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 SUMMARY 

Experience forms the basis of learning.  It is crucial in the development of human 

intelligence, and more broadly allows an agent to discover and learn about the world 

around it. Although experience is fundamental to learning, it is costly and time-

consuming to obtain. In order to speed this process up, humans in particular have 

developed communication abilities so that ideas and knowledge can be shared without 

requiring first-hand experience.   

Consider the same need for knowledge sharing among robots. Based on the recent 

growth of the field, it is reasonable to assume that in the near future there will be a 

collection of robots learning to perform tasks and gaining their own experiences in the 

world.  In order to speed this learning up, it would be beneficial for the various robots to 

share their knowledge with each other.  In most cases, however, the communication of 

knowledge among humans relies on the existence of similar sensory and motor 

capabilities.  Robots, on the other hand, widely vary in perceptual and motor apparatus, 

ranging from simple light sensors to sophisticated laser and vision sensing. 

This dissertation defines the problem of how heterogeneous robots with widely 

different capabilities can share experiences gained in the world in order to speed up 

learning.  The work focus specifically on differences in sensing and perception, which 

can be used both for perceptual categorization tasks as well as determining actions based 

on environmental features.  Motivating the problem, experiments first demonstrate that 

heterogeneity does indeed pose a problem during the transfer of object models from one 
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robot to another.  This is true even when using state of the art object recognition 

algorithms that use SIFT features, designed to be unique and reproducible. 

It is then shown that the abstraction of raw sensory data into intermediate categories 

for multiple object features (such as color, texture, shape, etc.), represented as Gaussian 

Mixture Models, can alleviate some of these issues and facilitate effective knowledge 

transfer.  Object representation, heterogeneity, and knowledge transfer is framed within 

Gärdenfors' conceptual spaces, or geometric spaces that utilize similarity measures as the 

basis of categorization.  This representation is used to model object properties (e.g. color 

or texture) and concepts (object categories and specific objects).   

A framework is then proposed to allow heterogeneous robots to build models of their 

differences with respect to the intermediate representation using joint interaction in the 

environment.  Confusion matrices are used to map property pairs between two 

heterogeneous robots, and an information-theoretic metric is proposed to model 

information loss when going from one robot's representation to another.  We demonstrate 

that these metrics allow for cognizant failure, where the robots can ascertain if concepts 

can or cannot be shared, given their respective capabilities. 

After this period of joint interaction, the learned models are used to facilitate 

communication and knowledge transfer in a manner that is sensitive to the robots' 

differences.  It is shown that heterogeneous robots are able to learn accurate models of 

their similarities and difference, and to use these models to transfer learned concepts from 

one robot to another in order to bootstrap the learning of the receiving robot.  In addition, 

several types of communication tasks are used in the experiments.  For example, how can 
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a robot communicate a distinguishing property of an object to help another robot 

differentiate it from its surroundings?  Throughout the dissertation, the claims will be 

validated through both simulation and real-robot  experiments.  
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CHAPTER 1  

INTRODUCTION 

“The only source of knowledge is experience” – Albert Einstein 

“Experience: that most brutal of teachers. But you learn, my God do you learn.” – C.S. 

Lewis 

 

Experience forms the basis of learning.  It is crucial in the development of human 

intelligence, and allows an agent to discover and learn about the world around it.  

Although experience is fundamental to learning, there is a finite amount of time one can 

gain it in.  Each interaction requires performing an action that changes the world 

somehow, waiting for that action to affect the world, and determining the resulting effect.  

This can be extremely time-consuming, especially where the consequences of an action 

are delayed in time.  Furthermore, in order to find patterns and learn, multiple 

interactions are required over time.  Learning of perceptual categories via supervised 

training is also intensive, especially since it requires many instances.  Human 

development and learning of new expertise, for example, takes many years to occur.  In 

order to speed this process up, humans in particular have developed communication and 

artifacts that one can study without requiring first-hand experience.  Furthermore, 

humans live in a social society where information is constantly exchanged through 

interaction, spoken language, and written communication.  Many have even attributed 

such communication and socialization as contributing to human-level success (Donald, 

1991). 

Consider the same need for knowledge sharing among robots.  Based on the recent 

growth of the field, it is reasonable to assume that in the near future there will be a 

collection of robots learning to perform tasks and gaining their own experiences in the 

world.   Knowledge for the performance of such tasks can be programmed, but can also 

be taught by humans or learned autonomously.  In order to speed up this learning, it will 
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be beneficial for the various robots to share their knowledge with each other.  In most 

cases, however, the communication of knowledge among humans relies on the fact that 

similar sensory and motor capabilities as well as general cultural socialization are shared.  

Although variations exist and capabilities are affected by development, there is a large 

overlap.  Robots, on the other hand, widely vary in perceptual and motor apparatus, 

ranging from a simple LEGO mindstorm robot with small wheels and primitive touch and 

light sensors, all the way to fully capable mobile manipulator robots with sophisticated 

ladar and vision sensing.  There can be slight perceptual differences even among two 

robots of the same model. For example, the camera color characteristics may differ 

slightly. Figure 1 shows images of a small sample of the large variety of robots available 

today. 

Different robots will also vary with respect to the types of sensory processing they 

perform, representations used, and level of experience and knowledge of the world they 

have.  Unless a standard robotic platform is created in order to solve the wide variety of 

tasks for which robots are created, and the learning of such tasks is standardized, robots 

will likely have to bridge their differences before communicating and sharing 

experiences.  This issue is especially important in emerging fields such as developmental 

robotics (Lungarella et al., 2003).  Developmental robotics attempts to study robotics 

from the perspective of building capabilities progressively via embodied interaction with 

the world.  In the single-robot case, exploration in the world is performed alone and can 

involve trying to find cause-effect rules (e.g. (Drescher, 1991)) or exploration of the 

robot's own capabilities (e.g. (Stoytchev, 2003)).  Here, too, it is crucial that robots be 

Figure 1 – Variety of robots in use today. 
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able to share knowledge either through explicit communication or implicit means such as 

imitation. Such knowledge sharing speeds up development significantly and can allow 

more experienced robots to impart their wisdom to others.  Social aspects of development 

have been recognized by developmental psychologists such as Vygotsky (Wertsch, 

1995).  However, the knowledge learned via such exploration of the world is 

embodiment-specific, that is unique to the particular sensing capabilities of the robot 

(Stoytchev, 2009).  Reconciling the embodied nature of learning with the fact that the 

robots must also be able to communicate and share meanings is an important problem in 

this field.  Hence, the need for the two robots to account for their differences before 

communication is important. 

Note that while heterogeneity can present challenges, such as in the case of the transfer 

of learned knowledge, it can present opportunities as well.  For example, the fusion of 

different types of information across multiple sensors on different robots can be 

extremely useful and can be leveraged to increase task performance.  In other words, 

there is an upside to heterogeneity as well.  This is why understanding and modeling 

heterogeneity when it does pose a challenge, the topic of this dissertation, is important. 

This thesis defines and provides solutions to the problem of how heterogeneous robots 

with widely different capabilities can share learned knowledge gained in the world.   The 

main motivation is to speed up learning, but important secondary capabilities such as the 

facilitation of cooperation in a joint task will also be demonstrated.  We focus specifically 

on differences in sensing and perception, which can be used both for perceptual 

categorization tasks as well as determining world state in order to decide which action to 

perform. 

1.1. Applications and Domains 

Solving this problem would be useful in many application domains.  Consider, for 

example, a robot similar to the Roomba that performs a vacuuming task in a household 
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setting.  Suppose that unlike the current version of the Roomba, the robot creates a map 

of the house using laser sensing and allows users to designate objects or areas that are 

off-limits via a symbolic representation (e.g. “couch” or “ball”).  It would presumably 

take a large period of training for the robot to build this map, learn what objects look like, 

and learn the preferences and locations designated by its owner.  Now suppose that the 

robot is upgraded to the latest version but this time it has a cheaper sonar sensor instead  

of a laser but also an additional camera. It would be inconvenient to burden the user with 

teaching the new robot skills, preferences, and limits that she has already taught to the 

older robot.  As the number of such robotic devices increases, repeated hands-on 

instruction will become not just burdensome but impractical.  If the newer robot could 

learn from the older robot’s experiences, this process would be greatly sped up.  In 

addition, it would obviate or substantially reduce the need for user interaction.  However, 

to share such knowledge they must first have a dialogue and explore the world in a 

targeted manner together in order to learn what their differences are. 

Communication of knowledge among heterogeneous robots is not just useful when a 

single robot is replaced, but also in distributed multi-agent systems.  Multiple robots will 

be working together with some shared goals, and communication between them is 

crucial.  This might be useful in a military domain where robots are expected to be 

increasingly used.  For example, how can a ground vehicle that has learned how to track a 

moving object share what it has learned with an aerial vehicle?  Another example would 

be the addition or replacement of a new type of robot to an existing multi-agent system 

that is solving a particular task.  Such a naïve robot could take a long time to become 

useful and may even disrupt the team dynamics, but if some of the older team members 

can get it up to speed it can be quickly made into a useful member.  There are many such 

examples and although it will not be the focus of this thesis, research in this area can also 

have impact in other fields such as human-robot interaction.  A robot and a human are  
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Figure 2 – Variety of robots used for search and rescue applications (Messina et al., 2005). 

 

themselves widely different, and synchronizing definitions and establishing common 

ground has already been recognized to be important here (Stubbs et al., 2007). 

An increasingly important application to robotics research is search and rescue.  

Within the United States, there is a significant effort to compile a list of standardized 

requirements and robot capabilities useful for the domain.  Figure 2, taken from a 

preliminary report written by the program developed by NIST (National Institute of 

Standards) (Messina et al., 2005), shows a collage of some of the possible robots 

considered for emergency response. This figure underscores the fact that heterogeneity is 

inherently important for this domain, as one type of robot cannot possibly fit the 

requirements of a myriad of potential search and rescue scenarios.  Furthermore, if 

different robots are to work together and communicate in such a scenario, understanding 

their underlying differences in action, perception, and representation will be crucial.  For 
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example, how would a small quick robot that can explore the environment efficiently but 

only has a crude camera describe victims perceptually to a more advanced robot with a 

higher-resolution camera? 

1.2.  Defining the Problem 

As described, heterogeneity in robotics can stem from many different sources and at 

varying levels.  This dissertation will demonstrate that one key component to reconcile 

such differences and perform successful knowledge transfer is to build an abstraction of 

low-level sensory data, and ground such abstractions in each robot through its own 

particular sensors.  The notion of abstraction is already used in learning systems to 

improve generalization of learning and reduce the state space.  One contribution of this 

dissertation is to demonstrate empirically that such sensory abstraction can indeed help 

both learning and knowledge transfer (Sections 3.10 and 5.6).  In order to determine how 

to abstract sensory data, we take inspiration from Gärdenfors' conceptual spaces 

(Gärdenfors, 2000).  Conceptual spaces is a cognitively-inspired multi-level 

representation that uses geometric spaces to represent concepts.  This representation 

achieves good accuracy, can deal with uncertainty, and allows the problem of 

heterogeneity to be analyzed at multiple levels of representation.  Using such a multi-

level representation, we will define perceptual heterogeneity and pinpoint specific 

differences that can occur between robots at various levels and propose solutions for 

each. 

Following terminology from conceptual spaces, we call the intermediate abstractions 

of low-level sensory data properties.  We will define these properties formally, but for 

now they can be thought of as general categories of characteristics that objects have.  For 

example, “blue” can be a color property and “large” can be a size property.  In general, 

learning such abstractions in an unsupervised or unguided manner is a difficult open 

problem in robotics.  However, they can be currently learned with the use of techniques 
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such as scaffolding (e.g. Saunders et al., 2006) and providing supervisory signals.  For 

example, the training will consist of learning lower-level properties (e.g. colors or object 

sizes) before learning concepts that combine them.  One advantage of supervised learning 

is that we will be able to manually vary the training regime in order to vary the amount of 

overlap between two robots. 

Once these representations are learned individually by each robot, we then develop 

methods that allow the two robots to learn models of their similarities and differences.   

We call this process alignment, and it requires the robots to interact in the world as well 

as to share some similarity, for example to share coordinate systems or properties that are 

used to describe objects.  If a significant amount of these requirements are not met (e.g. 

in the case of a nanobot and a UAV), then the process of alignment will fail.  Even in 

such cases, however, it is important to be able to decide whether there is sufficient 

overlap or to recognize that there is not.  In our approach, we deal with uncertainty and 

cognizant failure throughout by measuring, for example, how much information has been 

lost in the transfer of knowledge between one robot and another given knowledge of 

which properties they share.  Such considerations can then be used to determine whether 

the robots are too heterogeneous to be able to effectively communicate. 

Note that several assumptions are implicit in this work.  First, we assume that the 

robots operate in noisy, uncertain environments.  This is usually the case when dealing 

with real-world robots.  Second, as mentioned before, robots can vary not just in their 

perceptual capabilities, but also with respect to their motor capabilities, their goals, the 

tasks they perform, etc.  In this dissertation we assume homogeneity with respect to these 

other characteristics when needed and are agnostic otherwise.  For example, there is an 

implicit assumption in this dissertation that the robots’ goals align, in that they care about 

learning about the same types of objects.  Finally, we only study symmetric relationships 

between two robots.  Other more complicated relationships, such as transitive chains, are 

possible.  For example, a robot can transfer knowledge to a receiving robot, and the 
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receiving robot can then transfer knowledge to a third robot.  While studying such 

relationships would be interesting future work, they are not covered in this dissertation. 

