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Abstract 
 In this paper, the effects of adaptive robotic behavior 
via Learning Momentum in the context of a robotic team 
are studied.  Learning momentum is a variation on 
parametric adjustment methods that has previously been 
successfully applied to enhance individual robot 
performance. In particular, we now assess, via simulation, 
the potential advantages of a team of robots using this 
capability to alter behavioral parameters when compared 
to a similar team of robots with static parameters.  
 
1. Introduction 
 
 Learning Momentum (LM) has been previously 
applied in the context of single robot navigation through 
obstacle fields [3,7] and was shown to improve 
performance in certain useful situations by altering, at run 
time, parameters of a behavior-based controller. We see 
no reason, however, to confine LM to a single robot 
interacting with the environment.  While previous LM 
applications were based only on a single robot’s goals, 
such individualism is not always appropriate for team 
behavior.  In team situations, it may be beneficial for an 
individual robot to adapt to what its other teammates are 
doing in order to increase the performance of the overall 
group instead of a single robot acting greedily. 
     This research is being conducted as part of a larger 
robot learning effort funded under DARPA's Mobile 
Autonomous Robotic Software (MARS) program. In our 
overall effort, five different variations of machine 
learning, including learning momentum, case-based 
reasoning [5,9], learning in the presence of uncertainty 
[4], and reinforcement learning [11], have been integrated 
into a well-established software architecture, MissionLab 
[10]. 
 In this paper, we study the effects of LM on a team of 
robots working towards a common goal.  A scenario was 
invented in which “soldier” robots are deployed to protect 
a target object from incoming enemy robots. This is not 
unlike the classic prey-predator problem so often studied 
in multiagent systems [6]. To determine whether or not 
adaptation through LM can be beneficial, performance 
comparisons were made between different sized teams of 

adaptive and non-adaptive soldier robots running in a 
simulated environment. 
 
2. Learning Momentum Overview 
 
 Learning Momentum is a technique initially 
developed by Arkin, Clark, and Ram [3] and further 
explored later by Lee and Arkin [7] to facilitate the 
adaptation of robots using behavior-based controllers. It 
functions by allowing for situation-based incremental run-
time changes to the underlying behavioral controller 
parameters.  In essence, the central concept of LM is that 
if you’re performing well, you should keep doing what 
you’re currently doing, and try it a bit more.  If you are 
not doing well, you should try something a little different. 
Specific parametric adjustment rules and situational 
identification characteristics guide the adjustment policies 
during learning. Thus it is a continuous, on-line, real-time 
adaptive learning mechanism whereby a robotic agent 
responds to changes in its environment. 
 To implement LM, the controller remembers a small 
set of sensor readings from its immediate history (time 
window).  These readings are then used to identify which 
one of several possible pre-defined situations a robot is 
currently in.  In the past [7], situations such as “making 
progress” or “impeded by obstacles” have been used to 
identify certain navigational cases, resulting in improved 
performance for a single robot moving though an 
obstacle-strewn world. The particular set of situations 
required, however, tends to be application dependent.  
     The robot maintains a two-dimensional table, where 
one dimension’s size is equal to the number of possible 
situations the robot might encounter, while the other is 
equal to the number of adjustable behavioral parameters 
of the controller, which depends on the behaviors selected 
for the underlying task.  The parameter type and situation 
are used to index into the table to get a value, or delta, 
that is added to that particular parameter during 
execution, incrementally adjusting the value as needed.  
In this way, the robot may alter its behavioral response to 
more appropriately deal with the current situation.  All 
parameter values are bounded to keep them within 
acceptable levels. 
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 In the context of navigation, behaviors such as move- 
to-goal, avoid-obstacles, and wander were combined 
using weighted vector summation to produce the robot’s 
final output vector [1].  Each behavior’s gain (how 
strongly it is weighted prior to summation) was included 
in the alterable parameters, and in this way one or more 
behaviors could achieve dominance over the others if the 
situation warranted.  For example, if a robot was making 
progress, it would steadily increase the weight of the 
move-to-goal gain and reduce the weight of the wander 
gain. Details of the underlying methods appear in [3,7]. 

