
Adaptive Multi-Robot Behavior via Learning Momentum

J. Brian Lee (blee@cc.gatech.edu)
Ronald C. Arkin (arkin@cc.gatech.edu)

Mobile Robot Laboratory

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280

Email: blee@cc.gatech.edu, arkin@cc.gatech.edu

Abstract
 In this paper, the effects of adaptive robotic behavior
via Learning Momentum in the context of a robotic team
are studied. Learning momentum is a variation on
parametric adjustment methods that has previously been
successfully applied to enhance individual robot
performance. In particular, we now assess, via simulation,
the potential advantages of a team of robots using this
capability to alter behavioral parameters when compared
to a similar team of robots with static parameters.

1. Introduction

 Learning Momentum (LM) has been previously
applied in the context of single robot navigation through
obstacle fields [3,7] and was shown to improve
performance in certain useful situations by altering, at run
time, parameters of a behavior-based controller. We see
no reason, however, to confine LM to a single robot
interacting with the environment. While previous LM
applications were based only on a single robot’s goals,
such individualism is not always appropriate for team
behavior. In team situations, it may be beneficial for an
individual robot to adapt to what its other teammates are
doing in order to increase the performance of the overall
group instead of a single robot acting greedily.
 This research is being conducted as part of a larger
robot learning effort funded under DARPA's Mobile
Autonomous Robotic Software (MARS) program. In our
overall effort, five different variations of machine
learning, including learning momentum, case-based
reasoning [5,9], learning in the presence of uncertainty
[4], and reinforcement learning [11], have been integrated
into a well-established software architecture, MissionLab
[10].
 In this paper, we study the effects of LM on a team of
robots working towards a common goal. A scenario was
invented in which “soldier” robots are deployed to protect
a target object from incoming enemy robots. This is not
unlike the classic prey-predator problem so often studied
in multiagent systems [6]. To determine whether or not
adaptation through LM can be beneficial, performance
comparisons were made between different sized teams of

adaptive and non-adaptive soldier robots running in a
simulated environment.

2. Learning Momentum Overview

 Learning Momentum is a technique initially
developed by Arkin, Clark, and Ram [3] and further
explored later by Lee and Arkin [7] to facilitate the
adaptation of robots using behavior-based controllers. It
functions by allowing for situation-based incremental run-
time changes to the underlying behavioral controller
parameters. In essence, the central concept of LM is that
if you’re performing well, you should keep doing what
you’re currently doing, and try it a bit more. If you are
not doing well, you should try something a little different.
Specific parametric adjustment rules and situational
identification characteristics guide the adjustment policies
during learning. Thus it is a continuous, on-line, real-time
adaptive learning mechanism whereby a robotic agent
responds to changes in its environment.
 To implement LM, the controller remembers a small
set of sensor readings from its immediate history (time
window). These readings are then used to identify which
one of several possible pre-defined situations a robot is
currently in. In the past [7], situations such as “making
progress” or “impeded by obstacles” have been used to
identify certain navigational cases, resulting in improved
performance for a single robot moving though an
obstacle-strewn world. The particular set of situations
required, however, tends to be application dependent.
 The robot maintains a two-dimensional table, where
one dimension’s size is equal to the number of possible
situations the robot might encounter, while the other is
equal to the number of adjustable behavioral parameters
of the controller, which depends on the behaviors selected
for the underlying task. The parameter type and situation
are used to index into the table to get a value, or delta,
that is added to that particular parameter during
execution, incrementally adjusting the value as needed.
In this way, the robot may alter its behavioral response to
more appropriately deal with the current situation. All
parameter values are bounded to keep them within
acceptable levels.

This research is supported by DARPA/U.S. Army SMDC contract #DASG60-99-C-0081. Approved for Public Release;

distribution unlimited.

1

 In the context of navigation, behaviors such as move-
to-goal, avoid-obstacles, and wander were combined
using weighted vector summation to produce the robot’s
final output vector [1]. Each behavior’s gain (how
strongly it is weighted prior to summation) was included
in the alterable parameters, and in this way one or more
behaviors could achieve dominance over the others if the
situation warranted. For example, if a robot was making
progress, it would steadily increase the weight of the
move-to-goal gain and reduce the weight of the wander
gain. Details of the underlying methods appear in [3,7].

In this new research, we now extend these adjustment
techniques to span multiple robots operating coherently
towards an overall group goal. The same underlying
principle of LM is exploited: parametric adjustment based
on situational assessment. New methods, however, are
used to represent team performance, situations, and robot
interaction.