This leads to the research question at hand.  Given a grounded perceptual 

representation, how can such knowledge be shared among perceptually heterogeneous 

robots?  Since robots may differ at multiple levels (as discussed previously), we approach 

this problem in a hierarchical manner: robots, through joint interaction in the world, first 

determine what their differences are at the property level and then at the conceptual 

levels.  One question this raises is the role of abstraction in communication and transfer.  

Will these property abstractions make learning and transfer easier?  The process of 

alignment involves two-way interaction between the robots, either through joint 

exploration of the world or protocols where sensory data snapshots are exchanged.  A key 

notion we introduce is that of a shared context, whereby robots view similar scenes and 

objects so that they can compare their resulting representations.  Such constraints enable 

robots to reduce confounding factors in determining underlying robot differences such as 

differences in the parts of the environment that are being sensed.   

After learning these models, the robots can then use them to exchange knowledge.  

Specifically, entire concepts can be transferred if the underlying representations utilize 

common properties.  There are also several other ways in which the models of robot 

differences can be used.  For example, the knowledge sharing itself must be sensitive to 

their differences, i.e. a robot should use difference models to decide what sensors, 

properties, and symbols to use when describing something to another robot.  This 

sensitivity to capability differences is especially important during tasks requiring 

communication and coordination such as joint reconnaissance.  Also, knowledge from 

robots that are more alike (according to criteria such as the amount of shared properties 

or concepts used for a task) should be considered with greater weight than robots that are 

substantially different.  Hence, we explore the usage of learned similarity models in 

picking the most similar robot to communicate with. 
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1.3.  Research Questions 

The discussion above leads to the following research questions: 

Primary Research Question 

What interaction, dialogue, and adaptation processes are necessary to allow 

heterogeneous robots to model their differences, to use these models to exchange 

concepts and learning experiences, and how can such a system be used to improve the 

performance of a robot? 

 

Subsidiary Questions 

i. How can robots model their differences in perception to improve their ability to 

communicate, and how can the establishment of a shared context help, if at all? 

ii. What is the role of abstraction of sensory data in communication and knowledge 

transfer? 

iii. What dialogues and protocols can allow two heterogeneous robots to use these 

models to align their knowledge and synchronize their symbols? How does the type 

of knowledge transfer possibly differ depending on the level of similarity that exists 

between the two robots? 

iv. How can these models be used to make the knowledge-sharing and communication 

processes sensitive to the capability differences between the robots? 

v. How can these models be used to pick peer robots that are more similar in terms of 

properties and concepts, for a particular domain of knowledge? 

1.4.  Contributions 

There are several contributions that have resulted from answering these research 

questions.  They include: 
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• Demonstration that perceptual heterogeneity does indeed pose a problem for the 

transfer of learned object representations, even using modern computer vision 

algorithms that use object features specifically designed to be repeatable (Section 3.1). 

We have conducted an experiment using three robots with different cameras, twelve 

real-world objects, and a state of the art computer vision algorithm to explore the 

importance of learning with the robot’s own embodiment and the effect of perceptual 

differences on knowledge transfer.   We showed that even when using features, 

which are explicitly designed to be both repeatable and distinctive to particular 

objects, the highest accuracy is achieved when the robots use their own particular 

sensing to learn.  Transfer from other robots can bootstrap learning, but can also 

result in catastrophic failures where the accuracy drops dramatically for certain 

objects due to missing features.  This experiment demonstrated that, even in the best 

case scenario, perceptual heterogeneity can pose problems for knowledge transfer 

and that understanding the differences between the robots is important (Section 3.1). 

 

• Demonstration that using abstractions of lower-level sensory data to learn can 

facilitate not only learning itself but also knowledge transfer, compared to using the 

raw sensory data to learn. 

We have conducted experiments using two robots with different sensors, thirty-four 

real-world objects, and a state of the art classification algorithm analyzing whether 

our method for sensory abstraction actually improves learning (Section 3.10) and/or 

knowledge transfer (Section 5.6).  We demonstrate that it does improve both, 

especially when the underlying sensory data used by the robots differ (e.g. one robot 

uses an RGB color space while another uses an HSV color space).  

 

• Algorithms and representations suitable for learning models of perceptual differences 

between two robots at multiple levels, utilizing sensory data obtained after the two 

robots achieve a shared context.  
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We use a grounded representation of properties (e.g. ‘green’) and their combination for 

concepts (physical objects, e.g. ‘apple’), and demonstrate processes where the robots can 

explore an environment, locate objects, and build representations describing which 

properties or concepts both robots see simultaneously.  In addition, we take potentially 

shared properties and further calculate how much information is lost when converting a 

concept from one robot’s representation to another robot’s representation, using 

information-theoretic measures.  The resulting models represent which properties and 

concepts are and are not shared by the two robots.  The representation is described in 

Chapter 3 and the learning of models of robot differences is described in Chapter 4. 

 

• Protocols and algorithms for using these models for knowledge exchange in several 

scenarios: transfer of a concept unknown to one robot, choice of properties that will 

distinguish an object in the receiving robot’s representation, and choice of one 

concept over another based on whether information will be lost by the receiving 

robot. 

We show how the models of similarities and differences between the robots can be used 

to perform these types of communication and knowledge transfer.  We show how the 

models of similarities and differences between robots can be used to adapt existing 

knowledge by modifying the concepts to reflect missing properties. It is determined 

whether sufficient information is left to represent the concepts accurately.  This 

adaptation occurs during the transfer of concepts, described in 5.3.  For example, these 

are useful for search and rescue domains where one robot must describe an object’s 

appearance to another.  The transfer of a concept between two robots is described in 

chapters 5 & 6, while other types of communication are described in Chapter 7. 

 

• Metrics for calculating similarity between two robots, based on their differences in 

capabilities and tasks. 
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We show how the models of similarities and differences between the robots can be used 

to estimate differences between two robots for a task.  We take the set of concepts 

involved in the task and measure how much information can be potentially lost, and 

choose the robot partner that will result in the least amount of loss.  This is described in 

Section 7.3. 

 

• Implementation of the complete framework allowing heterogeneous robots to 

establish models of their underlying differences, use these models in a dialogue to 

synchronize their definitions and symbols, and exchange knowledge for a given task. 

1.5. Dissertation Outline 

Having described our research goals, we will describe background material and related 

work in chapter 2, and differentiate our contributions from the body of literature.  

Following that, we begin chapter 3 by demonstrating that heterogeneity does indeed pose 

a problem for the sharing of concepts, even in the best of conditions.  With this 

motivation in hand, we then continue chapter 3 by detailing the representation of 

concepts used in this dissertation.  The representation we use consists of multiple levels, 

allowing us to look at how two robots with perceptual heterogeneity can learn about their 

differences at these different levels.  Chapter 4 begins this process by demonstrating how 

models of differences at the intermediate level of representation (properties) can be built 

using instances from each robot in a shared context.   

Chapter 5 then describes a framework for transferring concepts between robots using 

the resulting models.  The same chapter also demonstrates the value of abstracting 

sensory data in transfer and analyzes the estimation of information loss before transfer.  

In chapter 6, we introduce a more detailed information-theoretic metric that can be used 

to model robot differences.  This includes a more detailed analysis of concept transfer for 

varying amounts of differences between the robots.  Chapter 7 then uses the models of 

robot differences in order to perform additional tasks, such as describing objects in a 
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manner sensitive to the other robot and picking the most similar robot to communicate 

with.  Finally, chapter 8 concludes the dissertation and discusses the contributions made 

as well as future work.  Relevant chapters contain simulation and real-robot experiments 

to validate our framework. 



 14 

CHAPTER 2  

BACKGROUND AND RELATED WORK 

The topic of research in this dissertation touches upon many disparate fields, all the 

way from robotics involving learning by imitation and human-robot interaction to social-

psychological theories of language formation and common ground.  In this chapter, we 

review the literature in these areas and highlight key concepts that will be used to form 

the foundation of this thesis.  A great deal of the work we review assumes homogeneity 

and involves agents in simulated worlds where sensor grounding and noise are not issues.  

In these cases, we note their assumptions and describe why they are not realistic for 

robotics problems.  Where relevant, we also discuss differences from other research in 

robotics and what makes this dissertation topic unique. 

The first concern in knowledge sharing among real robots is the use of symbols or 

sensor abstractions, and their grounding in the real world.  Hence, in Section 2.1 we 

review the literature involving the symbol grounding problem, especially those that 

separate physical symbol grounding (Harnad, 1999) and social symbol grounding (Vogt 

and Divina, 2007).   Social symbol grounding refers to the mutual grounding of symbols 

among multiple agents through local interaction and learning (Vogt and Divina, 2007).  

We focus on this aspect of grounding since we would like heterogeneous robots to share 

symbols and ground them to the same aspect of reality. 

A large part of the problem in exchanging information is the correspondence of 

symbols in different agents, whether they are grounded or not.  Although methods 

studying social symbol grounding may alleviate these differences if agents have 

collaborated for a long time, there are several problems with such existing work (e.g. 

(Jung and Zelinsky, 1999)).  First, they do not address situations in which robots have 

already developed different vocabularies; this is a situation that is likely to exist as robots 

may, just as humans, interact with each other sporadically or on an as-needed basis.  
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Furthermore, they do not deal with heterogeneity, especially with respect to having 

different sensors or perceptual features.  In a society of agents, common symbols are 

typically agreed upon in a self-organizing manner between agents through time.  Hence, 

we also review research in fields studying the processes underlying ontological 

negotiation and language formation in Section 2.1.6.  Some of these studies are in the 

field of multi-agent systems, but others study the psychological processes used during 

human-human interaction.  There are some differences, however, from the problem posed 

here.  For example, in heterogeneous systems not only can symbols themselves differ, but 

the agents cannot all see the same aspect of the world in the same way and hence the 

meaning of the symbols may also differ.  In fact, some agents may not be able to see at 

all what others can, and hence they can instead negotiate to use overlapping sensors. 

Even assuming that symbols are properly grounded and commonly shared, the problem 

of knowledge transfer is still not trivial.  For example, there remain issues of when to ask 

for knowledge, how to distribute it, and how to resolve conflicts.  In this regard, we 

review research into the transferring of knowledge among agents, mostly homogeneous, 

in the areas of multi-agent systems (Section 2.2.1) and distributed case-based reasoning 

(Section 2.2.2).  We also discuss various methods of knowledge exchange used in 

robotics, especially implicitly via learning by imitation (Section 2.2.3). 

In order to share knowledge in a particular conversation, the two agents conversing 

must share common ground (Clark & Brennan, 1991); that is, assumptions, beliefs, and 

most importantly context.  This occurs via various dialogue mechanisms that ensure that 

both agents know what the other mean.  When there is disagreement, it is expressed by 

the agent and worked out.  In Section 2.3, we look at various psychological models of 

dialogue, especially those principles that can be used in robotics such as dynamic 

adaptation of detail level used depending on the other agent’s responses.  Although such 

negotiations are outside the scope of this dissertation, we will review the literature in this 

area due to its relevance. 
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In heterogeneous systems there is the additional problem that knowledge obtained 

from one robot has to be adapted to the receiving robot’s capabilities, views, and existing 

knowledge.  Although rare, we highlight the research that touches upon these problems.  

Finally, in Section 2.4, we explore literature seeking to characterize heterogeneity in a 

multi-agent system, mostly at a global team level. 

2.1. Physical and Social Symbol Grounding  

The symbol grounding problem refers to the problem of tying meaning to abstract 

symbols (Harnad, 1990).  The meaning of “meaning” is itself controversial, but symbols 

should be tied in a way that is meaningful to the agent itself, be it objects or features in 

the world that it can sense or actions it can perform (affordances) (Gibson, 1977).  In a 

multi-robot system, the problem becomes more complicated because not only do symbols 

have to be grounded, but they have to be commonly shared by convention in order to 

allow the sharing of information.  This is called the social grounding problem (Vogt and 

Divina, 2007) and there has been some work analyzing how a group of simulated agents 

or robots can automatically agree on symbols via long-term joint interaction. 

2.1.1. Physical Symbol Grounding 

Coradeschi and Saffiotti have identified and formalized a problem similar to symbol 

grounding that they term anchoring:  Here, the problem is “the connection between 

abstract and physical-level representations of objects in artificial autonomous systems 

embedded in a physical environment.” (Coradeschi and Saffiottie, 2000).  Vogt 

characterizes this problem as a technical aspect of symbol grounding, since it deals with 

grounding symbols to specific sensory images (Vogt and Divina, 2007).  The symbol 

grounding problem in general deals with anchoring to abstractions as well, and includes 

philosophical issues related to meaning. 
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A popular class of representation for symbols, which is naturally grounded, is 

affordance-based representations.  Here, the representation of objects (and the symbols 

they are tied to) consists of what the robot can do with the objects.  For example, Deb 

Roy has studied the grounding of words by manipulator robots in both perceptual and 

affordance features (Roy, 2005b).  He has also surveyed the area of language formation 

models that ground meaning in perception, and has noted the importance of future work 

in discourse and conversational models based on human studies for inspiration in aligning 

these models between communicating partners (Roy, 2005).  In essence, this is the 

problem we are trying to tackle, and in addition to symbolic communication we utilize 

the ability of robots to jointly interact in the world. 