In this new research, we now extend these adjustment 
techniques to span multiple robots operating coherently 
towards an overall group goal. The same underlying 
principle of LM is exploited: parametric adjustment based 
on situational assessment. New methods, however, are 
used to represent team performance, situations, and robot 
interaction. 
 
3. The Soldier Robot Scenario 
 
 For the experiments reported in this paper, a scenario 
was invented that places a team of soldier robots in an 
open environment charged with protecting a target object 
from enemy intruders. In certain respects this scenario is 
not unlike the defensive aspects of the childhood game 
“capture the flag”.  The job of the soldier is to protect the 
target object from enemy soldiers who will try to attack it.  
When a soldier identifies the presence of an enemy robot, 
it should try to intercept the enemy.  Upon making 
contact, the enemy is considered destroyed and eliminated 
from the scenario.   

An enemy either tries to get directly through to the 
target object or decoy solider robots.  If the enemy makes 
contact with the target, its attack is considered successful, 
and the enemy is removed while the target remains intact 
for other enemies to similarly approach it. For the 
purposes of this experiment, the target is invincible; this 
allows us to see how many enemies successfully make it 
to the target. The overall goal of the soldier team is to 
intercept all enemies with none of them safely reaching 
their objective. 
 
3.1 The Soldier 
 
 In these experiments, three different types of soldiers 
(2 static non-learning ones that serve as benchmarks, and 
1 adaptive one employing LM) were created using the 
AuRA architecture [2] as embodied in the MissionLab1 
mission specification system [10]. All three types use 
weighted vector summation to combine four behaviors  

(MoveToTarget, InterceptEnemies, AvoidSoldiers, and 
AvoidObstacles) to accomplish their task.  These 
behaviors are described in more detail below. 
 
MoveToTarget – This behavior produces a vector pointing 
to the target object and has a magnitude of 1−D2 , where 
D is the distance to the object.  The –1 allows for some 
repulsion when the soldier is extremely close to the 
object, so it will remain some distance away. 
 
InterceptEnemies – This behavior groups enemies based 
on their angular distance from each other with respect to 
the observing soldier and extracts the closest enemy from 
each group.  For each of these enemies, an intercept point 
is calculated, and a vector to that point that has magnitude 

))1(1( −+ Gα , where G is the size of the group the 
soldier was in, and α is a constant.  For these experiments, 
α is set to 0.05.  This equation basically creates a vector 
pointing to an enemy group’s intercept point with a base 
magnitude of 1 that increases slowly but linearly with 
each subsequent group member.  If the intercept point is 
within a certain radius around the soldier, it is scaled up 
to allow the soldier to proceed to home in on the enemy.  
The vectors for each calculated group are then summed 

                                                           
1 MissionLab is freely available over the Internet and can 
be downloaded from www.cc.gatech.edu/ai/robot-
lab/research/MissionLab.html. 
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Figure 1. InterceptEnemies behavior

for the final output (Fig. 1). 
AvoidSoldiers – This behavior takes as input a list of 
enemy groups and friendly soldier positions.  For each 
friendly soldier, the behavior checks to see if it is 
occluded by an enemy group, where “occluded” is 
defined to be “within a certain angular distance of and 
behind”.  If so, that soldier is ignored.  Otherwise, the 
soldier is checked to see if it is engaged with any 
enemies, where “engaged” is defined to be “within a 
certain angular distance of an enemy and between the 
observing solider and that enemy”.  For each soldier not 
occluded by an enemy group, a unit vector pointing away 
from that soldier is calculated.  For soldiers not already 



engaged, this is then scaled down by a constant, which is 
required to keep this behavior from becoming overly 
dominating in the presence of a large number of robots.  
For these experiments, that constant was 0.4.  For soldiers 
that are engaged, this scaling down is not needed since 
the InterceptEnemies behavior typically couonterbalances 
that soldier’s influence.  The vectors from the unoccluded 
soldiers are then summed for this behavior’s output. 
AvoidObstacles – This behavior produces a vector 
pointing away from nearby obstacles.  For each obstacle 

within a certain distance from the robot, a vector pointing 
away from the obstacle is computed, and the vectors are 
summed to produce the output.  