3. The Soldier Robot Scenario

 For the experiments reported in this paper, a scenario
was invented that places a team of soldier robots in an
open environment charged with protecting a target object
from enemy intruders. In certain respects this scenario is
not unlike the defensive aspects of the childhood game
“capture the flag”. The job of the soldier is to protect the
target object from enemy soldiers who will try to attack it.
When a soldier identifies the presence of an enemy robot,
it should try to intercept the enemy. Upon making
contact, the enemy is considered destroyed and eliminated
from the scenario.

An enemy either tries to get directly through to the
target object or decoy solider robots. If the enemy makes
contact with the target, its attack is considered successful,
and the enemy is removed while the target remains intact
for other enemies to similarly approach it. For the
purposes of this experiment, the target is invincible; this
allows us to see how many enemies successfully make it
to the target. The overall goal of the soldier team is to
intercept all enemies with none of them safely reaching
their objective.

3.1 The Soldier

 In these experiments, three different types of soldiers
(2 static non-learning ones that serve as benchmarks, and
1 adaptive one employing LM) were created using the
AuRA architecture [2] as embodied in the MissionLab1
mission specification system [10]. All three types use
weighted vector summation to combine four behaviors

(MoveToTarget, InterceptEnemies, AvoidSoldiers, and
AvoidObstacles) to accomplish their task. These
behaviors are described in more detail below.

MoveToTarget – This behavior produces a vector pointing
to the target object and has a magnitude of 1−D2 , where
D is the distance to the object. The –1 allows for some
repulsion when the soldier is extremely close to the
object, so it will remain some distance away.

InterceptEnemies – This behavior groups enemies based
on their angular distance from each other with respect to
the observing soldier and extracts the closest enemy from
each group. For each of these enemies, an intercept point
is calculated, and a vector to that point that has magnitude

))1(1(−+ Gα , where G is the size of the group the
soldier was in, and α is a constant. For these experiments,
α is set to 0.05. This equation basically creates a vector
pointing to an enemy group’s intercept point with a base
magnitude of 1 that increases slowly but linearly with
each subsequent group member. If the intercept point is
within a certain radius around the soldier, it is scaled up
to allow the soldier to proceed to home in on the enemy.
The vectors for each calculated group are then summed

1 MissionLab is freely available over the Internet and can
be downloaded from www.cc.gatech.edu/ai/robot-
lab/research/MissionLab.html.

2

target

enemies

soldier

enemy trajectories
InterceptEnemies components
Final InterceptEnemies output

Figure 1. InterceptEnemies behavior

for the final output (Fig. 1).
AvoidSoldiers – This behavior takes as input a list of
enemy groups and friendly soldier positions. For each
friendly soldier, the behavior checks to see if it is
occluded by an enemy group, where “occluded” is
defined to be “within a certain angular distance of and
behind”. If so, that soldier is ignored. Otherwise, the
soldier is checked to see if it is engaged with any
enemies, where “engaged” is defined to be “within a
certain angular distance of an enemy and between the
observing solider and that enemy”. For each soldier not
occluded by an enemy group, a unit vector pointing away
from that soldier is calculated. For soldiers not already

engaged, this is then scaled down by a constant, which is
required to keep this behavior from becoming overly
dominating in the presence of a large number of robots.
For these experiments, that constant was 0.4. For soldiers
that are engaged, this scaling down is not needed since
the InterceptEnemies behavior typically couonterbalances
that soldier’s influence. The vectors from the unoccluded
soldiers are then summed for this behavior’s output.
AvoidObstacles – This behavior produces a vector
pointing away from nearby obstacles. For each obstacle

within a certain distance from the robot, a vector pointing
away from the obstacle is computed, and the vectors are
summed to produce the output.

 Static1 Static2
MoveToTarget 0.02 0.1
InterceptEnemies 1.0 1.0
AvoidSoldiers 0.5 0.5
AvoidObstacles 0.1 1.0
Table 1. Behavior weights of non-learning soldiers.