 

 Figure 3 – Deacon’s levels of representation (Jung and Zelinsky, 1999). 

 

The aforementioned research looks into the grounding of symbols in a single agent or 

robot.  We now look at multi-agent strategies for symbol grounding.  The most similar 

research in spirit and implementation to this thesis is (Jung and Zelinsky, 2000).  In this 

work, the authors implement a hierarchical system of knowledge representation among 

two heterogeneous robots and show that higher-level communication after establishing 

common symbols improves performance.  The task they chose is a cleaning task, where 

one robot with a vacuum can gather large piles of garbage (in this case Styrofoam) and 

the other robot with a broom can sweep smaller pieces into large piles and reach into 

corners that the other cannot.  They look at four levels of collaboration among the robots, 

requiring different levels of representation.  They use Deacon’s three levels of 
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representations, portrayed in  Figure 3 (Deacon, 1997).  Iconic representations are those 

that bear physical similarity to the physical objects they represent, indexical 

representations are for correlations between iconic representations, and symbolic 

representations are for relationships between icons, indices, and other symbols. The four 

collaborative levels used are: 

• No awareness of each other: The robot with the broom merely goes around and 

gathers small pieces into larger piles and the second robot can see these piles and 

vacuum them up. 

• Implicit visual communication of likely litter positions: The vacuuming robot can 

see the robot with the broom, and hence likely positions of piles of dirt. 

• Explicit communication of litter relative position: Here, the brooming robot sends 

information to the vacuuming robot about where the pile is located.  This only 

occurs when the robot with the broom can see the other robot. 

• Explicit symbolic communication of litter locations: Here, the two robots explore 

the environment together and develop a shared vocabulary of locations, and later 

while sweeping the robot with the broom can send directions to the other relative 

to these locations.  

This work is interesting in many respects.  First, it demonstrates the notion of different 

types of communications possible, ranging from none to explicit symbolic 

communication, and demonstrates the usefulness of the latter in the performance of a task.  

Our work directly relates to communication of grounded symbols.  Second, it illustrates 

the levels of representations and the relation between symbols and internal 

representations nicely, with simple sensors and symbols.  Finally, it is interesting in that 

heterogeneity of robots is overcome by exploring the environment together and having 

some similarity (namely, wheel encoders to represent locations relative to each other). 

Even here, however, there is no notion of modeling or understanding their differences.  

Furthermore, long-term interaction is required to jointly develop each symbol before 
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performance of the task.  In our work, the robots can learn separately and will then 

interact to learn models of their differences and similarities.  Also, in this case  

communication is performed regarding the actual task they are jointly performing, as 

opposed to more general knowledge pertaining to skills the robots may have.  Despite 

being multi-layered, the representation is also very simple with odometry locations 

providing the shared grounding and symbols corresponding simply to their values: there 

is no implementation or transfer of a multi-level representation.  Our work builds upon 

this significantly, among other contributions demonstrating how robots can figure out 

what features they share in order to provide shared grounding, and the learning and 

transfer of more complex multi-level knowledge. 

2.1.2. Social Symbol Grounding 

Symbols have to be agreed upon when there is more than one agent involved.  In the 

example discussed above regarding symbolic synchronization among multiple robots, it 

comes about during the actual learning and grounding process that is performed jointly.  

Although this may be true of robots that experience the world jointly, this is not a 

realistic requirement in many situations (such as those in the motivation section) and 

hence we do not make this assumption.  For example, it is likely that robots will be 

solving different tasks and gathering their own symbols and experiences, and these will 

have to be aligned after the fact.  In this subsection, we will describe explicit methods 

dealing with the alignment of separate grounded representations learned individually.  

This is related to language formation and has been studied extensively in linguistics 

(Steels and Kaplan, 1999) and evolutionary or artificial life (Cangelosi, 2001),(Kirby, 

2002).  However, as we discuss below, some of the unique challenges posed by dealing  
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Figure 4 – Left: The semiotic triangle, referring to the relationship between meaning, form, and 
referent (Vogt, 2007).  Right: A specific example of a semiotic landscape , showing co-occurrences 

between the three parts (Steels and Kaplan, 1999). 

 

with the sharing of knowledge at multiple levels of representation among heterogeneous 

robots have not yet been explored. 

Steels and Kaplan describe a “guessing game” in which two simulated agents view a 

common screen with various shapes and colors and attempt to obtain similar symbols to 

characterize them (Steels and Kaplan, 1999).  They use what they call semiotic symbols  

(Vogt, 2003), depicted in the left portion of Figure 4.  Here, instead of just having the 

symbol and meaning, there is a form (or word), the meaning (which can be a grounded  

aspect of the referent, e.g. color), and a referent (the object itself).  The right half of 

Figure 4 depicts how there can be co-occurrences for multiple agents.  For example, one 

agent may think “tisame” refers to the fact that the object in question has a certain color, 

while another agent may think the same word refers to its horizontal position.  The 

problem then becomes to align these between the two agents. 

The representation used is a discrimination tree, and is learned using discrimination 

games.  The input consists of sensors that return continuous values, and feature detectors 

which return nominal values by splitting upon a sensor value (note that we use the term 

feature in a more general way in our work).  Feature detectors can be nested 

hierarchically to essentially yield smaller discretized subspaces.  This notion is slightly 
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reminiscent of decision trees (Mitchell, 1997), except that they are limited to one attribute 

(the attribute value).   Branches along the discrimination tree are mapped to symbols, 

providing a way to refer to specific discretization of sensors.  For example, the symbol 

“upper-left” can be assigned to coordinate feature detectors, when the value is less than 

half of the screen for the width feature detector, and right of the screen for the height 

feature detector.  The space of sensor values are dynamically discretized using the 

discrimination game.  Essentially, multiple objects are given in a context, and the agent 

picks one of them.  It then tries to find a feature that discriminates the target object from 

the rest of the context.  If it is unsuccessful, it attempts to make it distinctive by creating a 

feature from a sensor that has none, or further refining an existing feature.  If there are 

multiple features that could be used, heuristics such as picking the discretization 

corresponding to the discrimination tree with the shortest height are used. 

Given these individual representations, agents then take part in a game in order to align 

their representations.  The “Talking Heads” game, depicted in Figure 5, is meant to do 

this and begins by one agent issuing a symbol to the other given a context (in this case a 

board seen by both agents) with objects in particular locations with particular colors.   

The other agent must guess the specific object they are referring to.  If the agent does not 

Figure 5 – A depiction of the “Talking 
Heads” experiment (Steels and Kaplan, 

1999) . 
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guess correctly, the answer is revealed by the initial agent and both of them attempt to 

update their discrimination tree representations of the symbol.  They show that these 

types of games can allow the two agents to converge upon a similar vocabulary, and 

phenomena existing in human languages such as ambiguity or synonymy also occur. 

While leading to insights into the evolution of language in a society of agents, there are 

several limitations to this work for robotics use.  In many cases the language game is in 

simulation and even then required thousands of language games for alignment (Steels and 

Kaplan, 1999).  Some implementations used cameras and simple color shapes (Steels, 

2003), but the representations have thus far been used only for abstract shapes as opposed 

to real objects.  Attempts to implement the system on real robots were met with mixed 

results (Nottale and Baillie, 2007).  A more crucial difference, however, is that in all of 

the experiments the agents are homogeneous and have the same exact perceptual features.  

This dissertation focuses explicitly on heterogeneity.  More importantly, the 

representation being aligned is one that discretizes sensors and assigns symbols to them; 

more complicated hierarchical trees are not used to describe the objects themselves 

(which are in fact not even represented).   

Finally, in these earlier works explicit meaning transfer is not performed.  However, if 

sensors or features are in common between robots, there is no reason not to transfer 

concepts explicitly.  In our thesis, we build upon this to allow the robots to determine 

which features are shared by interacting in the world, and leverage this knowledge to 

perform explicit knowledge transfer for a multi-level representation that is richer.  We 

also demonstrate additional capabilities such as adaptation of the representation to 
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remove unshared features, capability-sensitive communication, and the ability to select 

robot peers that are more similar than others. 

2.1.3. Symbol Grounding in Robotic Systems 

As stated, there is little work on knowledge transfer among heterogeneous robots that 

have different learned representations a priori.  Steels and Vogt have looked at 

implementing the previously mentioned language games on simple Lego robots equipped 

with light and infrared sensors (Steels and Vogt, 1997).  Certain “objects” in the form of 

light events are observed, and then a teacher robot picks one of these, after which an 

alignment process (using infrared emitters and receivers) is performed so that they are 

both attending to the same object.  The robots then pick discriminating features and 

assign symbols to them, and depending on whether that symbol is known to the robots or 

not an adaptation process occurs.  There are also attempts to perform the Talking Heads 

experiment on an Aibo platform using vision (Baillie, 2004).  However, the authors 

mainly discuss implementation issues of establishing shared context via shared attention 

on these platforms.  The work seems preliminary and there are no results to date.  The 

authors have noted that the simulated games take hundreds or thousands of trials, which 

is obviously difficult or impossible to do on real robots.  Surprisingly, there is little work 

in the language formation process by roboticists that would be able to work out 

challenges in this line of research caused by dealing with real embodied robots.  

Billard and Dautenhahn have looked at a situation involving two homogeneous robots 

where one teacher attempts to share its symbols with another via imitation (Billard and 

Dautenhahn, 1999).  The learner follows the teacher while the teacher utters symbols 

based on what it is currently sensing.  The symbols are based on sensing a light above the 

robots, and hence the learner robot senses more or less the same thing as it follows the 
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teacher.  It then makes associations between the sensor states and symbols using a 

recurrent network.  During testing, the learner is then able to move to and ascertain the 

location of the teacher in a test scenario where the only information the learner has is the 

corresponding symbol.  Even in this simple case, problems arising from differences 

between the learner and the teacher in terms of their location caused slightly mismatched 

vocabularies, however.  Yanco and Stein (Yanco and Stein, 1992) earlier performed a 

similar study with small mobile robots, where vocabularies corresponded to actions 

instead of perception (such as turning left or going straight).  The leader robot received 

reinforcement from the environment, while the follower robot receives a symbol from the 

leader robot.  Reinforcement learning is used to perform the correct action, but the 

reinforcement for the two robots is linked in that they must both perform the correct 

action to receive positive reinforcement.  Using this communication mechanism, the two 

robots are able to learn to perform synchronized action that is reinforced by the operator.  

In both of these examples of communication, the vocabularies were tied to simple, shared, 

features (or actions) between homogeneous agents.  Again, there is no perceptual 

heterogeneity and no knowledge sharing at levels higher than features - key aspects of 

our thesis. 

2.1.4. Shared or Joint Attention 

Joint attention and the related notion of shared context has been cited as important in 

the social grounding of symbols in fields as diverse as psychology, language evolution, 

and robotics (Vogt and Divina, 2007),(Steels and Loetzsch, 2007),(Kaplan and Hafner, 

2006),(Scassellati, 2002).  The notion is that learners must be able to focus on relevant 

aspects of the world when a trainer communicates symbolically the name of objects.  For 

example, the learners that followed behind the trainer in the preceding work aimed to 

establish a shared context so that similar perceptions can be grounded with the symbols 

communicated (Billard and Dautenhahn, 1999).  In this dissertation, we utilize a notion of 
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shared context not only for grounding during knowledge sharing, but during the learning 

of difference models between heterogeneous robots as well.  Just as context plays a 

crucial role in disambiguating features that are relevant during symbolic communication, 

it is also useful in removing confounding factors or context in the determination of 

whether two sensors or features are similar or not. 

We have performed some preliminary work in this area, including an analysis of 

different behaviors for ensuring a physically shared context in an object-recognition 

domain (Kira and Long, 2007), including an analysis of their trade-offs in terms of cost 

and the accuracy they afford in modeling differences between sensors on two robots.   

2.1.5. Impact of Heterogeneity on Sharing of Multi-Level Representations 

In the case where agents differ, there is an additional problem: agents will likely 

ascribe not only different symbols to different meanings in the world, but may also 

disagree on the meaning itself since they have different sensors with which to see the 

world, and the associated uncertainty.  Robots may differ in their sensing and perceptual 

features, and must first determine which ones they share.  We could not find any research 

focusing on this problem explicitly.  Unlike abstract agents that have a fixed ontology 

available to them and no access to the data or processes that created it, robots have the 

opportunity of action.  That is, two robots can jointly explore the world and together 

correspond the actual meanings of the symbols on which they are based.  Of course, the 

extent and length of interactions are important, as current approaches in simulated or 

simple environments (such as those in (Steels and Kaplan, 1999)) appear difficult to scale 

to real robots since they do not use explicit knowledge sharing and require thousands of 

instances. 
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2.1.6. Ontology Alignment in Multi-Agent Systems 

The study of multi-agent systems (MAS) has grown tremendously recently, both in the 

context of abstract or simulated agents as well as robotic systems.  Within the field 

studying abstract software agents, there has been some work on the formation of 

consistent languages among agents and their negotiation of ontologies.  Neches et al. 

advocated a large effort towards knowledge sharing among large knowledge bases, along 

with possible solutions such as having an intermediary language or separating domain-

independent knowledge from domain-dependent (Neches et al., 1991).  This problem is 

essentially an ungrounded form of what this dissertation is about; whereas such work 

attempts to align ungrounded symbols, we seek to align grounded symbols.  Since that 

article, there has been a large body of work in this area, which is referred to as ontology 

alignment (Ehrig and Euzenat, 2004),(Laera et al., 2007).  Here we will sample only a 

few.   

