Establishing Performance Guarantees for Behavior-Based Robot Mis-
sions Using an SMT Solver

Feng Tang!, Damian M. Lyons', Ronald C. Arkin®
IFordham University, Bronx, NY, USA
2Georgia Institute of Technology, Atlanta, GA, USA

Abstract

In prior work [9] we developed an approach to formally representing behavior-based multi-robot programs, and the un-
certain environments in which they operate, as process networks. We automatically extract a set of probabilistic equations
governing program execution in that environment using a static analysis module called VIPARS, and solve these using
a Dynamic Bayesian Network (DBN) to establish whether stated performance guarantees hold for the program in that
environment. In this paper we address the challenge of expanding the range of performance guarantees that are possible
by using an SMT-solver instead of a DBN.

We translate flow functions, which are recursive probabilistic expressions that capture program execution and that are
generated by VIPARS, to formulas in the SMT-LIBv2 language. We use the dReal SMT-solver with a semi-decision
procedure to check the satisfiability of the formulas. The experimental results show that our SMT approach succeeds in
establishing performance guarantees for behavior-based robot missions at least as well as the DBN approach, but also
for an example not possible with the DBN approach. Although the work presented here used VIPARS static analysis to
generate flow functions, the approach we have taken could be used to leverage SMT for any similar probabilistic system.

1

Autonomous multi-robot technology is playing a key role
in Counter Weapons of Mass Destruction (C-WMD) and
Urban Search and Rescue (USAR) missions since it has the
potential to handle threats to human beings in a timely and
safe fashion. Behavior-based robot programming is an im-
portant tool in autonomous robotics; it can yield programs
that are robust to uncertainty about exactly what environ-
ment the robots will face during execution because it es-
chews any detailed modeling of the environment. This also
means, however, that it may be difficult to predict exactly
how the program will behave in any given environment.
For this reason, automated analysis of behavior based pro-
grams for verification & validation (V&V) purposes has
become a topic of research interest, e.g., [5] [16] [9]. Such
program analysis can at best only produce an approxima-
tion of the performance due to the undecidability of the un-
derlying problem of program verification, so a crucial issue
is to understand what aspects of the problem to emphasize
and what to simplify.

Lyons et al. [9] designed a probabilistic framework for
verifying the performance of autonomous behavior-based
robot missions in uncertain environments. The behavior-
based mission is specified in MissionLab [12], a multi-
agent robotics mission specification and control toolkit. It
is translated from MissionLab’s internal representation to a
process-algebra notation PARS (Process Algebra for Robot

Introduction

Schemas). Environment models are also processes in this
notation and Lyons et al. propose that a standardized set
of environment models could be used to capture different
classes of environment. The environment models in [9] ad-
dress only uncertainty in motion and odometry, although
obstacle uncertainty has been addressed for this approach
in [10].

A behavior-based program and its environment is modeled
by [9] as a set of interconnected, recurrent processes. A
static analysis [14] module, VIPARS, is used to extract flow
functions for each process - functions that capture how the
process variables evolve as that process executes. An inter-
leaving theorem is then introduced that allows the compo-
sition of all these individual flow functions, both for pro-
gram and for environment, into a single system flow func-
tion capturing the interaction of program and environment
variables. Process variables may be random variables and
hence the system flow function may operate on distribu-
tions as well as values.

Establishing a performance guarantee for a robot mission
in a given environment involves determining whether the
system flow function with known initial conditions will
ever lead to variable values (distributions) that satisfy the
performance guarantee. Although they discuss more com-
plicated performance guarantees, Lyons et al. [9] basically
restrict their attention to the guarantee that a mission will
achieve some criterion on environment variables (usually
a spatial accuracy for a waypoint goal) with probability

Human
Operator

Models
(Robot, Sensors,

Environment)

SMT Solver
Translation
Module
Flow
Functions

Performance
Guarantees

Performance
Criteria

Figure 1 The framework of our approach. An SMT-
solver is used to establish the performance guarantees for
robot missions.