 In the experiments, two of the specified soldier types
are non-learning and use fixed static weights for the
vector summation. These are referred to as the Static1
and Static2 soldier types. The third soldier type uses
learning momentum to dynamically change its behavioral
weights and is referred to as LM. Table 1 gives the
weighting scheme for each of the static robots. The only
difference between the two robot types is the
MoveToTarget weight. The lower weight of the Static1
types allows them more freedom to intercept as they are

less drawn to stay near the target object, but they are
unstable in the absence of any enemies, in the sense that
their AvoidSoldiers behavior may keep them moving
away from each other far beyond the area they should be
protecting in search of enemies. The Static2 types are
stable without enemies present, i.e., they tend to stay
clustered closer to the target object, but as a consequence
they don’t have as long of a reach when intercepting
enemies.

enemies

soldiers

AvoidSoldiers components
Final AvoidSoldiers output

occluded
soldier

Figure 2. AvoidSoldiers Behavior

 The LM-type soldiers continuously look to see which
one of five possible situations it finds itself in:

• All Clear – There are no visible enemies present.
• Clear to Enemy – The soldier is between the target

object and an enemy group that is not occluded by
another soldier.

• Flanking Enemy – The solider sees an enemy group
that is not occluded by any soldier, and the soldier is
not between that group and the target object.

• Soldier Needs Help – All enemy groups are being
intercepted by soldiers, but at least one soldier group
is overwhelmed by an enemy group.
“Overwhelmed” is defined to mean that S/E < T,
where S is the size of the intercepting soldier group,
E is the size of the enemy group being intercepted,
and T is a threshold (set to 0.5 for these experiments).

• No Soldiers Need Help – Enemy groups exist, but
they are all being intercepted by soldier groups of
appropriate size.

 The behaviors’ weight changes for each situation are
given in Table 2. In addition, all weights are bound to

target
enemies

S4

S3S2S1

Figure 3. Different soldier situations. S1, S2, S3, and S4 are soldiers in the situations Clear to Enemy, Soldier
Needs Help, No Soldiers Need Help, and Flanking Enemy, respectively.

3

3. The third had decoy enemies to the west while groups
of five enemy runners approached from the northeast.

remain between 0.01 and 1.0, except for the
AvoidSoldiers weight, which was bound by 0.1 and 1.0.
 The desired interplay of the behaviors in the LM
teams is to allow a soldier to go where it is needed the
most in light of changing circumstances. For example, if
a soldier sees a group of enemies, but other soldiers are
handling that group, the No Soldiers Need Help situation
should be invoked, and the behavior weights are adjusted
so that the soldier moves back to the target object instead
of running out after the enemy group. This is desirable so
that the target is not left without protection if any enemies
from the group get through or if another enemy group

4. The fourth was like the third, except decoys also
appeared in the south.

5. The last had enemies coming from all directions, but
always in pairs from opposite sides of the target
object (i.e. if an enemy appeared to the east, one
would simultaneously appear to the west). Enemies
appearing from a particular “spawn point” did so
with a regular frequency.

For strategies 1 and 2, enemies appeared every 100

simulation time steps. For strategies 3 and 4, decoys
appeared in groups of two every 200 time steps, while
runners appeared every 500 time steps. For strategy 5,
there were six spawn points with a frequency of 300 time
steps, but they were staggered such that two enemies were
created every 100 time steps.
 Each of the eighteen teams was then allowed to run
against each of the five enemy strategies 100 times. Each
run had a duration of 20,000 simulation time steps.
 Move To
Target

Intercept Avoid
Soldiers

All Clear 0.05 -0.05 0.05
Flanking Enemy -0.1 0.1 -0.1
Clear To Enemy -0.1 0.1 0.1
Help Needed -0.1 0.1 -0.1
No Help Needed 0.1 -0.1 -0.1

Table 2. Behaviors’ weight changes for different
situations.
appears from another direction.

4.1 Results

3.2 The Enemy As the tests ran, statistics on enemy births and deaths

were collected to see how many times the target was
reached and how far from the target enemies were
intercepted by soldiers. Since decoys were not drawn to
the target, they posed no danger, and whether or not they
were intercepted was of no consequence to the protection
of the target. Therefore, the following data comes only
from enemy runners.

 Enemy soldiers come in two types: runners and
decoys. A runner, upon creation, will immediately move
in a straight line to the target object. The decoy, on the
other hand, will begin a random walk when it is created.
The purpose of the decoy is to draw soldiers toward them
so runners have a clear path to the target object.
 Figures 5 – 9 show mean distances of interceptions of

enemy runners from the target object that were using
different attack strategies. Figures 10 – 14 show the
overall percentage of interceptions of enemy runners that
were using different strategies.

4. Simulation Experiments

 The MissionLab software suite was used to conduct
the experiments. The target object was placed in the
middle of a 200m x 200m mission area with 3% obstacle
coverage, where randomly placed circular obstacles
ranged from 1 to 5 meters in radius.