An ontology defines a hierarchical representation of concepts and knowledge, in 

addition to other possible relations, and different agents (in this case abstract) may have 

differing ontologies.  Unlike the research described in the previous subsection, in this 

case the symbols are not necessarily grounded and ontologies are aligned largely based 

on syntactic, semantic, and structural characteristics.  An example of the problem can be 

seen in Figure 6, describing the structure of print media. 
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Figure 6 - Example of the ontology alignment problem. 

 

The simplest method of alignment is to be able to convert each local ontology into 

some predefined global ontology by providing the mappings manually.  Of course, this is 

inconvenient and there are many systems that attempt to perform automatic alignment, 

leveraging information such as the actual labels themselves (i.e. string matching), 

structural comparisons, or actual instances from ontologies obtained from users (Ehrig 

and Euzenat, 2004).  For example, one can start out by defining all concepts with string 

similarity (based on similarity metrics such as hamming distance) as similar.  One can 

extend this structure by defining two concepts in separate ontologies as similar if they 

have parents that are already deemed similar, or siblings that are deemed similar, or the 

paths from the concept to the root are deemed similar, etc.   

Automatic alignment can depend on the purpose and context of an agent, and hence 

can also be done via argumentation whereby agents vie for their interests during the 

alignment process (Laera et al., 2007).  Here, agents communicate the reason for deciding 

if a concept is similar (e.g. “because it has mapped parents”), and different agents can 

decide which set of reasons is acceptable.  Alternatively, a fixed utility-based method can 
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define a utility function based on all of the different methods possible (e.g. string or 

structural comparisons) and weight them.   

All of this related research is conducted using abstract symbols and agents, and usually 

lacks concrete domains to which the schemes have been applied.  There have also been 

decentralized approaches for agreeing on vocabularies via different strategies such as 

repeating symbols that are frequently used in a group (Diggelen et al., 2005).  Here, 

different agents choose which vocabularies to use when communicating, with several 

strategies such as using the agent’s private terms, the more recently received term, and 

the most frequently received term.  Some of the methods take into account how many 

other acquaintances (i.e. that the agent has communicated with) the agent who used it 

have had.  This work analyzes how different terms propagate depending on the strategies 

used. 

The field of ontology alignment is interesting because at first glance it seems to bear 

upon the problem of knowledge sharing among heterogeneous robots.  However, there 

are several important differences.  In agent-based ontological alignment, the problem is 

one of aligning a hierarchy largely based on its structure and semantic similarity, rather 

than any grounded meaning of the symbols.  In that way, the problem is unconstrained, 

where all that is available is a hierarchy of terms, possibly with instances from the 

hierarchy, and it is assumed that generally the agents have similar symbols for similar 

things but that they are grouped or named differently. 

Unless robots acquire symbols jointly, this will not be the case in general.  As such, 

this work differs from our problem where robots learn grounded representations, and 

hence joint exploration of the world (containing objects from which meaning is derived) 



 29 

is possible to negotiate similarities in features and symbols.  Even without physical 

interaction, there is potentially an abundance of instances from the concepts that can be 

shared.  There is greater possibility for verification of a mapping between symbols, for 

example via quizzing by directly showing the instances corresponding to that symbol.   

Furthermore, aligned ontologies often times describe meta-knowledge of particular 

domains (e.g. the print media in the example above), where there is inherent structure that 

can be used for alignment.  In the case of learned grounded representations for a vast 

number of objects, such hierarchical structures may not be present or may be present for a 

large number of meanings leading to a great deal of ambiguity.  Hence, mappings based 

on structure instead of meaning might not yield success.  This is not to say that some 

structural mapping or other clever techniques from this field may not help, especially 

when more abstract concepts (such as the classification of animals into a taxonomy) are 

represented, but such high-level representations are beyond the scope of this thesis. 

2.2. Knowledge Transfer and Analogy 

Given a knowledge representation that each robot has built through experience, the 

problem of knowledge transfer comes into play.  Here, there are problems of conflicting 

knowledge, differing knowledge levels, and adaptation of the knowledge to the receiving 

agent’s capabilities.  This dissertation mostly deals with the latter two issues only.  We 

review work related to knowledge transfer in multi-agent systems and specifically in 

symbolic case-based reasoning systems.  We then discuss work in knowledge transfer 

among robots, especially in the area of learning by imitation.  Again, most of this work 

assumes relative homogeneity of the agents, and we review the few cases in which this is 
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not an assumption.  Finally, we remark on the limitations of these previous research 

efforts and specific problems arising from heterogeneity that we will address. 

2.2.1. In Multi-Agent Systems 

The study of collaboration among multi-agent systems can be categorized into several 

methods (Weiss and Dillenbourg, 1999).  Multiplicative mechanisms involve separate 

learning among independent agents, where their interaction may affect sensing but does 

not affect the learning processes themselves.  Division mechanisms refers to the division 

of tasks among agents that may or may not have differing capabilities.  Finally, 

interaction mechanisms are those that involve active interaction during learning that 

affects the learning processes.  This may involve not just raw data exchange, but 

knowledge exchange at multiple levels.  It also requires an added layer of complexity in 

terms of processes for argumentation, conflict resolution, and establishment of a common 

grounding.  This latter form of interaction is the one we are interested in. 

One subfield of research fitting this characterization is negotiated search, where 

multiple agents cooperate in searching for solutions and argue over conflicts (Lander and 

Lesser, 1992).  Many times, different agents work on different aspects of the problem, 

and they collaborate on achieving global consistency from their local solutions.  Lander 

and Lesser looked at two negotiation strategies: extended search whereby the agents 

extend their local searches to include new solutions if there is a conflict, and relaxation 

whereby an agent relaxes some of its solution requirements.  The authors also mention 

the problems of dealing with heterogeneous agents that have differing representations, 

but in the end decide not to resolve any conflicts in knowledge.  Furthermore, the 

problems being tackled here are different than the ones we focus on in this thesis.  In 

negotiated search, there is a multi-agent system working towards the same goal, and 

individual agents must negotiate their constraints.  In our problem, we are dealing more 

with sharing knowledge that may be relevant to each individual robot’s own goals.   
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In many ways, negotiated search has a flavor of the task allocation problem, where 

there is a heterogeneous team with many different capabilities and the problem is to give 

the proper problems to the best agent.  This is a well-studied problem in robotics (Gerkey 

and Mataric, 2004),(Ulam et al., 2007), and will be discussed towards the end of this 

chapter.  While usually there is some modeling of agent capabilities in this field, the 

focus is not on understanding the differences between individual agents and how they 

affect each agent’s knowledge (since once a task is assigned, there is no communication 

of knowledge for solving the actual task per se). 

 Other work in multi-agent systems that is relevant includes work on negotiation of 

actual knowledge via logical arguments (Kraus et al., 1993).  Again, agents are assumed 

to have homogeneous representations with no uncertainty as to what the symbols mean.  

Also, there is a great deal of work in determining confidence or trust when interacting 

with other agents (e.g. Becker and Corkill, 2007).  These are based largely on 

probabilistic representations of previous experience, and they look at how to use 

confidence measures when integrating contributions from different agents.  In this thesis, 

we will look at how the characterization of the differences between multiple robots 

sharing information can influence the choice of which robot to collaborate with.   

2.2.2. Knowledge Transfer In Case-Based Reasoning 

There is also research into distributing knowledge specifically in an instance-based 

learning framework, in the context of case-based reasoning (CBR) (Britanik and Marefat, 

1993),(Prasad et al., 1995),(Nagendra et al., 1995),(Watson  and Gardingen, 

1999),(Ontañón and Plaza, 2001),(Leake and Sooriamurthi, 2002).  Instance-based 

learning is a lazy learning method in that it delays most of the processing until query 

time.  It is memory-based, where key instances are stored that were either directly 

experienced or adapted due to experience.  To solve a new problem, a subset of these 
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instances is used to approximate the target function locally, and their solutions are 

somehow combined to solve the new problem.  For example, one method could be to use 

k-nearest neighbors, where the solution of the k closest points (as defined by a similarity 

metric) are averaged in a weighted manner based on their distance to the query point 

(Mitchell, 1997).   

Case-based reasoning is a specific form of instance-based learning with a processing 

cycle depicted in Figure 7 (Aamodt and Plaza, 1994).  Upon receiving a new problem, the 

case retrieval processes obtains a set of cases and picks the best among them.  The 

solution to this case is then reused, but is revised or adapted to the new problem.  It is 

then evaluated upon its use, and retained with information about how good the solution 

was.   

Among the first researchers to study distributed case-based planning are Britanik and 

Marefat (Britanik and Marefat, 1993).  They discussed a CBR system that, upon failing to 

find a solution locally, would query other systems.  If a remote system finds a case that is 

Figure 7 – The Case-Based Reasoning cycle (Aamodt and Plaza, 1994).  



 33 

more similar to the problem than the local system, it sends its solution back.  To deal with 

heterogeneous representations, an interpreter module is introduced that maps local 

symbols to a global vocabulary.  This entire process and mappings are defined by hand.  

This dissertation seeks to deal with the problem of mapping grounded symbols by taking 

advantage of the fact that the two robots can explore the same environment.   

Ontañón and Plaza, among other colleagues, have also explored the problem of a 

multi-agent case-based reasoning system (Ontañón and Plaza, 2001),(Ontañón and Plaza, 

2002),(Ontañón, 2005).  Their early work looked at two modes of cooperation among 

case-based reasoning agents: DistCBR where problems are transmitted and the receiving 

agent solves the problem and sends back the solution, and ColCBR where in addition to 

the problem, the solution method is also transmitted (which is then run locally on the 

receiving agent’s knowledge base).  The problems were sent to either all other known 

agents, or to each agent one by one until an acceptable solution was found.  The focus in 

their work was mainly on adding distribution semantics to a representation language 

called noop.  These extensions allowed for mobile methods consisting of entire task 

decompositions that can be sent to the receiving agent. 

In later work (Ontañón and Plaza, 2001), they related this problem to ensemble 

learning in the machine learning community, for example, bagging predictors or boosting 

(Bauer and Kohavi, 1999), although there are some important differences such as lack of 

central access to all of the data.  Issues relevant for use in an industrial setting were also 

looked at, including issues of security, scalability, and privacy of the cases.  Instead of 

swapping actual cases, each system allows a CBR agent to use the cases internally and 

vote on a solution, but does not make the actual cases used to solve the problem public.  

Hence, this work distributes the reuse process, where use of the cases to solve problems 

is distributed.  There is also work by the same research group in distributing the retention 

portion of the cycle, by deciding when to offer a case as well as when to retain a case 

locally (Ontañón and Plaza, 2003).  Figure 8 depicts this process, with two strategies for 
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deciding whether to retain a case received by another agent (based on either ability to 

solve the problem, or disagreement of the solution if the problem can be solved) and one 

strategy for deciding whether to offer a case (based on whether it has been retained 

locally or not).  Later, we will see other work that distributes the retrieve process. 

 Given a problem, the local CBR agent communicates with its peers and obtains a 

solution endorsement in the form of {(Sk, Ek
j
)}, where Sk is one solution from a finite list 

and Ek
j
 is the number of cases endorsing the solution.  Several collaboration schemes are 

used, such as asking all agents and summing the votes or only asking agents until the 

confidence in the solution reaches a certain threshold.  The confidence metric used in this 

case is calculated by taking the discrepancy between the majority and the rest of the 

votes, and was also learned via decision trees.  They also looked at bartering cases, both 

in an unrestricted manner and by a token passing mechanism (Ontañón and Plaza, 2002).   

Results indicated increases in performance due to bartering, but there was no research 

evident into how to select which cases to barter and whether it is better to get as many 

cases as possible or only the key cases that are missing.   

More recent work by this research group has involved argumentation and counter-

examples in the knowledge exchange process (Ontañón and Plaza, 2006).  Specifically, 

they use a CBR system where cases are tagged with justification, or predicates that 

Figure 8 –  Depicts a distributed retention policy, with two strategies for deciding whether to retain a 

case (left) an one deciding whether to offer the case to another agent (Ontañón and Plaza, 2003). 
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explain why the case votes for a particular solution.  In this case, the learning method has 

to support the creation of these justifications from experience.  Again, confidence 

measures are used by taking into consideration the number of cases that agree with the 

justification (i.e., agree on a solution when the justification clauses are true).  If two 

agents disagree on a solution, they enter an argumentation phase where the agent 

proposing the solution with a lesser confidence has a chance to rebut.  Rebuttal takes the 

form of a counterexample, which is a case with a justification that is more specific than 

the one being argued about.  This criteria is taken from literature studying argumentative 

logical deductive systems.  The process can iterate with multiple 

example/counterexample pairs, and if any agent sends the same argument twice the 

process halts in order to avoid infinite iteration.   

