charged with collecting and filtering all
preliminary sensory data.

• Cartographic – concerned with maintaining long-term
memory (a priori models of the environment), short-
term memory (dynamically acquired world
knowledge), and models of spatial uncertainty.

• Planning – consists of a hierarchical planner (the
deliberative component) and the motor schema
manager (the reactive component).

• Motor – the interface software to the specific robot to
be controlled.

• Homeostatic – a component concerned with dynamic
replanning in light of available internal resources [7].

 The overall architecture has been described in detail
elsewhere. The reader is referred to [4, 6] for more
information.

The hardware migration to ANIMA thus far has been
concerned with the reactive and perceptual components of
the system which run within the confines of the motor
schema manager. Figure 1 presents the logical relationships
between the varying schemas which constitute this portion of
AuRA.

Action-oriented perception forms the underlying
philosophy for channeling sensory information to the motor
schemas (behaviors) [5]. Only the  information that is
essential to a particular motor behavior is  transmitted to it,
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Figure 1.  Inter-schema relationships.



essentially on a need-to-know basis. The message-passing
paradigm found in ANIMA is well -suited for this type of
information flow.

Each of the active motor schemas generates a velocity
vector in a manner analogous to the potential fields method
[18, 19] with the individual results being summed,
normalized and transmitted to the robot for execution.  The
speed of operation is highly dependent on the rate of
processing of incoming sensory data. The parallelism found
in the transputer implementation described below is a natural
match for this aspect of the AuRA architecture.

4  ANIMA hardware architecture

We have developed a flexible, real-time platform for the
development of AuRA and other software architectures.  The
skeleton of our hardware architecture, ANIMA (Architecture
for Natural Intelli gence in Machine Applications), has been
developed from basic principles.  It incorporates a triad of
basic systems, just as a conventional computing system
includes input, output, and processing subsystems. This
fundamental triad of subsystems carries over into the
architecture of an intelli gent machine, but a more general
interconnection pattern is required.  The addition of a
communication channel between the input subsystem and the
output subsystem allows the machine to exhibit reflexive
behaviors.  Such behaviors are analogous to reflexes in
biological systems, where the communication channel is
implemented by structures within the spinal cord and lower
brain.  While it would be possible to develop an autonomous
machine without such a channel, it would not take advantage
of the localized intelli gence within the input and output
subsystems.  The resulting increase in computational load on
the processing subsystem would result in slower response
time.

Clearly, reflexive behaviors are virtually “hard-wired”
into the system, and their implementation is best reserved for
behaviors that:

• must be performed reliably and quickly, usually to
avoid danger to the machine or to humans,

• require little or no integration of information from
multiple input systems, and

• although primitive, usually produce an effect more
desirable than if no action at all had been taken.

The deliberative component controlli ng the input and
output subsystems is called the Reasoner.  A major aspect of
this reasoning capabilit y is the need to maintain some sort of
world model based on sensory input, at least for anything
more than basic reactive behavior.

The vast majority of intelli gent machine research has
assumed that the input/output devices, just as in a
conventional computer, are largely independent in their low-

level operation (at or below the level of the device driver).
For input devices, the combination of these independent
streams of data has often been referred to as sensor
integration, and we include a process, called the Integrator,
to perform this task.  On the output side of the structure, the
most appropriate term is coordination, although the specific
definition varies considerably in the literature.
Corresponding to the Integrator, we include a process called
the Coordinator.

These additional parallel processes are ill ustrated in
Figure 2.  The independent sensor subsystems are called
logical sensors, in much the same sense as those of
Henderson [15] or Crowley [13].  At this point, a logical
sensor is best thought of as a combination of a physical
sensor, capable of estimating some property of the
environment or the machine itself, and a generalized device
driver.  The extension of this concept to the logical effector
is straightforward.  Taken together, logical sensors and
logical effectors are called logical devices.  A single logical
device can be composed of multiple physical devices, with
appropriate drivers.  This would be desirable in cases where
the physical devices were virtually identical (except perhaps
in physical location, scaling, or some other trivial factor),
allowing the main driver to give the appearance of a single
effective logical device.

These processes (Reasoner, Integrator, Coordinator, and
representative logical devices) have been described using the
notation of Communicating Sequential Processes (CSP) [16,
17].  By combining them into a system, it is possible to
construct a proof showing that the system is free of deadlock
[12].   By following basic design principles at the logical
device layer and the Integrator/Coordinator layer, we
provide a means of fault isolation to individual logical
devices.

An implementation of this architecture is being developed
based on the Inmos T800, a member of the transputer family
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of microprocessors developed for parallel processing.  Each
transputer provides four high-speed serial li nks for the
required processor interconnection.  While several languages
are supported, Occam is the most effective for parallel
processing, providing constructs that implement the
important CSP operators.