 Static1 Static2 
MoveToTarget 0.02 0.1 
InterceptEnemies 1.0 1.0 
AvoidSoldiers 0.5 0.5 
AvoidObstacles 0.1 1.0 
Table 1. Behavior weights of non-learning soldiers. 

 In the experiments, two of the specified soldier types 
are non-learning and use fixed static weights for the 
vector summation.  These are referred to as the Static1 
and Static2 soldier types.  The third soldier type uses 
learning momentum to dynamically change its behavioral 
weights and is referred to as LM.  Table 1 gives the 
weighting scheme for each of the static robots.  The only 
difference between the two robot types is the 
MoveToTarget weight.  The lower weight of the Static1 
types allows them more freedom to intercept as they are 

less drawn to stay near the target object, but they are 
unstable in the absence of any enemies, in the sense that 
their AvoidSoldiers behavior may keep them moving 
away from each other far beyond the area they should be 
protecting in search of enemies.  The Static2 types are 
stable without enemies present, i.e., they tend to stay 
clustered closer to the target object, but as a consequence  
they don’t have as long of a reach when intercepting 
enemies. 

enemies

soldiers

AvoidSoldiers components
Final AvoidSoldiers output

occluded
soldier

Figure 2. AvoidSoldiers Behavior 

 The LM-type soldiers continuously look to see which 
one of five possible situations it finds itself in: 
 
• All Clear – There are no visible enemies present. 
• Clear to Enemy – The soldier is between the target 

object and an enemy group that is not occluded by 
another soldier. 

• Flanking Enemy – The solider sees an enemy group 
that is not occluded by any soldier, and the soldier is 
not between that group and the target object. 

• Soldier Needs Help – All enemy groups are being 
intercepted by soldiers, but at least one soldier group 
is overwhelmed by an enemy group.  
“Overwhelmed” is defined to mean that S/E < T, 
where S is the size of the intercepting soldier group, 
E is the size of the enemy group being intercepted, 
and T is a threshold (set to 0.5 for these experiments). 

• No Soldiers Need Help – Enemy groups exist, but 
they are all being intercepted by soldier groups of 
appropriate size. 

 
 The behaviors’ weight changes for each situation are 
given in Table 2.  In addition, all weights are bound to 

target
enemies

S4

S3S2S1

Figure 3.  Different soldier situations. S1, S2, S3, and S4 are soldiers in the situations Clear to Enemy, Soldier 
Needs Help, No Soldiers Need Help, and Flanking Enemy, respectively. 
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3. The third had decoy enemies to the west while groups 
of five enemy runners approached from the northeast.   

remain between 0.01 and 1.0, except for the 
AvoidSoldiers weight, which was bound by 0.1 and 1.0. 
 The desired interplay of the behaviors in the LM 
teams is to allow a soldier to go where it is needed the 
most in light of changing circumstances.  For example, if 
a soldier sees a group of enemies, but other soldiers are 
handling that group, the No Soldiers Need Help situation 
should be invoked, and the behavior weights are adjusted 
so that the soldier moves back to the target object instead 
of running out after the enemy group.  This is desirable so 
that the target is not left without protection if any enemies 
from the group get through or if another enemy group 

4. The fourth was like the third, except decoys also 
appeared in the south.   

5. The last had enemies coming from all directions, but 
always in pairs from opposite sides of the target 
object (i.e. if an enemy appeared to the east, one 
would simultaneously appear to the west).  Enemies 
appearing from a particular “spawn point” did so 
with a regular frequency.   
 