Again, the two agents have disjoint cases; that is, no two agents have the same case 

(cases are obtained directly from the training data).  In our work, we use a dialogue in 

which the robots can either exchange instances directly, or jointly explore the world (an 

ability unique in robotic systems as opposed to abstract agents).  We do not make use of 

Figure 9 - Collaborative Case-Based Reasoning architecture (McGinty and Smyth, 2001). 
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argumentation as it is outside the scope of the dissertation, but such a process may be 

useful and is left as future work.  (McGinty and Smyth, 2001) have explored a 

collaborative case-based reasoning system in the domain of personalized route selection.  

The basic architecture is shown in Figure 9.  Cases are routes that are known to be 

preferred by the user from past experience (i.e., the user has taken the route before).  

When a route in an unexplored region of the map is encountered, the local CBR system 

cannot give a solution because it has no existing data for that region.  Hence, the case 

library from other users is queried, with a quality measure attached to the resulting case.  

An interesting twist in this work is that the confidence is based on the coverage of the 

case library in addition to the similarity of the two users.  The similarity metric is 

calculated by finding similar problems in their case libraries, and then evaluating the 

similarity of their solutions.  Since in this case the instance-based learner is attempting to 

approximate a user model, data from users that have similar tastes are more pertinent.  

This is obtained by finding similar regions of the map for which the two libraries share 

data, and seeing whether their solutions agree.  Other examples of similar research in 

distributing the querying process include (Leake and Sooriamurthi, 2002),(Prasad, 

2000),(Hayes et al., 2005).  The notion of using similarity in the process of retrieving 

knowledge from peers is one we will share in our work, although our metric will be based 

on the similarity of the robots. 

2.2.3. Knowledge Sharing In Robotic Systems 

Related work in robotics with respect to communication looks at, for example, 

maintaining belief in a multi-robot team (Khoo, 2003).   The approach used here is to 

aggregate behaviors where team members share their data, allowing them to have the 
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same picture of the environment.  To our knowledge, there is no work to date involving 

explicit knowledge transfer among heterogeneous robots, while understanding how such 

heterogeneity might affect these processes.  Often communication involves symbols 

defined by the designer and not grounded in perception, or even if it is, then it is 

grounded in features that are assumed or known to be shared.  This is also true for multi-

robot solutions to the problem of SLAM, where the designers a priori decide on common 

representations (Thrun and Liu, 2005).  Our work attempts to extend this area by tackling 

the problem of knowledge exchange and symbolic communication, but where the 

knowledge is grounded and hierarchical.  Furthermore, we deal with the challenges of 

having heterogeneous robots that may only share a subset of sensors or perceptual 

features. 

Learning by imitation is another heavily studied subfield in robotics that involves 

knowledge transfer but where there is no direct communication of explicit knowledge.  It 

is a form of learning that involves the transfer of knowledge among robots by actually 

performing the target task.  There is some research into learning by imitation across 

different embodiments (Alissandrakis et al., 2002),(Dautenhahn  and Nehaniv, 

2002),(Alissandrakis et al, 2003).  The major approaches use task-based metrics of 

success, optimizing these on new embodiments during imitation.  This side-steps the 

Figure 10 – Manipulator imitation across different embodiments (Alissandrakis et al., 2002). 
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issue of heterogeneity in that it is not modeled or reasoned about.  For example, the 

difference between optimization of end-points, trajectories, or entire paths for a given 

task is looked at.  Domains used include chess, where the pieces differ in their movement 

capabilities, and a robotic manipulator (in simulation) with different degrees of freedom.  

The latter example is shown in Figure 10, where manipulators having lower degrees of 

freedom (two left examples) attempt to imitate a more articulated manipulator (right 

example). 

In this case of learning by imitation, knowledge transfer is limited to physical 

movement or other actions that can be seen by the other robot, and knowledge is task-

specific.  There are other differences between this research and our dissertation research.  

First, there is no attempt at understanding the differences of the two robots; the 

knowledge transfer is abstracted by tying it to the task metrics itself. Learning by 

imitation encounters the problem of heterogeneity in points of view and in some cases 

embodiment.  In this thesis, we study these aspects of heterogeneity more deeply in 

addition to other forms of heterogeneity stemming from having different sensory 

groundings for knowledge.  We deal with perceptual heterogeneity, while in learning by 

imitation the more significant problem is motor heterogeneity.  

2.2.4. Unexplored Territory 

The sharing of knowledge among heterogeneous robots acting in the real world 

presents unique challenges and problem characteristics that have not been addressed by 

this body of literature.  A major assumption of the large majority of this research is 

homogeneity in terms of the agents, learning methods, symbols, and representations.  In 

this work, we begin to get at the heart of the problem caused by differences between the 

robots, in terms of sensing and perceptual capabilities, symbols and definitions, and 

levels of knowledge.  For example, if robots were to exchange cases in CBR, it would not 
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be as simple as sending the cases from one robot to the other, since disagreements in 

solutions might arise due to these differences, and adaptation to the receiving agent must 

be performed.  Also, the usual issues of noise, limited frequency of interaction, and 

bandwidth that come up when using robots are also largely ignored in the agent-based 

work.  Obviously, some heterogeneity results from using real-world robots as well, for 

example through differing points of view.   

Furthermore, robotics provides an additional aspect of action available for the solution 

of these problems.  While some research has looked into using dialogue to synchronize 

symbolic representations, robots can use joint exploration of the environment as well.  In 

other words, robots can actually target specific regions of the problem space in order to 

home in on their strengths by virtue of their differences, although the cost of so doing 

must be traded off with the resulting gain.  Finally, assumptions such as privacy and 

inability or undesirability of swapping entire cases are not pertinent.  Although it is 

beyond the scope of this dissertation, our framework would allow much of the preceding 

work to be implemented on real robots.  Instead of assuming common symbols, our 

methods can be used to learn the mappings between symbols grounded differently by 

different robots. 

2.3. Context, Common Ground, and Application to HRI 

In order for knowledge to be shared in a specific conversation, there must be some 

common ground between the two agents.  Common ground consists of mutual 

knowledge, beliefs, and assumptions (Clark and Brennan, 1991) providing a foundation 

for knowledge exchange and communication.  Most of the time common ground is 

engineered in robots to exist by assuming a shared task, representations, and experiences.  
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Even then, to share solutions for a particular context, that context must be understood by 

both agents.  This dissertation deals with the establishment of a common ground with 

respect to the sensors and features used by the robots, by allowing robots to explicitly 

model their differences.  While only scratching the surface, this capability can potentially 

provide the foundation on which to explore a fuller notion of common ground.  We now 

review psychological studies of the establishment of common ground among humans, 

mainly through dialogue.  We also discuss applications to human-robot interaction, where 

large differences exist between the two interaction agents (the human and robot), and 

how the establishment of common ground has been shown to be important.  We conclude 

by remarking on differences between human-robot interaction and robot-robot interaction 

during collaboration. 

2.3.1. Psychological Studies of Human Dialogue and Common Ground 

There has been a great deal of study into how humans use communication to establish 

a common ground during collaboration (Clark and Brennan, 1991), as well as studies of 

how to use various forms of communication media to help when the collaborators are not 

co-located (Kraut et al., 2003).  Herbert Clark and colleagues, in particular, have looked 

at properties of human dialogue when people attempt to make sure that they understand 

each other.  They state that the process requires the establishment of mutual knowledge, 

mutual beliefs, and mutual assumptions (Clark and Brennan, 1991a).  Another principle 

is that of least collaborative effort (Clark and Wilkes-Gibbs, 1986), which posits that 

people attempt to minimize the effort of their dialogues (i.e., how many words or phrases 

are used) based on the dynamics of interaction.  If something is agreed upon previously, 

fewer phrases are used because it is understood to be known by both people.  There are 

also notions of coming up with accepted references or points of view, and what happens 

when one person disagrees with the other’s point of reference and has to correct it. 
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For example, they looked at a task that made two collaborating participants agree on 

descriptions for abstract figures.  As the trials proceed, the two participants use less 

words and agree upon terminology for describing the figures.  There is also work on how 

experts collaborate with novices, and how each person assesses the other’s level of 

knowledge and adjusts their descriptions accordingly (Isaacs and Clark, 1987).  

Although we have not pursued this in this dissertation, these psychological studies of 

human dialogue can provide insight into knowledge sharing among robots.  For example, 

using the principles of least collaborative effort will allow robots to exchange 

information in a manner that is sensitive to the amount of assumptions and context they 

have in common; if they both have similar assumptions, then a smaller number of 

symbols or features may be communicated.  Our framework can potentially help here by 

modeling what similar properties are shared between robots.  Although bandwidth in 

robot communication is much larger, with large knowledge bases this principle will be 

important.  More importantly, if one robot does not agree with or share the context 

communicated, then a dialogue process must ensue where it can correct the other robot or 

ask for more information.  Robot communication is often engineered to be fixed in terms 

of what is communicated, but this can be brittle and inefficient.  There has been little 

work on dialogue processes ensuring that the two robots share common ground before 

sharing knowledge about a particular context. 

2.3.2. Applications to HRI 

Human-robot interactions is a recent field that aims to study how humans interact with 

robots and ways of making this interaction more effective (Fong et al., 2003).  It has been 

acknowledged that common ground and similar concepts are crucial in such interactions 
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(Stubbs et al., 2007),(Kiesler, 2005).  Stubbs et al. performed a field study of scientists 

and engineers interacting with a Mars-like rover that explored the Atacama desert 

remotely (Stubbs et al., 2007).  Two different studies were performed, one where the 

robot was mainly teleoperated and another where the robot had some autonomy.  They 

found that the lack of common ground, especially since the robot was remotely located, 

caused many of the miscommunications. 

In order to work together, a human and robot must share contextual information in 

addition to knowledge regarding the robot’s decision-making.  Which one is more 

important depends on the level of autonomy the robot has.  These field studies have 

shown that for weakly autonomous systems, where planning and acting is mainly 

performed by human users except for low-level functions such as obstacle detection, 

common ground in terms of perspectives and sensing is crucial.  When the robots are 

more autonomous, it becomes important to understand the robot’s decision making as 

well.  The researchers recommended the addition of perspective taking skills.  Some 

work in this area exists already, e.g. (Trafton et al., 2005), depicted in Figure 11, which 

looks at perspective-taking in a task where the robot must grab a wrench for a person 

across the table.  The researchers also recommended allowing the robot to expand its 

Figure 11 – Perspective-taking task using the NASA Robonaut (Trafton 

et al., 2005). 
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vocabulary in terms of objects, locations, etc. so that there is more common ground.  

They implemented the perspective model as production rules in ACT-R, a cognitive 

architecture that uses a production system to model human cognition (Anderson, 1993).  

Furthermore, robot feedback in the form of dialogue was also lacking.  Hence, they 

recommended seeking inspiration from studies of common ground, such as those cited in 

the previous subsection, to allow the robot to expand the amount of common ground they 

have with humans. 

2.3.3. Differences Between Human-Robot and Robot-Robot Interaction 

Although similar, there are several important differences between knowledge exchange 

in human-robot and robot-robot situations.  First, current HRI research deals with 

interaction between humans and robots that do not have much in common a priori. For 

example, humans are endowed with an enormous amount of knowledge from 

socialization and learning.  Most of the language vocabulary is already shared.  Humans 

also have certain preconceptions of robots, which have proven to be important when 

considering their interaction with robots.  The robots that humans interact with, on the 

other hand, do not have a great deal of general knowledge about the world, especially 

from the perspective of humans.  This means that there is a huge imbalance between the 

human and the robot.  Also, in most of the human-robot interaction studies, it is assumed 

that the robot is serving the human and hence should adapt to the human’s capabilities.  

In multi-robot scenarios, the robots are more similar in status and which robot’s 

preferences should be overridden is context-dependent.  Naturally, as human perception 

of robots changes and as robot learning becomes more adept, the interaction dynamics 

will change.  When robots interact with each other, on the other hand, they may have a 

similar level of ignorance in terms of world knowledge, at least relative to a human-robot 

disparity.  They also may share the same learning and developmental trajectories, with 

periodic communication between them (although this is not necessarily the case).  
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A second difference is that the medium with which a human communicates with a 

robot differs significantly with the medium used by robots to communicate with each 

other.  The medium defines what and how much can be reasonably communicated (Clark 

and Brennan, 1991).   For example, humans can use language and gestures to 

communicate their internal states in a heavily distilled and abstracted form.  The 

efficiency and bandwidth of this communication is rather low.  Robots, on the other hand, 

can easily communicate even the raw sensor values they are seeing, and communication 

bandwidth may be extremely large.  Furthermore, robots can share entire experiences in 

the form of key sensor events with each other, in effect allowing the receiving robot to 

actually “experience” the world for itself, without having been there at the time.  In this 

dissertation, we actively leverage the fact that real-valued data (for example, representing 

concepts) can be easily transferred between robots.  We use this both to learn models of 

robot differences as well as for direct knowledge transfer.   

At the same time, our framework utilizes intermediate representations (properties) that 

are more general and compact than raw sensory data.  This substantially reduces the 

bandwidth required between the robots to communicate.  Hence, the amount of 

bandwidth needed is somewhere in between the transfer of raw sensory data and purely 

symbolic communication as performed by humans. 

Research into learning methods via a human teacher and HRI can be combined with 

our work, allowing a human to teach a robot which can then share this knowledge with 

other robots.  Such a mechanism can obviate the need for the human to expend additional 

time and effort beyond training the first robot, despite differences among the robots 

themselves.  Hence, our work is applicable to many situations in which robots have to 

teach each other, whether there are humans in the loop of teaching at some point or not.  