MissionLab
Robot Program Design

greater than a threshold before a time-limit has expired.
They establish this using a Dynamic Bayesian Network
(DBN))[17], constructed from the system flow function, as
a probabilistic filter, with the time-limit as the upper bound
on filter iterations. They demonstrate that this approach is
fast and accurate when validated against physical execu-
tions. However, in this DBN approach all the initial con-
ditions must be specified (even if as distributions) and it is
limited to reasoning forwards from the initial conditions.
We have now developed a Satisfiability Modulo Theories
(SMT) [4] solver approach to address the solution of the
probabilistic system flow-function. The framework of the
approach is shown in Figure 1. There are two advan-
tages to leveraging SMT solvers in robotics problems of
this kind. The first one is that it removes the constraint of
fully specifying initial conditions and only reasoning for-
wards. For example, the initial position of the robot can
be set in a specified area rather than a fixed position. The
second one is that we are able to leverage state-of-the-art
SMT solvers, e.g., Z3 [6], CVC4 [2], and dReal [8].
Applying SMT solvers to robotics research is not new.
Witsch ef al. [20] presented an incomplete SMT solver
for non-linear continuous constraint satisfaction problems,
and evaluated it and similar state-of-the-art solvers on prob-
lems originating in multi-robot system domains, e.g., task
allocation or robot positioning. Saha et al. [18] proposed a
compositional multi-robot motion planning framework that
uses precomputed motion primitives for a group of robots
and employs an SMT solver to synthesize trajectories for
the individual robots. Nedunuri et al. [13] proposed an
approach to solve integrated task and motion planning by
transforming the problem into suitable input for an SMT
solver, which can be used to symbolically explore the space
of all integrated plans that correspond to paths in the place-
ment graph, and also satisfy the constraints demanded by
the plan outline and the requirements. Ropertz et al. [16]
proposed a verification approach for complex behavior-
based systems using SMT, which allowed for an automated
system model modeling that enables an efficient and fine
grained system analysis for ensuring safety and reliability.
The main contribution of our work here is threefold: (1) we

take the advantage of SMT solvers to determine whether a
performance guarantee holds automatically; (2) we use a
semi-decision procedure which checks the satisfiability of
recursive functions with lower bound and upper bound; (3)
we extend the SMT solver to manipulate distributions.

2 Mission Analysis

Verification and validation of three typical robot missions
is reported in [9][10][11]. The first mission is the Back
and Forth mission, where the robot goes back and forth
between positions A and B, and must reach each posi-
tion within a certain time and spatial accuracy. It is dif-
ficult to succeed with this performance objective because
uncertainties in robot motion result in the actual robot lo-
cation drifting far from the desired location. The second
one is the Waypoint-based Biohazard Search mission in
which the task of the robot is to enter a building to search
for a biohazard. The last one is the Multi-robot Bounding
Overwatch mission, where the robots alternate in advanc-
ing forward and taking overwatch positions (i.e., covering
for the advancing robot). PARS (Process Algebra for Robot
Schemas) was introduced for representing these robot mis-
sions and as the underlying framework for reasoning about
the performance guarantees for them. Software has since
been developed in [15] to automatically translate robot mis-
sions from MissionLab’s design environment into PARS.

2.1 PARS

PARS is a process algebra [1] for representing and ana-
lyzing robot programs and their interactions with an (un-
certain) environment. Programs and environment models
are specified in PARS as networks of communicating, con-
current processes. Introducing here only the most crucial
PARS notation for space reasons, the robot controller pro-
cess and environment process are written as fail recursive
processes according to the straightforward process equa-
tion template:

P(a) = Q(a) (b):P(b). (M

Eq. (1) defines a process P with input parameter a that
repeats process Q until Q terminates in a ’fail state’, an
abort. The ";" is the sequential composition operator. Pro-
cesses that evaluate conditions (e.g., whether the robot has
reached a location) terminate in a success state if the con-
dition is true and a fail state (abort) if the condition is false;
a ’fail’ in a sequential composition causes the composition
to also ’fail’. In (1), process Q takes a as an initial pa-
rameter variable and produces b as a result variable. With
every process Q we associate a flow function fg (a) = b that
maps the input parameter variables of Q to its output vari-
ables. For atomic processes, f is predefined. For compos-
ite processes, processes defined as compositions of other
processes, f has to be calculated by looking at the variable
transformations and composition operations within the def-
inition of Q. The tail-recursive templates makes the calcu-
lation of flow functions much easier. In this way, a pro-

cess definition can be mapped to a composition of func-
tional transformations on the variables of those processes.
For example (1) can be mapped to a function composition
fr= f(’i, forn > 0.