The ANIMA architecture requires no parallel data busses
or backplanes of any kind.  Instead, it consists of modular
components connected only by high-speed serial li nks.  This
allows the processors to be distributed to any convenient
locations within the intelligent machine.

Relatively early in the architectural development, the
entire structure was simulated on a single transputer and on
multiple transputers in order to verify its operation.  A
fundamental premise of the simulation was that most of the
processes would be directly portable to a real machine.
Specifically, by making reasonable models of the
environment, sensors, and effectors, one can use essentially
the same Integrator, Coordinator, and Reasoner processes
as would be used on a real machine [12].  The simulated
machine wandered through a simple world with walls and
obstacles, using simulated sonar and touch sensors.  Sensors
and effectors were deliberately modeled as being imperfect,
and the machine (as part of its Reasoner) had to maintain its
own model of the simulated world.  The initial Reasoner was
essentially a schema-based implementation, but hierarchical
and subsumption versions have also been tested.

5  Case study – “ Buzz”

AuRA and ANIMA were first brought together in the
development of a machine called “Buzz,”  to compete in the
first robot exhibition and competition sponsored by the
American Association for Artificial Intelli gence (AAA I).
The competition stressed the abilit y of mobile robots to
explore an arena, avoid static or moving obstacles, locate
goals, and visit goals in specified order.  Many of the basic
reactive behaviors that were needed had already been
developed (using AuRA) within the Mobile Robotics
Laboratory of the College of Computing at Georgia Tech.
The previous work had been done on an older robot, and a
new one was made available for the competition by Denning
Mobile Robotics (Wilmington, Massachusetts).  Much of the
required programming effort would be to modify
communication routines for the new robot, to develop new
perceptual schemas for previously-uninteresting phenomena,
and to combine the available schemas in ways appropriate
for the competition tasks.

Realizing that the use of radio communication was both a
reliabilit y issue and a “showmanship”  limitation, the team
also added another development task:  to use onboard
computation for at least one phase of the competition.  The

ANIMA structure, although never before used on an actual
robot, had been prototyped and used in simulations of both
hierarchical and reactive robot systems.  Most of the required
work was to package it for the Denning robot, add an
appropriate interface to the robot, and port all of the schemas
as they were developed.  With only about four months to
complete all of these tasks, including the basic schema and
communication development, it was clear that this would be
a test of the flexibilit y and portabilit y of both the hardware
and software architectures.

The competition included three phases.  In the first phase,
each robot was to navigate the arena cluttered with obstacles
without hitting anything, including the human judges.  In the
second phase, ten poles (labeled according to the needs of
each robot) had to be recognized and visited, if possible,
within a designated period.  In the final phase, three of the
previously-visited poles were designated to be visited in
order.  Additional information about the competition may be
found in [8].

5.1  Robot description

The Denning MRV-3 is a three-wheeled cylindrical robot
intended for general-purpose use, mainly in research.  All
three wheels turn simultaneously, providing (approximately)
the abilit y to turn in place.  The body itself does not rotate,
except for gradual precession resulting from non-uniform
slippage of the wheels against the floor.  Twenty-four sonar
sensors are equally-spaced around the body, as are six
contact-switch bumpers.  A single CCD camera was added
to the standard configuration for use in the second and third
phases of the competition.  This camera was mounted on the
top plate, which rotates to point in the direction of travel
(along with the wheels).  An infrared beacon detector was
also available, but was not used during the competition.

The transputer architecture used for this implementation
of ANIMA utili zed five processors and an RS-232 interface
spread over six TRAMs (integrated transputer
daughterboards).  The TRAMs were mounted on an PC-bus
host board within a specially-packaged IBM-PC compatible
system, complete with an electroluminescent display, a
floppy disk drive, and a ruggedized hard drive.  We have
designed some other implementations which provide more
flexibilit y with regard to usage of the processor links, but
this system was more than adequate for the required tasks.

Although the performance of ANIMA benefits from
separate high-speed channels to each physical sensor and
effector, the Denning MRV-3 platform (like most
commercial mobile robots) provides a single standard
interface, in this case an RS-232 port.  All communication
with the sonar, infrared detectors, bumper switches, and
motor controllers had to be multiplexed through this port.



The ANIMA hardware, of course, was restricted to using
the onboard power sources.  Since the robot may only
function reliably for several hours even without the added
burden of multiple transputers and a PC host, it was
important that ANIMA not consume any more power than
necessary.  Even with the disk drives and electroluminescent
display active, the ANIMA system and host required only
about 100 watts and did not significantly affect the battery
life of the system.