We utilize the advantages that two communicating robots have (such as sharing of 

sensory data), and thus it is well suited to the R-R (robot-robot) parts of the interaction. 
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2.4. Defining or Characterizing Capabilities and Heterogeneity 

As stated previously, there is a dearth of research into understanding how sensory, 

motor, and knowledge heterogeneity at the individual robot level can be modeled to 

improve communication between heterogeneous robots or how these differences affect 

the problems of knowledge transfer.  There is limited work in creating taxonomies of 

robot capabilities (Messina et al., 2005),(Matson and DeLoach, 2003).  NIST is interested 

in this for advancing capabilities for search and rescue domains, and the analysis is done 

by the organization with respect to what capabilities are suitable for this specific domain 

(Messina et al., 2005).  Matson and DeLoach use a capability taxonomy to distribute 

tasks and organize teams, and their taxonomies are hand-modeled and at the sensor level.  

To our knowledge, no one has worked on characterizing sensor and feature level 

differences, for the purpose of knowledge sharing between heterogeneous robots. 

There exists research relating to heterogeneity at a global level in terms of the task to 

be performed.  For example, Balch explored the use of social entropy as a measure of 

heterogeneity, mainly at the behavioral and capability level (Balch, 1998).  There is also 

research into how heterogeneity at this level affects, for example, the task allocation 

problem (Ulam and Balch, 2003) or learning in teams (Balch, 2005).  Parker has dealt 

with heterogeneity both from the perspective of a small team of robots measuring each 

other’s performance capabilities (Parker, 2000), as well as large teams in which tasks 

must be performed cooperatively (Parker, 2003).  In the work involving small teams, 

changes in the performance abilities of teammates was constantly monitored, and 

inability to achieve goals spurred the other robots to take over the tasks.  This deals with 

heterogeneity at a local level, but abstracts it in terms of task performance, not the actual 
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modeling of difference.  This is similar to the work on learning by imitation mentioned 

earlier (e.g., Alissandrakis et al., 2002).  In the case of large heterogeneous teams with 

distributed capabilities, heterogeneity affects how the robots must work together, but 

there is no explicit symbolic communication between them and hence problems caused 

by heterogeneity with respect to knowledge sharing and grounding are not addressed. 

The modeling of heterogeneity at the local level of individual robots is a natural first 

step to explore in order to allow robots to share knowledge.  In the next chapter, this 

serves as our starting point, after which we look into how to use these models to transfer 

concepts between robots, communicate in a capability-sensitive manner, and determine 

the amount of differences between robots. 

2.5. Summary 

In this chapter, we reviewed a selection of related work studying social symbol 

grounding, language formation and ontological negotiation, knowledge transfer, common 

ground, and heterogeneity.  The majority of the work has underlying assumptions of 

multi-agent homogeneity or in some cases lack grounding in the noisy sensory data that 

must be dealt with in robotics; we posit their assumptions to be unrealistic for general 

robotics use and have described problems raised by heterogeneity at each level that we 

seek to address.  Furthermore, in many cases it is assumed that mappings between 

symbols in different agents are known a priori, for example during the sharing of cases in 

a case-based reasoning system.  Since our framework deals with learning these models on 

real embodied robots, it can potentially facilitate the application of the related work to 

real robots. 

A common theme in the synchronization of vocabularies, transfer of knowledge, and 

establishment of common ground is interaction.  In agent systems, this involves 

argumentation, negotiation, or justification via direct communication.  Although these 
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mechanisms will undoubtedly be useful in robotic systems as well, there is potential for 

more, namely joint exploration of the world.  Counter-examples can take the form of 

actually leading the other robot to a situation that contradicts its knowledge.  Although 

useful, this form of interaction is much more costly, and hence the increase in certainty 

must be traded off with this cost. 

As a summary, unique characteristics of our dissertation research include: 

• Explicit learned models of robot differences at multiple levels, built via joint 

interaction in the world. 

• Methods for abstracting raw sensory data to buffer underlying sensor differences 

between robots.  We show evidence that this abstraction does indeed help during 

learning and knowledge transfer. 

• Use of low-level difference models to determine when to exchange structured 

knowledge; our algorithms modulate the amount and type of communication 

based on the level at which the robots differ. 

• Estimation of information loss when transferring concepts from one robot to 

another. 

• Use of similarity models to adapt knowledge so that it is understandable by the 

receiving robot and calculate metrics used to measure how different two robots 

are. 
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CHAPTER 3  

CONCEPTUAL SPACES: A GROUNDED  

CONCEPT REPRESENTATION 

We begin this chapter with an important experiment that presents evidence for our 

motivation that perceptual heterogeneity does indeed present a problem for knowledge 

sharing.  This experiment explores the importance of learning with a robot’s own 

embodiment as well as the importance of modeling differences between robots for the 

purpose of knowledge sharing.  We do this using a best case scenario, where a modern 

computer vision algorithm and perceptual features explicitly designed to be repeatable 

across images are used.  With this motivation in hand, we then introduce our multi-level 

grounded concept representation inspired by conceptual spaces (Gärdenfors, 2000).  One 

advantage of using such a multi-level representation is that it allows us to define and 

explore perceptual heterogeneity in robots at multiple levels of representation.  We 

present this definition, after which we describe our experimental platforms and scenarios.  

Finally, we perform evaluations demonstrating that this representation can be 

successfully learned with experience and that our use of intermediate abstractions aid 

both learning and the transfer of knowledge.    

3.1. The Problem of Heterogeneity: A Motivating Experiment 

In chapter 1, we presented the underlying motivation for the research conducted in this 

dissertation.  Robots can differ perceptually, and these differences can present problems 

when robots need to transfer knowledge or effectively communicate.  A natural question 
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for a skeptic to ask based on this motivation is: How important is it that a robot learn with 

its own sensing? Can’t a robot simply transfer representations it learns to another robot, 

no matter how different?  In other words, how much of a problem is perceptual 

heterogeneity really? 

Certainly, we will answer such questions using our representation throughout this 

dissertation.  A question that remains, however, is whether other representations can be 

immune to such differences.  Specifically, one approach in computer vision is to use 

feature detectors that are repeatable across variations in lighting, scale, or other 

transformations.  These feature detectors find unique patterns in images that can be found 

frame to frame, and image patches around these features are then used to represent these 

features.  The image patch descriptors are designed to be unique, in the sense that patches 

around features on other objects or scenes should not be similar.  While this 

representation is limited only to vision, we believe that it represents a “best case 

scenario” for testing whether knowledge transfer can occur without modeling robot 

differences.  In other words, we believe this representation is not as likely to fail across 

multiple robots, given that these features are designed to be both repeatable and unique.  

Figure 12 – The three robots used to demonstrate the problem of perceptual heterogeneity. 
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The experiment we conducted used three different robots: a Mobile Robots Amigobot 

and two Pioneer 2DX robots.  The robots are shown in Figure 12, and their respective 

images of similar scenes are shown in Figure 14.  As can be seen, the cameras differed in 

their color properties, blurriness, and position on the robot (resulting in perspective 

differences).  Each robot obtained approximately one hundred images of twelve different 

real-world objects, shown in Figure 13.  Fifty of these images were randomly chosen and 

Figure 13 – Twelve objects used in the experiment. 

Figure 14 – Respective images from the three robots above.  Left: Amigobot. Middle: Pioneer 

2DX with a web camera.  Right: Pioneer 2DX with a wireless camera. 
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used for training, and approximately fifty were used for testing (some objects had less 

than fifty).  

Recognition of objects is performed using a feature-based vocabulary tree learned 

using the training instances (Nistér and H. Stewénius, 2006).  We used a MATLAB 

implementation (Andrea Vedaldi, 2009).  For each image, SIFT features and descriptors 

were calculated.  As the training images were processed, the vocabulary tree was 

expanded based on similarity between the SIFT features of the training image and the 

current node in the tree (see Nistér and H. Stewénius, 2006 for details).  We measured 

recall rates for all of the objects to determine classification accuracy. 

Four different conditions were used (Figure 15).  The first condition consisted of the 

same robot both learning and classifying (“Own Training”).  This condition demonstrates 

accuracy when a robot learns using its own sensors.  The second condition consisted of 

Figure 15 - Four conditions used in experiment.  Condition 1: The testing robot used 
representations it learned using its own sensors.  Condition 2: The testing robot's learned 
representation was combined with that of one other robot.  Condition 3: The testing robot used a 
combined representations learned by two other robots.  Condition 4: The testing robot used 

representations learned by one other robot. 
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adding representations obtained from one other robot to this (“Combined Training – Incl. 

Own”).  In other words, the robot learned using its own instances, but combined the 

resulting representation with that of another robot’s.  The third condition consisted of a 

robot classifying objects using representations received by the other two robots 

(“Combined Training – only Other”).  In this case, no instances from the testing robot 

were used for training.  Finally, the fourth condition consisted of a robot classifying 

objects using representations received from only one other robot (“Other Training”).  All 

pairs of robots were used for these conditions. 

 

 

Table 1 - Experimental summary for the experiment exploring the effect of heterogeneity on 

naïve knowledge transfer. 

Experiment 1: General Experiment Summary 

The Problem of Heterogeneity: A Motivating Experiment 

Purpose 
Demonstrate that perceptual heterogeneity can pose a 

problem during naïve knowledge transfer, even using 

modern computer vision techniques (vocabulary tree of 

SIFT features). 

Experiment Type 
Mobile Robots Amigobot and two Pioneer 2DX robots 

Hypothesis 
Heterogeneity will pose a problem during transfer of 

object models, i.e. lower average recall rates will be 

achieved when using object models learned by another 

robot as opposed to object models learned using the 

testing robot itself. 

Procedure 
Training 
   1) Fifty images per object are used to train vocabulary  

        tree 

   2) Resulting vocabulary tree is used to classify test  

        images 

Independent Variable 
Source of object model (represented as a vocabulary tree): 

Self, self & one other robot, two other robots, and one 

other robot 

Dependent Variable 
Average recall rate during classification of twelve objects. 
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Figure 16 – Object classification results for the Amigobot, using representations it learned.  Left: 
Confusion matrix depicting recall, where darker red colors represent higher values and darker blue 
colors represent lower values.  Right: A bar chart showing the same confusion matrix.  As can be 
seen, high values (greater than 0.9) are achieved for most objects.  This is in constrast with the figure 
below depicting classification with representations obtained from another robot. 

 

The hypothesis of the experiment is that learning with robot’s own sensors will be 

better than transfer, even with features designed to be discriminative yet repeatable.  

Conditions where the robot’s own learning is combined with other robots’ learning is 

hypothesized to be next best.  Only using other robots’ representation is hypothesized to 

be worst.  The basis for these hypotheses is that differences in the robots’ sensing are 

anticipated to degrade transferred representations when processed by the receiving robot. 

Table 1 summarizes the experiment.  

Figure 16 shows results for the Amigobot in the form of a confusion matrix, 

representing graphically the classification for each object.  The actual object seen in the 

image is represented in each row, and each column shows what the robot classified the 

object as.  High values in the diagonal, shown in red, represent good performance.  In the 

graphics, higher values are represented as lighter blue and darker red, while lower values 
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are shown as darker blue and lighter red.  The right portion of the figure shows a 3D bar 

graph representation of the same data.  As can be seen, classification accuracy for these 

objects is good.  Figure 17 shows classification of the same objects by the Amigobot 

robot, this time using representations obtained from the Pioneer 2DX robot with a web 

camera.  While many of the objects achieve high accuracies, the classification of a few of 

the objects fails catastrophically.  This is due to differences in the features on the 

receiving robot, resulting from differences in the cameras or perspective. 

Figure 17 – Object classification results for the Amigobot, using representations it received from the 
Pioneer 2DX with web camera.  Left: Confusion matrix depicting recall, where darker red colors 
represent higher values and darker blue colors represent lower values.  Right: A bar chart showing 
the same confusion matrix.  These results show catastrophic failures in the recognition rates (e.g. < 
0.7) for two of the objects and smaller average recall rates over all objects. 

Figure 18 shows a summary of these results as a graph, for all robots, in several 

conditions.  The left column shows the recall results for the three robots, comparing 

accuracy resulting from using representations learned using the robot’s own sensors 

versus using representations received from each of the other robots individually.  An 

overall pattern is that learning with the testing robot’s own sensors is clearly better than 

receiving representations from the other robots, if differences between the robots are not 
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analyzed.  While some objects transfer well, there are several catastrophic failures where 

the accuracy drops to extremely low levels. This is a consistent pattern across all 

combinations of robots.   

The right column compares accuracy resulting using representations received from 

each of the other robots (individually) versus using representations received from both of 

the  other  robots  (together).   Interestingly,  if  transfer  is  to  occur  from  other  sources,  

Figure 18 – Object classification results for the three robots and twelve objects in different 
conditions.  Left: Recall rates are shown for all three robots when comparing models learned by the 
tested robot itself versus models received by one other robot.  These figures show large dips in recall 
rates for certain objects, when compared to the “Own Training” condition.  Right: Recall rates are 

shown for classification of objects given learned models obtained from one other robot (“Other 
Training (Transfer)”) versus two other robots (“Combined (only Other)”).  Combining learned 

models from other robots resulted in higher average recall. 
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Figure 19 – Object classification results for the three robots, averaged over all objects, in the four 
conditions.  These results demonstrate that classification by one robot using representations obtained 
from other robots (“Combined (only Other)” and “Other Training (Transfer)” conditions) are less 
effective than ones learned by the tested robot itself.  The graph also shows that the results are 
consistent across the three robots. 