In general, a process Q may have multiple variables,
V1,V2,...,Vm € V, some of which can hold initial param-
eter values such as the starting location of the robot, its
maximum velocity, etc., and some of which may deliver
final result values such as position odometry or laser sens-
ing (and some of which may be neither, and just used for
intermediate values in calculations). We associate a flow
function fg,,, with each variable in the process, and this
function maps the product of the value sets of the variables
in V to the value set of variable i. The flow-function for the
process is then written somewhat more generally than we
did in the last paragraph as:

foV) = (fou V), fau (V). fawa (V).)

The discussion here is a little simplified over the more com-
plete description of PARS and flow-functions in [9] in that
we do not discuss process termination, conditionals and
loops and how to effect the calculation of the flow-function
- we don’t need this for the remaining discussion.

A variable in a process can be a random variable from a
mixture of multivariate normal distributions N (i, X;) ,i =
1,...,k. For example, the initial position py of the robot
can be a two-dimensional random variable from a (sin-
gle member mixture of) bivariate normal distribution(s)

N(upo,zpo).

2.2 VIPARS: Performance Analysis in
PARS

A static analysis technique is developed in [9] to extract
the system flow function from a system of interconnected
parallel processes. The software that implements this tech-
nique is called VIPARS (Verification in PARS). The result
of applying VIPARS to a system S of robot program and
environment model is a set of functions f,, one per variable
in S, that map values (distributions) in one iteration of the
system to values (distributions) in the next. VIPARS lever-
ages the fact that all the processes can be specified, without
loss of generality, in a tail-recursive form as in Eq. (1).

Let us call F (V) the function

F (V) = fS (V) = (fS,vl (V) 7fS,v2 (V) e afS,vm (V)) (3)

for vi,va,...,v;, €V being the (program and environment)
variables in the system of program and environment S. This
probabilistic mapping can be represented as a Dynamic
Bayesian Network (DBN)[17], and thus used to forward
filter the values of the random variables. If V, is the ini-
tial values of the system variables, then F (Vp) is the re-
sult of one application of this filter, and F" (Vp) is the re-
sult of n successive applications of the filter. Let C(V)
be a boolean function that tests whether the performance
guarantee holds for the variables in V (e.g., whether the
robot is in its goal location within a specific spatial accu-

racy). Then, establishing whether the performance guaran-
tee holds just asks whether

In < Npax - C(F"(Vp)) 4)

where N, 1s the maximum allowed iterations of the filter.
Each iteration of the filter models a fixed time step 7 so if
T is the time-limit for the mission, then N,q5x = Thnax /T

2.3 The Single-Waypoint Example

An example of such a tail-recursive system of processes
and their analysis is the following from [9] and upon which
the experiments in this paper are based. The robot con-
troller process MoveTo takes the desired location to move
to as an initial parameter g, and then recursively accepts a
position input on its input port p and produces a velocity
output d(g — rp) proportional to the position error on its
output port v until the error is smaller than a constant e:

MoveTo(g) = In{p){rp);Gtr(|rp—gl.e);)

Out (v,d(g —rp));MoveTo (g)
The environment the controller is carried out in here con-

sists of the robot and its motion uncertainty. This can be
represented as the tail-recursive process Robot:

(Delay (t)#Out (p,r Es) #At(r));
In (v) (u) ;Robot (r+ (u* Ep,) * T,u)

Robot (r,u) =

E; ~ N(/Jmazfm)y Eg~ N(.uS:Es)
(6)

The # operator is the PARS disabling composition, a
parallel-min operator that terminates when the first of its
arguments terminate, but otherwise behaves like a parallel
composition. The two constants E;, E,,, are Gaussian distri-
butions representing the odometry sensor noise and the ve-
locity noise, and are measured by calibration experiments
for the robot platform used in the experiments, a Pioneer
3-AT. The time constant 7 is the fixed time step in this pro-
cess. Each recursion of (6) advances the robot from r to
r+ (ux E,) * T where u is the velocity send to the robot.
The robot can also report its current odometry reading as
r*E;.