 With respect to distance from the target object, LM
and Static1 teams vary in their ability to outperform each
other, depending upon the attack strategy. LM is the clear
winner for strategy 1, while Static1 has the larger
distances from target for strategy 3. For strategies 2, 4,
and 5, LM performs better for teams of five or less, but
Static1 matches or outperforms LM with six robots. For
strategies 2 – 5, the maximum average distance of
interception for the LM teams occurred with five robots.
The Static1 teams, however, never hit a peak with their
mean interception distance (except for strategy 3);
whenever their team size increased, so did their mean
interception distance. Both LM and Static1 robots
outperformed Static2 robots.

 A total of eighteen different soldier teams were
constructed; for each of the three types of soldiers, there
were teams ranging in size from one to six members.
Each team was tasked with protecting the target object
against five different enemy attacking strategies.
 For the following descriptions, compass directions
will be used. North and east refer to the positive Y and
X-axes, respectively, in global coordinates.

1. The first strategy had enemies approaching from the

north, south, east, and west. Enemies approaching
from the south did so with a third of the frequency of
the other directions.

 The percentage of runners intercepted is arguably the
more important of the two metrics presented here.
Although there may be exceptions, if given a tradeoff
between intercepting more enemies or intercepting

2. The second strategy had enemies approaching from
the northwest, west, and southwest.

4

 Since the Static2 teams never performed significantly
better than any other teams, we can conclude that Static2
should not be used exclusively. However, we cannot use
Static1 robots exclusively, either, since they are not stable
in the absence of enemies, i.e., they will move arbitrarily
far away from the target object they are trying to protect
while in search of enemies. One strategy may be to have
soldiers switch between controllers depending on whether
or not enemies are present. This would have been
beneficial in instances when enemy strategy 3 is used,
where Static1 outperformed LM with respect to the
distance metric and performed comparably to LM with
respect to the interception percentage metric. This is very
similar to our previous work in integrating case-based
reasoning with LM [8].

enemies while they are farther from their target, the
former is likely more desirable. With regards to the
number of enemy runners intercepted, the LM and Static2
teams generally seemed to set the upper and lower
performance bounds for this metric, respectively, between
which the Static1 teams’ performances resided. Other
than that, few cross-strategy generalizations can be
drawn. At times, LM performed substantially better than
Static2 over almost the entire range of group sizes
(strategy 3), and at times the two were more closely
matched (strategy 5). Most results, however, fell in
between these two extremes. For strategy 2, the teams
were closely matched through team sizes of three, but on
sizes above that, LM took a clear lead until Static1 teams
gained an advantage with six-robot teams. It is worth
noting that, by the time six-robot teams were evaluated,
nearly all types of robots are intercepting a high
percentage of enemy runners. The only exception for this
is the Static2 team when defending against strategy 4.

 Mixing the two static robot types on a single team
would also probably lead to better performance when a
large number of soldiers are available. When we get to
six-robot teams, Static1 robots either outperform or
indicate a future out-performance (if we extrapolate the
graphs) of LM robots.

 These observations imply that adaptation can be
beneficial for a limited number of robots, but given
enough soldier team members it may not be necessary.
This seems consistent with the intuition that if you have
enough robots on hand to deal with the enemies they
likely don’t have to be adaptive, i.e., their strength lies in
their numbers. On the other hand, when available soldier
resources are stretched to their limits then adaptation
seems to be of more value.

 The LM robots appear to be of greatest benefit with a
smaller number of soldiers. This conclusion should not
be surprising. If a large number of soldiers are available,
then they can simply disperse into a cloud of soldiers
around the target such that any approaching enemy has to
“run the gauntlet” to get to the target. If a limited number
of soldiers are available, however, the density of soldiers
around the target is reduced, so all soldiers must be put to
the best use possible, be it moving forward to attack an
enemy or staying with the target object.

 We must also keep in mind, however, that the
presence of enemies during the tests was constant. As
was previously mentioned, the reduced MoveToTarget
weight of the Static1 robots makes teams of this type
unstable in the absence of enemies. Without an enemy
presence, the AvoidSoldiers behavior dominates, and the
team continues to disperse. Therefore, the lower
MoveToTarget weight that allows Static1 robots more
freedom to move can also be detrimental to the group’s
overall performance. The Static2 teams are stable without
enemies, but are more constrained spatially when enemies
are present. It is likely that adaptation have greater value
when enemy strategies change rather than remain constant
during an overall attack. We hope to investigate this in the
near future.