5.2  Parallel structure

The utili zation of the five processors is shown in Figure 3.
AuRA's motor schemas and much of its perceptual schemas
were included in the Reasoner process (which can easily be
split among additional processors as necessary).  Some
aspects of the perceptual schemas (sensor data processing,
mostly) were included within the appropriate logical sensors.

Because of the relatively low processing demands placed
on the Integrator and Coordinator, these were combined
onto a single processor, and messages to all l ogical devices
were multiplexed on a single channel.  These logical devices
also ran as parallel tasks on a single processor, since no
especially sophisticated processing was done at this level.
Provision was made for inclusion of a separate processor
(actually, a group of processors) to perform vision, using the
remaining link from the logical devices processor.  Although
speech output was not used in Buzz, we have the appropriate
logical effector to add it at any time, as indicated in the
figure.

The Environment process actually serves a dual role.  In
normal operation, it passes messages along to the RS-232

handler process.  In simulation mode, it intercepts commands
to the robot and emulates the behavior of the robot in a grid-
based environment, passing back sonar and bumper data
when requested.  An additional processor (not shown) is
used in simulation mode just to provide a graphical display
of the simulation status.  The impact of this is that simulation
capabilit y is built i nto the real code – no porting is required
to keep the simulation current relative to the actual robot
software.  Of course, the usefulness of any simulation
depends on its fidelity.  This organization allows the
simulator, as a separate parallel process, to be enhanced at
any time.  We found that the simulation provided good
qualitative results with regard to new robot behaviors which
were subsequently tested on the actual robot.

5.3  Performance

Throughout the porting process, we were pleased with
ANIMA's abilit y to perform sensor processing in the
background.  It was also possible to continuously keep track
of the time between robot responses, providing the basis for
a dead-man switch if the robot ceased communicating for
any reason.  The ANIMA-controlled system was able to
negotiate obstacle-strewn areas about 50% faster than the
Sun-controlled system, mainly because of the decreased
latency of sonar data and the managed use of the RS-232
channel.  We did not have suff icient development time to
fully utili ze the motor capabiliti es of the MRV-3, but we felt
that additional performance improvements were easily
possible. Much more benefit can be derived from the parallel
structure as complex sensors like vision, more-sophisticated
motor control algorithms, and additional schemas are added.

Phase 1 of the competition was
intended primarily as a means of
weeding out any robots which
could not safely navigate within
the arena in the presence of human
beings.  The judges deliberately
stepped in front of the robots and
corralled them into tight spaces,
and Buzz performed satisfactorily.
At about this time, some of the
other robot teams were
experiencing communication
problems, since most were using
the same frequencies for digital
commands and/or video data.  As
one of the relatively few entries
with all processing performed
onboard (the eventual winner, the
University of Michigan's
CARMEL, was another), Buzz
was immune from these problems
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in Phase 1.  For the same reason, Buzz was also able to
perform in combined demonstrations for the news media and
the public, along with CARMEL and SRI's “Flakey.”

5.4  Conclusions

Based on the relative ease in which the AuRA software
was ported to the ANIMA architecture, it was clear that both
components were suff iciently flexible and portable. Some of
the specific features which aided this process were:

• the integrated development environment
• the inherent support for parallelism
• the use of generic proven CSP models
• the inclusion of simulation as a removable process
In phase 2 of the AAA I competition, the offboard Sun

computer and radio link performed well , and Buzz ended up
in second place, but radio problems in phase 3 limited us to a
fifth-place finish overall . This seemed to indicate that a full
port of the vision schemas would have improved our overall
standing, since the machine would have been immune to
radio interference.  Since  visual data could have been
processed at much higher frame rates, it would have been
possible to perform nearly continuous tracking, also
improving Buzz's performance.

6  Future work

We have begun to adapt this system to a practical
application for the Savannah River Site of the Department of
Energy.  Using another Denning robot, and adding onboard
vision, we are building a prototype survey vehicle to monitor
the condition of stored radioactive waste.  As part of this
effort, we intend to investigate the performance of ANIMA
with a robot which has dedicated channels to the sonar and
motor systems.  This would eliminate the need to multiplex
the data on a single RS-232 line, and overall system
performance would improve considerably. ANIMA will also
be used in all 3 phases of the 1993 AAAI competition.

As additional motor schemas are included, they will be
placed in a parallel configuration, utili zing additional
processors as necessary for the Reasoner.  Eventually, we
would like to make performance comparisons with other
software architectures on the same hardware platform.  Such
comparisons would provide insight into the type of
applications best suited for differing software architectures.
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