The system composed of the parallel connected composi-
tion of these two processes generates the flow functions [9]:

g = g
fu(r) = r+(d(g—rxE)«Ey)*T (7
fis(w) = d(g—rxEy)

Performance analysis consists of determining whether the
robot position r will transform from an initial position pg
to g with a specified spatial accuracy a < |r — g| with prob-
ability < Pr within time limit 7,,,,, accomplished using a
DBN F({g,r,u}) built from Eq. (7).

But to solve this using an SMT-solver, rather than by DBN
filtering, we need to first address the problem that the ex-
pressions in F' can be operations on distributions, then
translate F to the SMT-LIBv2 [3] language, and finally use
an SMT solver to check the satisfiability of the formulas.
We present a semi-decision procedure for checking the sat-
isfiability of (4).

Flow Constraints
. strail
Functions SAT and
Solutions
Operations
on Random
Variables or
Flow UNSAT
Functions | Translation SMT- dReal
with Random LIBv2 Solver
Variables

Figure 2 How the dReal solver is used to check the satis-
fiability of the formulas translated from flow functions.

3 Establishing Performance Guar-
antees Using SMT

We translate F and its operations on distributions to the
SMT-LIBv2 language and operations on variables, and put
constraints such as initial values, performance criteria and
so forth on them. Then we will use an SMT-solver - dReal
[8] to check the satisfiability of the formulas. This process
is shown in Figure 2. We meet the challenge that F"(-) has
to be evaluated by presenting a semi-decision procedure.

3.1 Translating Operations on Distributions

We have chosen to only investigate random variables
whose values distribute as represented by a mixture of mul-
tivariate normal distributions. Such variables play an im-
portant role in the specification of robot environments and
in robot control programs, and are typically not well cov-
ered in the formal verification literature; that literature fo-
cuses more strongly on exponential distributions (for tim-
ing and queuing properties) and non-deterministic vari-
ables. For example, the initial position of the robot can be a
two-dimensional random variable from a bivariate normal
distribution. In that case, the interprocess communication
ports, and variables — including initial variable values and
result variables — must also be represented as random vari-
ables.

Flow functions that include random variables (e.g., eq. (7))
will include operations on those variables such as for exam-
ple, the convolution of variables, or the scaling or offset of
variables by values. However, the SMT solver we will use,
dReal, does not support such operations on random vari-
ables, and therefore each operation must be translated to
what dReal can handle.

Operations on distributions are translated to operations on
the parameters of those distributions. A mixture is repre-
sented as a set of £ normal distributions and weight values.
Each normal distribution has a mean and variance parame-
ter. Each operation on a random variable then translates to
an operation on the mean and possibly an additional opera-
tion on the variance of each mixture member: a worst-case
2k-fold increase in the number of operations. In general
these are well known and straightforward mappings from
distribution operations to operations on the distribution pa-
rameters. As examples of this step in translation:

e If F contains a convolution between two variables,

this is translated to two operations: an addition of the
means and an addition of the variances.

e If F includes the addition of a constant to a variable,
it just translates to a single addition of the constant to
the mean.

However, we need to regularize the set of operations so
that the set of mixtures of normal distributions is closed
with respect to the set of operations in F. This requires
that some operations, such as the product of two random
variables, be approximated rather than represented exactly.
With this restriction, the syntactic translation step from
distributions to distribution parameters can be easily auto-
mated. We will restrict ourselves to k = 1, singleton mix-
tures, in the remainder.