For strategies 1 and 2, enemies appeared every 100 

simulation time steps.  For strategies 3 and 4, decoys 
appeared in groups of two every 200 time steps, while 
runners appeared every 500 time steps.  For strategy 5, 
there were six spawn points with a frequency of 300 time 
steps, but they were staggered such that two enemies were 
created every 100 time steps. 
 Each of the eighteen teams was then allowed to run 
against each of the five enemy strategies 100 times.  Each 
run had a duration of 20,000 simulation time steps. 
 Move To 
Target 

Intercept Avoid 
Soldiers 

All Clear 0.05 -0.05 0.05 
Flanking Enemy -0.1 0.1 -0.1 
Clear To Enemy -0.1 0.1 0.1 
Help Needed -0.1 0.1 -0.1 
No Help Needed 0.1 -0.1 -0.1 

Table 2. Behaviors’ weight changes for different 
situations.
appears from another direction. 
 
4.1 Results 

  
3.2 The Enemy  As the tests ran, statistics on enemy births and deaths 

were collected to see how many times the target was 
reached and how far from the target enemies were 
intercepted by soldiers.  Since decoys were not drawn to 
the target, they posed no danger, and whether or not they 
were intercepted was of no consequence to the protection 
of the target.  Therefore, the following data comes only 
from enemy runners. 

 
 Enemy soldiers come in two types: runners and 
decoys.  A runner, upon creation, will immediately move 
in a straight line to the target object.  The decoy, on the 
other hand, will begin a random walk when it is created.  
The purpose of the decoy is to draw soldiers toward them 
so runners have a clear path to the target object.  
  Figures 5 – 9 show mean distances of interceptions of 

enemy runners from the target object that were using 
different attack strategies. Figures 10 – 14 show the 
overall percentage of interceptions of enemy runners that 
were using different strategies.  

4. Simulation Experiments 
 
 The MissionLab software suite was used to conduct 
the experiments. The target object was placed in the 
middle of a 200m x 200m mission area with 3% obstacle 
coverage, where randomly placed circular obstacles 
ranged from 1 to 5 meters in radius. 

 With respect to distance from the target object, LM 
and Static1 teams vary in their ability to outperform each 
other, depending upon the attack strategy.  LM is the clear 
winner for strategy 1, while Static1 has the larger 
distances from target for strategy 3.  For strategies 2, 4, 
and 5, LM performs better for teams of five or less, but 
Static1 matches or outperforms LM with six robots.   For 
strategies 2 – 5, the maximum average distance of 
interception for the LM teams occurred with five robots.  
The Static1 teams, however, never hit a peak with their 
mean interception distance (except for strategy 3); 
whenever their team size increased, so did their mean 
interception distance. Both LM and Static1 robots 
outperformed Static2 robots. 

 A total of eighteen different soldier teams were 
constructed; for each of the three types of soldiers, there 
were teams ranging in size from one to six members.  
Each team was tasked with protecting the target object 
against five different enemy attacking strategies. 
 For the following descriptions, compass directions 
will be used.  North and east refer to the positive Y and 
X-axes, respectively, in global coordinates.  
 
1. The first strategy had enemies approaching from the 

north, south, east, and west.  Enemies approaching 
from the south did so with a third of the frequency of 
the other directions.   

 The percentage of runners intercepted is arguably the 
more important of the two metrics presented here.  
Although there may be exceptions, if given a tradeoff 
between intercepting more enemies or intercepting 

2. The second strategy had enemies approaching from 
the northwest, west, and southwest.   
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 Since the Static2 teams never performed significantly 
better than any other teams, we can conclude that Static2 
should not be used exclusively.  However, we cannot use 
Static1 robots exclusively, either, since they are not stable 
in the absence of enemies, i.e., they will move arbitrarily 
far away from the target object they are trying to protect 
while in search of enemies.  One strategy may be to have 
soldiers switch between controllers depending on whether 
or not enemies are present.  This would have been 
beneficial in instances when enemy strategy 3 is used, 
where Static1 outperformed LM with respect to the 
distance metric and performed comparably to LM with 
respect to the interception percentage metric. This is very 
similar to our previous work in integrating case-based 
reasoning with LM [8]. 