 
Figure 20 - Object classification results averaged over all three robots, in the four conditions.  
Starred combinations represents significant differences.  These results demonstrate that classification 
by one robot using representations obtained from other robots (“Combined (only Other)” and 
“Other Training (Transfer)” conditions) are less effective than ones learned by the robot itself or 
obtained from one other robot but combined with its own learning (“Own” and “Combined (incl. 
Own)”).   

receiving learned representations from two other robots is better (averaged over all 

objects) than from just one.  In this case, heterogeneity is beneficial because it increases 

the probability that features that the receiving robot can detect will be transferred.  
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Table 2 - Experimental summary and conlusions for the experiment exploring the effect of 
heterogeneity on naïve knowledge transfer. 

 

Figure 19 summarizes the results, averaging the recall rate over all objects for the 

three robots in the four conditions.   

Figure 20 shows the same results averaged over all three robots with standard deviation 

(significant results are starred).  As can be seen, the highest accuracy is achieved when 

learning with the robot’s own sensors.  Receiving representations learned from another 

robot, when it is added to learning with the robot’s own sensors, is slightly worse than 

learning with just the robot’s own representation, although more data is needed to clarify 

this relationship as the difference from the first condition is not significant.  Third best is 

receiving representations learned by two other robots.  Receiving representations from 

only one other robot achieves the lowest average.  Although the degradations in averages 

are not extremely large, they represent catastrophic (i.e. recall rates < 0.7) failures in 

individual objects not graceful degradation across all objects.  This could be seen from 

the detailed graphs in Figure 18.  Note that the patterns are consistent for all three robots.  

Table 2 summarizes the conclusions for the experiment. 

Clearly, there is an advantage to each robot learning by experiencing the world with 

its own sensors.  The lesson here is not that the transfer of learned knowledge from other 

Experiment 1: General Experiment Conclusions 

The Problem of Heterogeneity: A Motivating Experiment 

Hypothesis 
Heterogeneity will pose a problem during transfer of object 

models, i.e. lower average recall rates will be achieved when 

using object models learned by another robot as opposed to 

object models learned using the testing robot itself. 

Conclusions 
Hypothesis is supported.  Direct transfer of object models 

resulted in catastrophic failures and lower average recalls. 
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robots can’t be done; clearly, for many objects it was effective.  Instead, transfer cannot 

occur blindly.  Before transferring knowledge, the robots must understand what 

differences exist between them, how these differences will affect transfer, and which 

particular pieces of knowledge would or would not transfer well.  This is true even when 

using modern computer vision algorithms that use repeatable features designed to be 

utilized over images with different types of variations in lighting, scale, or other 

transformations.   

Another conclusion that can be drawn from this experiment is that learning with one’s 

own sensing is important, and hence if transfer is used to bootstrap learning, the 

representation should support continued learning by the receiving robot. Allowing robots 

to learn explicit models of their differences in order to facilitate transfer, predict when it 

will fail, and continue learning after transfer is the topic of this dissertation.  Instead of 

using representations that only work for vision, however, we use a more general multi-

level representation that can represent concepts with many features that come from 

different modalities.  This representation is described in the rest of this chapter, beginning 

with the next section. 

3.2. Representation Overview 

In order to answer our research questions, we must commit to a representation of the 

world, including a description of features and objects.  While the representation used in 

the experiment above works with images, we are interested in higher-level concepts, 

which can describe objects using many types of object characteristics obtained through 

multiple modalities.  We use a grounded symbolic feature-based representation to 

describe the general characteristics of the world.  The representation construction begins 
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with low-level sensors and features, and then abstracts these low-level observations into 

properties and concepts (which can represent object categories and specific objects).  In 

our earlier example, a CCD video sensor can provide images in the form of red, green, 

and blue values for each pixel.  A perceptual feature detector can then process this image 

to produce a set of color features (such as average RGB values or histograms) for salient 

regions of the image.  Properties can be derived by specifying regions in these multi-

dimensional perceptual features; for example, ‘green’ can correspond to a specific region  

in the RGB color space.  

Objects can have real-valued memberships in multiple properties (e.g. an apple can be 

various shades of green or red), allowing for a richer representation and the ability to 

handle uncertainty in sensing.  Also, regions in different spaces can result in similar 

properties of objects; for example, similar color property can be learned using both HSV 

and RGB color spaces.  Object categories and specific objects are defined by combining 

multiple feature categories together (e.g. “small”, “green”, and “round”) (Gärdenfors, 

2000).  Object categories are more general than specific objects, which can have location 

and more specialized properties.  For example, a specific apple may be in a certain 

location in the environment, a specific color, or have a specific texture.  Object categories 

are hence more general, and there can be many specific instances of them (just as there 

are many types of apples).  Finally, object categories may be nested hierarchically, so that 

apples and oranges can be grouped into “fruits”.  In search and rescue, concepts such as 

humans and animals can be grouped into “living”, for example in order to alert an 

operator that there may be survivors.  Hence, there are multiple layers of representation, 
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ranging from simple features such as specific colors to groupings of object types.  The 

specific representation and computations necessary are described in the next subsection. 

There are several benefits to this multi-level representation.  First, we claim and will 

provide evidence (in this chapter and Chapter 5) that the property abstraction aids both 

individual learning and transfer between robots.  Another advantage of property 

abstraction involves the amount of effort needed to model robot differences.  The 

intuition is that a small number of properties can be used to represent an order-of-

magnitude larger number of concepts. Since there will be only a few number of 

properties to be mapped, compared to the number of concepts, less effort is needed for 

transfer to occur.  Note that this abstraction also allows the robots to represent the same 

properties using their own sensing, and can even use different underlying spaces (for 

example, an HSV color space versus an RGB color space) or different modalities (for 

example, the width of an object can be sensed via laser or stereo camera).  We will 

provide evidence for the claim that this aids both learning as well as transfer, especially 

when the underlying representations used by the robots differ, in the experimental section 

of this chapter as well as Chapter 5. 

A second major benefit of such a hierarchical representation is that structured 

knowledge can be shared among the robots depending on the level at which they 

significantly diverge.  If robots share many properties and concepts then entire ontologies 

based on these can be communicated with very little interaction.  This requires that they 

know what their differences are at multiple levels; the process of building and 

maintaining such models is a major topic that is covered in this thesis.  For example, the 

two robots in our example may have similar properties for color (since they share a CCD 
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camera and color features), and if they do one robot can forward its knowledge regarding 

concepts represented as combinations of these properties to the other.  If the underlying 

properties are not completely shared, then the concept representation must be modified or 

taught to the receiving robot in other ways.  For example, robots can lead each other to 

similar points of view and trade labels for concepts in the world, where each robot must 

then learn its own respective grounded representation.   

In other words, the richness of communication possible depends on what is shared and 

what is not.  In the upcoming sections, we will detail our representation, and the different 

possibilities involving knowledge transfer are explored in detail in Chapter 5. 

3.3.  Sensors, Features, Properties, and Concepts 

We will now describe the representation formally.  Note that Figure 21 summarizes an 

example representation for a more intuitive depiction.  Each robot has a set of m sensors 

},...,,{ 21 msssS = .  We denote the number of sensors as |S|.  As seen from the example, 

these can include CCD camera or laser.  At time t, the robot receives an observation 

vector ot,i  from each sensor si, resulting in a set of measurement or observation vectors 

},...,,{ ||,2,1, Stttt oooO =  (in certain cases we may omit the subscript for simplicity). For 

example, a SICK laser sensor can provide a vector of 180 values at each time instance.  

The preceding notation refers to the sensors and observations (and later features, 

properties, and concepts) of a single robot.  We denote the robots with a superscript, so 

that j

i
s  is sensor i of robot j.  This is true for notation used in subsequent sections (for 

example, for features).  For clarity, the subscripts are omitted when describing a general 

robot in our framework. 

Sensor data provide a stream of unprocessed information so it is presumed that each 
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Figure 21 – Example depiction of sensors, observations, and perceptual features.  Sensors obtain data 
of physical properties in the world, creating observations at every time instant.  Observations are 
then processed to produce perceptual features, functions of salient segments of observation data. 

 

robot has a set of p feature detectors, },...,,{ 21 pfffF = , that further process 

observations and output perceptual features.  We denote specific values of a set of 

features at time t as tF , and the specific value of a feature i as it,f .  A feature detector is a 

function φ that maps a set of observation vectors into a set of feature vectors, i.e. 

)(
ifif OΦ=  where OO ⊆

if
denotes the set of input observations used by the feature 

detector.  As an example, a perceptual feature for robot A in the example can be an 

average HSV color of salient regions in an image.  There may be multiple such regions, 

and hence a set of vectors may be returned.  Another example would be a blob detector 
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that takes a camera image as input and outputs a vector specifying a list of blobs found 

and their positions.   Figure 21 depicts sensors, observations, and perceptual features for 

example robot A.  

The observation and feature vectors contain data received by the robot from the world.  

We use conceptual spaces (Gärdenfors, 2000) to anchor this data to learned concepts.  

We combine the original formulation proposed by Gärdenfors and some of the 

subsequent generalizations and extensions (Rickard, 2006).  Conceptual spaces are 

geometric spaces that utilize similarity measures as the basis of categorization.  This 

geometric form of representation has several advantages.  It is amenable to measurement 

of uncertainty (Rickard, 2006) and various machine learning algorithms such as 

clustering that operate in similar spaces.  It has also been elaborated upon and extended in 

several other works (Aisbett and Gibbon, 2001),(Raubal, 2004),(Rickard, 2006), and 

discussed and implemented to a limited degree in robotic systems (Balkenius et al., 

2000),(Chella et al., 2004),(LeBlanc and Saffiotti, 2007).  Most importantly, 

understanding how different properties and concepts can be mapped between different 

agents can be intuitively viewed in these spaces.  As an added benefit, it has been used to 

understand and more concretely define various categorization theories, e.g. those raised 

in psychology (Rosch, 1988).  As a result of these roots in psychology, several issues 

such as the combinations of categories in language where properties may overtake one 

another (e.g. a “small elephant”) or context-dependent categorization (e.g. “red wine”, 

which is not the typical “red” used in other contexts) have been addressed. 

The most basic primitive of the representation is a dimension (also referred to as quality 

or attribute), which takes values from a specific range of possible values (a domain in the 
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mathematical sense, although it is not to be confused with the notion of a domain used in 

the next paragraph).  For example, the hue of an object can be specified as an angle in the 

range [0, 360].  The values of these dimensions come from perceptual features described 

above.  For example, a video sensor measures physical properties of the world (light), 

converting them into a digital representation consisting of multiple pixels in the form of 

RGB space.  A perceptual feature detector can then convert regions of the image into an 

HSV space, and the H (hue) value can make up a dimension.  The feature detector returns 

a set of these, one for each region of the image that it determines is salient.  The left side 

of Figure 22 depicts this process. 

Figure 22 - Example of processing for sensors, perceptual features, and conversion to integral 
dimensions, domains, and properties for example robot A. 

Gärdenfors posits that there are integral dimensions that cannot be separated in a 

perceptual sense.  For example, the HSV color space can be argued to consist of three 

integral dimensions.  Another example used is pitch and volume that is perceived by the 

auditory system.  A set of such integral dimensions is referred to as a domain.  A domain 
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defines a space that consists of all possible values of the integral dimensions.  It is useful 

to abstract and divide these values into specific regions, which define a property.  For 

example, “blue” can be a property that corresponds to some region of the color space.   

The regions can be arbitrary shapes, although Gärdenfors defines what he calls natural 

properties consisting of regions with certain characteristics such as convexity.  Note that 

a property corresponds to a region in a single domain.  Figure 22 shows the various 

stages of processing for robot A in our working example. 

We can now define a conceptual space K  as made up of a set of domains.  A specific 

concept in the conceptual space is a set of regions from the domains },...,,{ 21 n
dddD =  

in the conceptual space (Gärdenfors, 2000).  A concept may also contain salience weights 

for properties and correlations between the properties.  For some concepts, certain 

properties can be more important than others, and this can be influenced by task context 

as well; for example, in the context of eating, whether the color of an apple is green or 

red may not matter much.  Correlations between properties for a concept can also exist, 

for example if the color of an apple correlates with its texture (e.g. a brown color can be 

correlated with being wrinkled if the apple is rotten). 

A point in the conceptual space is called a knoxel >=<
n

kkkk ,...,, 21 , and specifies 

instances of the concept in the form of vectors.  A knoxel can specify points in some of 

the domains, while leaving others unspecified, in the form of a partial vector.  Note that a 

property is a specific type of concept that utilizes only one of the domains from the 

conceptual space. 
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Table 3 - Properties for robot A and B in our example.  The table headings give intuitive labels for 

the reader.  Below that, the notation for properties (e.g. 
A

1p ) is shown as well as a random symbol to 

depict the notion that robots cannot simply compare symbols when learning about their similarities 
and differences with respect to these properties. 