3.2 Translation to SMT Language

After obtaining flow functions and translating from opera-
tions on random variables to operations on distribution pa-
rameters, then the result needs to be rewritten into the SMT-
LIBv2 Language, the input language for the SMT solver
that we use, dReal, to check the satisfiability of (4). dReal
is an SMT solver for first-order logic formulas over the re-
als. It can handle formulas with a wide range of nonlin-
ear real functions such as polynomials, trigonometric func-
tions, exponential functions and so on. SMT formulas over
the real numbers are very hard to solve when nonlinear
functions are involved. §-complete decision procedures in
dReal provided a new general framework for handling non-
linear SMT problems over the reals. More details about
d-complete decision procedures are in [7].

The main reason for using dReal is that even after trans-
lating to operations on distribution parameters, there is one
other distribution-related complexity we need to handle: To
evaluate the probability that the robot’s location as given
by it’s position variable p is within a spatial accuracy of its
goal location g, we need to evaluate the expression:

—€

g+€
/ N (x; y.p,Z,,) dx)
g

where p,):,, are the distribution parameters for the vari-
able p and where € represents a small area around the goal.
This functionality needs non-linear arithmetic over the re-
als. Code 1 is an example of calculating a probability den-
sity function using SMT-LIBv2.

Code 1 Calculating a 1-D probability density function.

(set-logic QF_NRA)
(set-info :precision 0.001)

(declare-fun x () Real)

(assert (<= 5.0 x))

(assert (<= x 15.0))

(assert (<= (/ (exp (/ (- (- x 1) 2) (* 4
(sqrt (* 4 (* 3.14159265 2)))) 0.3))

-2)))

(check-sat)
(exit)

Algorithm 1 Semi-decision procedure for recursive func-
tions.

Input: f(-), xp, n,and g
Output: SAT and values of x; (k=0,1,...,i), or UNSAT
Initialisation :
1:i=1
2: while i <ndo
32 formula= (x; == f(x0))A...A(x; == f(xi—1)) A

(xi==¢g)

4: check the satisfiability of formula using an SMT-
solver

5: if SAT then

6: return SAT and the values of x; (k=0,1,...,i)

7 end if

8 i=i+1

9: end while

10: return UNSAT

3.3 Semi-Decision Procedure

All system flow functions are generated from tail-recursive
processes and describe the relationship between the pro-
cess variables values from one recursion to the next. For
example, the flow function fq (p) describes the relation be-
tween the value of the variable p in process Q at time k, py
and that at time k+ 1, pri1: pr+1 = fo (pr). In this ex-
ample, let us assume py is the position of the robot at any
time k. Hence the relation between the initial position pg
at time O and the position p, at time n can be written as
Pn = f, (po). Our aim is to leverage an SMT solver to de-
termine if there exist values of the process variables that
satisfy the assigned constraints, but state-of-the-art SMT
solvers don’t support recursive functions well. Inspired by
Leon [19], we developed an efficient semi-decision pro-
cedure for checking the satisfiability of these system flow
functions with certain constraints. Leon is an automated
system for verifying, repairing, and synthesizing functional
Scala programs. The core solving engine of Leon is a semi-
decision procedure for first-order constraints with recursive
functions.

The procedure is shown in Algorithm 1. Given a recursive
function x;11 = f (x;), (i =0,1,...), the initial values of xo,
upper bound 7, and the value of goal g, check whether there
exists a k that satisfies the specified constraints x; == g and
k < nusing an SMT-solver.

3.4 Translating the Single-Waypoint Mis-
sion

In the results section, we will be looking at results for a
single-waypoint mission in which a robot moves from its
initial position Fy to a goal location G. We select a prob-
ability threshold criterion Pr for the robot arriving at the
goal position G successfully (evaluated in SMT using (8)),
and we establish the maximum time that the robot can use
to reach G. We also set the minimum speed of the robot for
the mission and the calibrated uncertainty parameters that
quantify robot motion.

The robot mission software used for this mission is a
behavior-based waypoint program constructed in Mission-
Lab, which ultimately translate into processes and a sys-
tem flow function similar to that in section 2.3. All of the
a-priori information is expressed in the form of SMT for-
mulas along with the translated system flow function. We
then use dReal to check the satisfiability of the mission.
One advantage of the SMT-based approach over the Dy-
namic Bayesian Network based approach for determining
the probability of mission success is that some initial val-
ues don’t need to be fixed. For example, the initial value of
the robot position Py can be assigned in a range rather than
fixed values. Code 2 is a simplified example of a mission
where a robot moves one step in one dimensional space
without the fixed initial values of the variables.