enemies while they are farther from their target, the 
former is likely more desirable.  With regards to the 
number of enemy runners intercepted, the LM and Static2 
teams generally seemed to set the upper and lower 
performance bounds for this metric, respectively, between 
which the Static1 teams’ performances resided.  Other 
than that, few cross-strategy generalizations can be 
drawn.  At times, LM performed substantially better than 
Static2 over almost the entire range of group sizes 
(strategy 3), and at times the two were more closely 
matched (strategy 5).  Most results, however, fell in 
between these two extremes.  For strategy 2, the teams 
were closely matched through team sizes of three, but on 
sizes above that, LM took a clear lead until Static1 teams 
gained an advantage with six-robot teams.  It is worth 
noting that, by the time six-robot teams were evaluated, 
nearly all types of robots are intercepting a high 
percentage of enemy runners. The only exception for this 
is the Static2 team when defending against strategy 4. 

 Mixing the two static robot types on a single team 
would also probably lead to better performance when a 
large number of soldiers are available.  When we get to 
six-robot teams, Static1 robots either outperform or 
indicate a future out-performance (if we extrapolate the 
graphs) of LM robots. 

 These observations imply that adaptation can be 
beneficial for a limited number of robots, but given 
enough soldier team members it may not be necessary. 
This seems consistent with the intuition that if you have 
enough robots on hand to deal with the enemies they 
likely don’t have to be adaptive, i.e., their strength lies in 
their numbers. On the other hand, when available soldier 
resources are stretched to their limits then adaptation 
seems to be of more value. 

 The LM robots appear to be of greatest benefit with a 
smaller number of soldiers.  This conclusion should not 
be surprising.  If a large number of soldiers are available, 
then they can simply disperse into a cloud of soldiers 
around the target such that any approaching enemy has to 
“run the gauntlet” to get to the target.  If a limited number 
of soldiers are available, however, the density of soldiers 
around the target is reduced, so all soldiers must be put to 
the best use possible, be it moving forward to attack an 
enemy or staying with the target object. 

  We must also keep in mind, however, that the 
presence of enemies during the tests was constant.  As 
was previously mentioned, the reduced MoveToTarget 
weight of the Static1 robots makes teams of this type 
unstable in the absence of enemies.  Without an enemy 
presence, the AvoidSoldiers behavior dominates, and the 
team continues to disperse.  Therefore, the lower 
MoveToTarget weight that allows Static1 robots more 
freedom to move can also be detrimental to the group’s 
overall performance.  The Static2 teams are stable without 
enemies, but are more constrained spatially when enemies 
are present. It is likely that adaptation have greater value 
when enemy strategies change rather than remain constant 
during an overall attack. We hope to investigate this in the 
near future. 

 Future work in this domain includes verification of 
these results on physical robots.  Other possibilities 
include exploring more enemy strategies and looking into 
other adaptive strategies that could improve results when 
the number of robots in the team is increased.  Interesting 
results may also come from using a case-based reasoner 
for the parameters either in conjunction with or in place 
of learning momentum.  Switching enemy strategies in 
the middle of a run could also be insightful. 

 
Figure 4. A Pioneer 2-DXe to be used in physical 

robot experiments. 

 
5. Conclusions 
 
 Several statements can be made from the data 
gathered.  The first is that, of the soldier types tested, 
there was no clear-cut winner in all situations.  Enemy 
strategy 1, where runners simultaneously came from 
different directions, played well to LM’s strength in that it 
could split up soldiers to go in different directions, and so 
the LM team prevailed on both distance and percentage of 
interception metrics. 
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Figure 5 – Strategy 1          Figure 6 – Strategy 2 

 

 
Figure 7 – Strategy 3         Figure 8 – Strategy 4 

 

 
Figure 9 – Strategy 5 

 
Figures 4-8  show mean distances from the target object of interceptions of enemy runners that were using different strategies. 
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Figure 10 – Strategy 1          Figure 11 – Strategy 2 

 

 
Figure 12 – Strategy 3          Figure 13 – Strategy 4 

 

 
Figure 14 – Strategy 5 

 
Figures 9-13 show the percentage of interceptions of enemy runners that were using different strategies. 
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