 Future work in this domain includes verification of
these results on physical robots. Other possibilities
include exploring more enemy strategies and looking into
other adaptive strategies that could improve results when
the number of robots in the team is increased. Interesting
results may also come from using a case-based reasoner
for the parameters either in conjunction with or in place
of learning momentum. Switching enemy strategies in
the middle of a run could also be insightful.

Figure 4. A Pioneer 2-DXe to be used in physical

robot experiments.

5. Conclusions

 Several statements can be made from the data
gathered. The first is that, of the soldier types tested,
there was no clear-cut winner in all situations. Enemy
strategy 1, where runners simultaneously came from
different directions, played well to LM’s strength in that it
could split up soldiers to go in different directions, and so
the LM team prevailed on both distance and percentage of
interception metrics.

5

Acknowledgments

This research is supported under DARPA's Mobile
Autonomous Robotic Software Program under contract
#DASG60-99-C-0081. The authors would also like to
thank Dr. Douglas MacKenzie, Yoichiro Endo, Alex
Stoytchev, William Halliburton, and Dr. Tom Collins for
their role in the development of the MissionLab software
system. In addition, the authors would also like to thank
Amin Atrash, Jonathan Diaz, Yoichiro Endo, Michael
Kaess, Eric Martinson, and Alex Stoytchev.

References
[1] Arkin, R.C., “Integrating Behavioral, Perceptual, and

World Knowledge in Reactive Navigation”, Robotics
and Autonomous Systems, 6 (1990), pp. 105-122.

[2] Arkin, R.C., Balch, T.R. “AuRA: Principles and

Practice In Review,” Journal of Experimental and
Theoretical Artificial Intelligence, Vol. 9(2-3), 1997,
pp. 92-112.

[3] Arkin, R.C., Clark, R.J., and Ram, A., “Learning

Momentum: On-line Performance Enhancement for
Reactive Systems”, Proceedings of the 1992 IEEE
International Conference on Robotics and
Automation, May 1992, pp. 111-116.

[4] Atrash, A. and Koenig, S. “Probabilistic Planning for

Behavior-Based Robots”, Proceedings of the
International FLAIRS conference (FLAIRS), pp. 531-
535, 2001.

[5] Endo, Y., MacKenzie, D.C., and Arkin, R.C.

“Usability Evaluation of High-Level User Assistance
for Robot Mission Specification”, Georgia Tech
Technical Report GIT-GOGSCI-2002/06, College of
Computing, Georgia Institute of Technology, 2002.

[6] Haynes, T. and Sen, S. "Evolving Behavioral

Strategies in Predators and Prey", Workshop on
Adaptation and Learning in Multiagent Systems,
Montreal, Canada, 1995, pp. 32-37.

[7] Lee, J. B., Arkin, R. C., “Learning Momentum:

Integration and Experimentation”, Proceedings of the
2001 IEEE International Conference on Robotics and
Automation, May 2001, pp. 1975-1980.

[8] Lee, J. B., Likhachev, M., and Arkin, R.C., “Selection

of Behavioral Parameters: Integration of
Discontinuous Switching via Case-Based Reasoning
with Continuous Adaptation via Learning
Momentum,” Proceedings of the 2002 IEEE

International Conference on Robotics and
Automation, May 2002, pp. 1275 – 1281.

[9] Likhachev, M., Arkin, R.C., “Spatio-Temporal Case-

Based Reasoning for Behavioral Selection,”
Proceedings of the 2001 IEEE International
Conference on Robotics and Automation, May 2001,
pp. 1627-1634.

[10] MacKenzie, D., Arkin, R.C., and Cameron, R.,

“Multiagent Mission Specification and Execution”,
Autonomous Robots, Vol. 4, No. 1, Jan 1997, pp. 29-
52.

[11] Martinson, E., Stoychev, A., and Arkin, R., “Robot

Behavioral Selection Using Q-Learning”, Proceedings
of the 2002 IEEE International Conference on
Intelligent Robots and Systems, 2002.

6

Figure 5 – Strategy 1 Figure 6 – Strategy 2

Figure 7 – Strategy 3 Figure 8 – Strategy 4

Figure 9 – Strategy 5

Figures 4-8 show mean distances from the target object of interceptions of enemy runners that were using different strategies.

7

Figure 10 – Strategy 1 Figure 11 – Strategy 2

Figure 12 – Strategy 3 Figure 13 – Strategy 4

Figure 14 – Strategy 5

Figures 9-13 show the percentage of interceptions of enemy runners that were using different strategies.

8

	No Soldiers Need Help – Enemy groups exist, but t
	Acknowledgments
	References