Code 2 A simple example of a mission.

; declare variables

(declare-fun pos_O_mean () Real)
(declare-fun pos_O_var () Real)
(declare-fun pos_1_mean () Real)
(declare-fun pos_1_var () Real)
(declare-fun speed () Real)
(declare-fun prob () Real)

; constraints on the variables
(assert (>= pos_O_mean 0.0))
(assert (<= pos_O_mean 100.0))
(assert (>= pos_O_var 0.0))
(assert (<= pos_O_var 500.0))
(assert (= speed 50.0))
(assert (>= prob 0.8))

; code for calculating the

; new position of the robot
(assert (= pos_1_mean (...)))
(assert (= pos_1_var (...)))

; code for calculating the probability that
; the robot arrives at the goal position
(assert (= prob (...)))

(check-sat)
(exit)

4 Results

Our empirical results include two kinds of single-waypoint
missions. In the first, the initial position of the robot, Py, is
fixed, and we compare the preliminary results with the Dy-
namic Bayesian Network (DBN) approach, showing that
the SMT approach works as well as the DBN approach. In
the second, we only give a range of the initial position P,
and check whether the robot can arrive the goal position
G. In all, the performance criterion is that the robot has a
cumulative probability of Pr = 80% or greater of reaching
the goal position G before a maximum time 7;,,,,. We select
Niax = Tax/T = 10.

Our results show the SMT approach can provide perfor-
mance guarantees beyond the scope of the DBN method,
but with a significant time penalty.

4.1 Single-Waypoint Mission with Fixed
Initial Position

In the first single-waypoint mission, the nominal initial po-
sition of the robot is fixed as

Mp = (5500mm, 5000mm) , 9)
and the goal position is

G = (6500mm, 5000mm) , (10)

which means the robot moves 1000mm from its initial lo-
cation toward G. We use bivariate normal distribution to
represent the initial position Py as

50000 0
0 500.00})' (b

The variance values here indicate the accuracy with which
the initial position is known. So while we say the initial
position is fixed, in fact it is known only with this specified
accuracy.

Using the proposed approach, the SMT engine indicates
that the performance criterion is satisfied for n = 8 < N,
and the final position distribution is

N (u = (5500.00,5000.00) ,X = {

7402.84 0
N(p:(6450.36,5001.45),2= ; 565'82}). (12)

The increase in variance in the final position is due to
the motion uncertainty model, indicating a potential wide
spread of final locations for the robot. The uncertainty is
much larger in the direction of motion (along the X axis).
For a much fuller discussion of the modeling of uncertainty
and interpretation of mission verification results, see [9].
Table 1 shows the mean of the positions of the robot in
each time step predicted by our SMT-based and DBN-
based approach. Both approaches generate very similar re-
sults, validating the SMT implementation. The execution
time of the DBN approach is 1.5 seconds and that of the
SMT approach is 10 seconds. For the SMT approach, there
are 64 variables and 65 formulas in the satisfied case. The
second mission will show that why we are studying on the
SMT approach although it is much slower than the DBN
approach.

4.2 Single-Waypoint without Fixed Initial
Position

In the second single-waypoint mission, the initial position
of the robot is not fixed, its mean is fp = (U, Hy), where
5250 < p, <5750 and 4750 <y, < 5250. The goal posi-
tion is still G = (6500mm, 5000mm). Specifying a range for
an initial variable value means a forward filtering approach
is no longer possible.

The output of the SMT approach is that the performance
guarantee is satisfied for the mean of the start position at
(5681.28,4750.22) and the mean of the final position at
(6367.81,4963.45) for n = 6 < Nyqy. This kind of analysis
can not be carried out with the DBN approach, since that
demands the initial position be a distribution and be a pre-
specified input value. Here it is loosely constrained initially

Table 1 The Positions of the Robot Generated by SMT
and DBN Approach for the First Single-Waypoint Mis-

sion.
Time Step SMT DBN
0 (5500.00,5000.00) | (5500.00,5000.00)
1 (5676.91,5001.33) | (5676.91,5001.33)
2 (5832.96,5002.25) | (5832.96,5002.26)
3 (5970.61,5002.82) | (5970.61,5002.83)
4 (6092.01,5003.08) | (6092.02,5003.10)
5 (6199.10,5003.06) | (6199.12,5003.09)
6 (6293.56,5002.79) | (6293.58,5002.83)
7 (6376.87,5002.28) | (6376.90,5002.32)
8 (6450.36,5001.45) | (6450.39,5001.49)

Table 2 The Time Complexity Table for the Second
Single-Waypoint Mission.

Time

Step | #Variables | #Formulas Time Result
0 8 9 0.007 UNSAT
1 16 17 0.052 UNSAT
2 24 25 0.271 UNSAT
3 32 33 1.265 UNSAT
4 40 41 1.831 UNSAT
5 48 49 3.097 UNSAT
6 56 57 6.602 UNSAT
7 64 65 7.116 UNSAT
8 72 73 24.761 UNSAT
9 80 81 87.341 UNSAT
10 88 89 192.454 | UNSAT
11 96 97 1934.088 | UNSAT
12 104 105 80.573 SAT

and its value is actually an output of the verification. This
is a useful tool for a mission designer and therefore a useful
addition to verification. The execution time of this mission
is 180 seconds due to the additional computation incurred
with the looser constraint on the robot initial position.

4.3 Time Complexity

We tested the time complexity of SMT for a single way-
point mission to check the relation between time complex-
ity and the number of variables and formulas for the mis-
sion. Table 2 shows the relation among time step n, num-
ber of formulas, number of variables, execution time and
result for the second single-waypoint mission. The time
complexity of time step is exponential. Note that when the
result is SAT, which means the robot arrives the final posi-
tion with a certain probability, the time cost drops down.

5 Conclusion

In prior work we addressed the problem of verifying per-
formance guarantees for a behavior-based robot carrying
out a mission in an uncertain environment. In our ap-

proach, a mission designer used the MissionLab robot mis-
sion design environment to construct robot mission soft-
ware. The mission designer can choose to verify whether
the mission when executed in a modeled uncertain environ-
ment, would achieve a performance guarantee. The mod-
eled information contains information on the motion un-
certain of the robot, and the performance guarantee typi-
cally asks whether the robot can reach its destination with
a specific spatial accuracy and within a time limit. To im-
plement this, we developed an approach to formally repre-
senting behavior-based multi-robot programs and uncertain
environments as process networks, automatically extract-
ing a set of probabilistic equations to establish performance
guarantees for the program using the VIPARS module, and
solving these using a Dynamic Bayesian Network (DBN)
[9].

In this paper, we used an SMT-solver in place of the DBN
to expand the range of performance guarantees possible
in our prior work. We used VIPARS to extract the sys-
tem flow function for a single-waypoint robot mission.
Then all these flow functions were translated into the SM'T-
LIBv2 language with certain constraints. Finally we used
the dReal solver and a semi-decision procedure to check
the satisfiability of these recursive formulas. The SMT
approach can provide performance guarantees beyond the
scope of the DBN approach; however, the SMT approach
runs much slower than the DBN approach for the same
missions. Although the work presented here used VIPARS
static analysis to generate flow functions, the approach we
have taken could be used to leverage SMT for any similar
probabilistic system.

Future work will focus on: (1) Improving the efficiency
of solving recursive functions using an SMT-solver so as
to establish performance guarantees for more complicated
behavior-based robot missions such as multi-robot mis-
sions. (2) Translating from flow functions into SMT-LIBv2
Language automatically. (3) Adding Gaussian distribution
and Gaussian mixture model as theories to SMT. (4) Intro-
ducing new performance criteria for behavior-based robot
missions according to the range of performance guarantees
expanded by our SMT-solver approach. For example, a
robot spending minimum time to arrive at the goal position
without fixing its initial position.

Acknowledgment

This research is supported by the Defense Threat Reduction
Agency, Basic Research Award #HDTRA1-11-1-0038.

6 References

[1] J. C. Baeten. A brief history of process algebra. The-
oretical Computer Science, 335(2):131-146, 2005.

[2] C. Barrett, C. L. Conway, M. Deters, L. Hadarean,
D. Jovanovi¢, T. King, A. Reynolds, and C. Tinelli.
Cvc4. In Computer Aided Verification, pages 171—
177. Springer, 2011.

[3] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB
Standard: Version 2.0. Technical report, Department
of Computer Science, The University of lowa, 2010.
Available at www.SMT-LIB.org.

[4] C. W. Barrett, R. Sebastiani, S. A. Seshia, and
C. Tinelli. Satisfiability modulo theories. Handbook
of Satisfiability, 185:825-885, 2009.

[5] A. Cowley and C. Taylor. Towards language-based
verification of robot behaviors. In Intelligent Robots
and Systems (IROS), 2011 IEEE/RSJ International
Conference on. IEEE, 2011.

[6] L. De Moura and N. Bjgrner. Z3: An efficient smt
solver. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 337-340. Springer,
2008.

[7] S.Gao,J. Avigad, and E. M. Clarke. §-complete deci-
sion procedures for satisfiability over the reals. In Au-
tomated Reasoning, pages 286-300. Springer, 2012.

[8] S. Gao, S. Kong, and E. M. Clarke. dreal: An
smt solver for nonlinear theories over the reals.
In Automated Deduction—CADE-24, pages 208-214.
Springer, 2013.

[9] D. M. Lyons, R. Arkin, S. Jiang, T.-M. Liu, and
P. Nirmal. Performance verification for behavior-
based robot missions. Robotics, IEEE Transactions
on, 31(3), 2015.

[10] D.M. Lyons, R. Arkin, T.-M. Liu, S. Jiang, and P. Nir-
mal. Verifying performance for autonomous robot
missions with uncertainty. In 8th IFAC Symposium
on Intelligent Autonomous Vehicles, 2013.

[11] D.M. Lyons, R. C. Arkin, P. Nirmal, and S. Jiang. De-
signing autonomous robot missions with performance
guarantees. In Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on, pages
2583-2590. IEEE, 2012.

[12] D. C. MacKenzie, R. C. Arkin, and J. M. Cameron.
Multiagent mission specification and execution. In
Robot Colonies, pages 29-52. Springer, 1997.

[13] S. Nedunuri, S. Prabhu, M. Moll, S. Chaudhuri, and
L. E. Kavraki. Smt-based synthesis of integrated task
and motion plans from plan outlines. In Robotics and
Automation (ICRA), 2014 IEEE International Confer-
ence on, pages 655-662. IEEE, 2014.

[14] F. Nielsom, H. Nielson, and C. Hankin. Principles of
Program Analysis. Springer, 2010.

[15] M. O’Brien, R. C. Arkin, D. Harrington, D. M. Lyons,
and S. Jiang. Automatic verification of autonomous
robot missions. In Simulation, Modeling, and Pro-
gramming for Autonomous Robots, pages 462-473.
Springer, 2014.

[16] T. Ropertz and K. Berns. Verification of behavior-
based networks - using satisfiability modulo theories.
In ISR/Robotik 2014; 41st International Symposium
on Robotics; Proceedings of, pages 1-6. VDE, 2014.

[17] S. Russel and P. Norvig. Artificial Intelligence: A
Modern Approach. Pearson, 2009.

(18]

[19]

[20]

I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and
S. A. Seshia. Automated composition of motion prim-
itives for multi-robot systems from safe Itl specifica-
tions. In Intelligent Robots and Systems (IROS), 2014
IEEE/RSJ International Conference on, pages 1525—
1532. IEEE, 2014.

P. Suter, A. S. Koksal, and V. Kuncak. Satisfiability
modulo recursive programs. In Static Analysis, pages
298-315. Springer, 2011.

A. Witsch, H. Skubch, S. Niemczyk, and K. Geihs.
Using incomplete satisfiability modulo theories to de-
termine robotic tasks. In Intelligent Robots and Sys-
tems (IROS), 2013 IEEE/RSJ International Confer-
ence on, pages 4784-4789. IEEE, 2013.