In order to abstract features and to facilitate communication, symbols are attached to 

properties and concepts.  Each robot maintains a set of symbols Χ , each of which is 

grounded to a concept via the representation.  Symbols correspond to labels or strings, 

which will be randomly assigned by the robot.  A representation can be described as a 

function that returns the degree to which a specific knoxel k  can be categorized as a 

concept represented by symbol Χ∈x ; i.e. ]1,0[),(: →xkR .  A subset Χ⊆P of these 

symbols are predicate symbols (e.g. ‘blue’) which are grounded to property concepts.  

Table 3 shows property numbers and symbols in our example; note that each robot will 

have different groundings for these properties.  The mappings between the property 

numbers and symbols in each robot are not known a priori, and is part of the information 

that is autonomously learned via joint exploration and the algorithms outlined in this 

dissertation.  Property numbers are assigned randomly for robot B in order to avoid bias 

in the algorithms used later on to infer these mappings. Each property concept Pp ∈  has 

a prototype for that property in the form of a knoxel, denoted as pk .  This can be 

calculated, for example, by finding the center of mass for the region defining the 

property.  Note that all symbols are grounded to perceptual features derived from sensing.   

Brown Black Blue Gray White Red Green Yellow Wrinkled Smooth 

Ap1  Ap2  Ap3  Ap4  Ap5  Ap6  Ap7  Ap8  Ap9  Ap10  

‘p_A_1289’ ‘p_A_2345’ ‘p_A_8723’ ‘p_A_1287’ ‘p_A_9875’ ‘p_A_6423’ ‘p_A_1826’ ‘p_A_1756’ ‘p_A_98’ ‘p_A_62’ 

Bp1  
Bp3  Bp5  Bp2  Bp4  

Bp8  Bp7  Bp6  None None 

‘p_B_8752’ ‘p_B_5428’ ‘p_B_1342’ ‘p_B_9877’ ‘p_B_1984’ ‘p_B_7831’ ‘p_B_1756’ ‘p_B_1876’ ‘p_B_42’ ‘p_B_58’ 



 67 

There are several ways in which properties, with associated weights and correlations, 

can be combined to represent a concept.  Often, properties are represented as well-

defined regions in domains, and when an instance is in one of these regions, it is said to 

have the corresponding property (Chella et al., 2004).  In other words, instances or 

objects are defined via a conjunction of predicates (corresponding to properties), where 

the level of membership in the property is lost.  For example, an instance may be on the 

edge of the region defined by the property (e.g. only slightly tall), but this information is 

not retained.  Obviously, this type of discretization presents issues regarding uncertainty.  

In our work, we will take into account the degree of membership for a property, as well 

as the degree of membership for a concept, allowing the robot to take this in 

consideration during the communication process and when deciding how to act.  

In order to do this, we used the extension of conceptual spaces to allow fuzzy 

memberships proposed by Rickard (Rickard, 2006).  A concept is represented as a graph 

of nodes consisting of properties, with salience weights for the concept.  Nodes for pairs 

of properties 
i

p  and jp  are connected with directional edges, with weight ),( jiC , 

corresponding to the conditional probability that the concept will have property jp  given 

that it has property 
i

p  (Rickard, 2006).  If the two properties are disjoint (non-

overlapping regions) and are from the same domain, 0),( =jiC .  The graph can be 

represented as a non-symmetric square connection matrix.  The concept graph for an 

example “apple” concept can be seen on the left side of Figure 23 (with edge weights 

represented by arrow thickness), and the resulting matrix on the right side of Figure 23. 
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3.4. Calculating Concept Memberships and Concept Similarity 

In order to compare concepts and categorize instances, the concept matrix described 

above can be projected into a hypercube graph representation (Rickard, 2006).  

Specifically, the matrix C  is converted into a vector c  by concatenating subsequent rows 

together, so that values from row i and column j correspond to element jNir +−= )1(  in 

the vector, where N is the dimensionality of the matrix (corresponding to the number of 

properties).  A depiction of this conversion can be seen in Figure 24.  The salience 

weights of the properties can be multiplied so that jir www •= .  Concept similarity 

between two concept vectors c  and 'c  can now be defined as the fuzzy mutual 

subsethood, a similarity measure for fuzzy sets (Rickard, 2006): 

∑

∑
=

r

rrr

r

rrr

ccw

ccw

ccs
)',max(

)',min(

)',(     (1) 

Figure 23 – Left: Example concept graph  
for ‘apple’ concept.  Right: Matrix representation for an example "apple" concept with six properties 

(Rickard, 2006).   
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Figure 24 - Depiction of transformation from concept matrix representation to a hypercube 
(Rickard, 2006).  The left side shows the concept matrix while the right side depicts the fact that the 

concept matrix is unrolled and corresponds to a point in the concept space. 

 

The concepts may not share all properties, in which case the row and column 

corresponding to the property can be zeroed out, removing its contribution.  We will use 

this property later as well, when concepts are shared between different robots which may  

not share all of the same properties. 

In order to categorize the degree to which a specific instance belongs to a concept, a 

similar method is used.  Table 4 summarizes the algorithm.  The instance is converted to 

a graph (represented as a connection matrix as well) and compared to the concept matrix.  

First, the instance must be converted into the hypercube representation used for concepts.  

Let 
c

D  be the domains in the conceptual space and 
c

P  be the set of all properties that are 

involved in the target concept, i.e., a property that has a nonzero connection between it 

and another property (or vice-versa).  This can be defined as: 

}0or  0 s.t. :{ >>∃∈= jppjc CCjPpP        (2) 
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Table 4 - Algorithm for obtaining a concept membership value given an instance and a concept. 

Algorithm:  Concept Memberships of an Instance 
Input: Instance i, Domains D, Properties P, Concept c 

Output: Property membership m 

 

// Find all zero and non-zero values in the concept matrix 

Ic = Nonzero members of concept c (equation 2) 

Icn = Zero members of concept c 

 

DomainMax = n x n matrix initialized with zeros, where n = number of domain  

 

// Find maximal value for diagonal of matrix DomainMax 

For each Domain 

    Find property MaxProperty such that it is the maximal property value in domain 

    DomainMax[domain][domain] = i.propertyValue(MaxProperty) 

End 

 

// Find maximal value for non-diagonal of matrix DomainMax 

For each Property P1 

    For each Property P2 

        MinValue = min( i.propertyValue(P1), i.propertyValue(P2) ) 

        If  (MinValue > DomainMax[ P1.domain ][ P2.domain ]) 

            DomainMax[ P1.domain ][ P2.domain ] = MinValue 

     End 

End 

 

// Now we can fill in actual instance matrix MI 

For each Property P1 

    For each Property P2 

       // For the diagonal of the matrix, set to actual property membership value 

       If ( P1 == P2 ) 

         MI[P1][P2] = i.propertyValue(P1); 

       Else 

          // Fill in maximum across the corresponding domains 

          MI[P1][P2] = DomainMax[ P1.domain ][ P2.domain ] 

       Endif 

    End 

End 

 

// Clear values where the concept matrix entries are zero 

MI(Icn) = 0 

 

PropertyMembership = Calculate mutual subsethood between c and MI (equation 3) 
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The matrix 
c

I  is then defined as: 

otherwise

ji, allfor 
          

0

)),(),,((minmax
,,

),(,

ckj
PkPjDkDj

jic

Ppispis
I cccc

∈





= ∈∈∈∈
       (3) 

where )s(i,p j  represents the membership (similarity) of an instance to a property, which 

is derived from the regions representing the property (described in the next subsection).  

These formulations are derived from fuzzy set theory, and their justifications are 

elaborated upon in (Rickard, 2006).  They have also been successfully used in image 

matching tasks, for example (Ionescu and Ralescu, 2006).  An example matrix from an 

“apple” instance, along with the general “apple” concept matrix is depicted in Figure 25. 

 

Figure 25 - Depicts the concept graph of an "apple" (left) versus  
a specific instance transformed into the same matrix representation (right) (Rickard, 2006). 

Given this matrix, the membership of an instance to a concept can be defined using the 

fuzzy mutual subsethood equation: 

∑

∑
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where 
i

w  is the property weight.  In the example, the calculations are performed as 

follows: 
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   The resulting value represents a membership of instance i to concept c, where higher 

values indicate that the instance is more similar to the concept.  Note that here we diverge 

from (Rickard, 2006) which uses fuzzy subsethood instead of mutual subsethood.  We 

have empirically found better performance with the latter method. 

3.5. Learning Properties and Concepts from Observation 

In order to learn a representation for objects, we will manually scaffold the robot’s 

learning by first providing it with property labels and instances, after which concept 

instances are provided.  Properties represent regions in a domain, and can be learned via 

supervised learning where specific symbols (or labels) are given based on the sensory 

data of the robot.  The scaffolding is provided using experimenter intuition. 

Each scene, which can contain multiple properties and concepts, results in a set of 

knoxels K  calculated from the output of the robot’s perceptual feature detectors.  A 

supervised symbol is associated with each scene.  For each property, we use a Gaussian 

Mixture Model (GMM) to characterize the regions, denoted as 
i

G  for property 
i

p .  In 

this dissertation, we used one property per scene.  Future work can investigate multiple 

properties.  If there are multiple properties per scene, the clusters can be built for all 

domains, and the correct cluster can be inferred by its frequency of being selected.  In 

other words, models will be built for all domains, and as they become more accurate 
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incorrect domains will be ruled out because new instances will not correspond to the 

same clusters (properties) as previous instances.  

 

Figure 26 – Properties, represented as Gaussian clusters, in the color domain (HSV color space).   
Left:  Property corresponding to black color.  Right:  Several properties in the same domain, 

corresponding to colors blue, black, gray, brown, red, and white. 
 

Specifically, each property can be modeled as: 

∑
=

∑=
k

i

jjj kPwkP
1

),|()|( µθ                                          (5) 

where jw  is known as the mixing proportions and θ  is a set containing all of the mixing 

proportions and model parameters (mean µ  and standard deviation ∑ ).  Figure 26 

shows one possible clustering for both a single color property (black) on the left as well 

as a collection of properties in the same color domain (blue, black, brown, gray, red, and 

white) on the right.  The ellipsoids represent the Gaussian clusters, which in this case was 

limited to one per property. 

Since each property is modeled as a mixture of Gaussians, where it is not known 

which Gaussian the data came from, a data association problem must be solved.  There 

black 

blue 

brown 

white 

gray 

red 
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will be several clusters in the space, and the algorithm must first determine which cluster 

the data belongs to before updating the parameters of the model.  One method to solve 

this, which we will use, is Expectation Maximization, which alternates between 

estimating the association of the points to the clusters and updating the parameters of the 

clusters given the association (Bilmes, 1998).  In this thesis, we typically use one 

Gaussian per property in order to maintain the convexity of a property.  Table 5 

summarizes the algorithm for learning a property from instance. 

 
Table 5 - Algorithm for learning a property from data. 

 

Algorithm: Learning a Property from Data 
 

Input: Feature detectors F, Domain d 

Output: Property P 

 

// Gather all the data 

For each instance i 

    // Calculate feature vector (e.g. RGB) but only for target domain (e.g. color 

domain) 

    For each f in F 

        If (Domain(f) == d) 

           // This feature detector is in the right domain 

           Values.add( f(i) ) 

        End 

    End 

 

    TrainingSet.add(Values) 

End 

 

P = ExpectationMaximization(TrainingSet) 

Return P 

 

Once the properties have stabilized (in that their associations and parameters do not 

change greatly), concepts can also be learned via supervised learning (Rickard, 2006). 

Instances again take the form of sensory readings and a corresponding label, this time to a 

concept.  The feature vectors are processed from sensory data and then placed as 
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dimensions in their respective domains, and property memberships are calculated using a 

similarity metric (for example, weighted Euclidean distance from the centroid of the 

region).  Specifically, given a set of instances processed into knoxels iK , the instances 

are converted into a matrix I  where jiI ,  contains the similarity between the property 

membership for property jp  in instance i and the prototype of property jp  (denoted as 

jpk ).  Membership of a property (similarity between the property and its prototype) is 

measured using the metric defined in Section 3.4.  Each element of the concept matrix 

described previously is then updated in an incremental manner, determined by a learning 

rateα , as follows: 
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For each instance, this equation calculates the ratio of membership to both properties 

divided by their membership in the first property.  Here, membership in both properties is 

represented as the minimum of the two.  In the case of when j=k, this membership ratio 

in equation (6) always equals one.  However, we wish to retain the actual strength of the 

membership instead.  Hence, we increment the value towards the actual membership in 

property j multiplied by the learning rate.  This diverges from the work in (Rickard, 

2006) but resulted in better empirical performance.  

The cell value corresponding to those two properties is then moved toward this result, 

modulated by a learning rateα .  Learning rates are typically used to achieve good noise  
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Figure 27 –Example demonstrating the update of one cell of the concept matrix, based on one 
instance.  This is done for all instances that are members of this concept. 

 

characteristics (since outliers will not affect the values drastically) and also makes the 

calculations incremental.  Learning that is incremental is important, since after 

knowledge transfer the receiving robot has to continue learning using its own sensors if it 

encounters instances itself.  Figure 27 shows an example for the update of one cell in this 

matrix.  Table 6 summarizes the algorithm. 

3.6. Defining Perceptual Heterogeneity 

Using conceptual spaces as a representation for objects and their properties, we can 

now define the types of perceptual heterogeneity that we will be dealing with.  One way 

to look at the issue is to identify the underlying sources of heterogeneity that led to 

heterogeneity at the conceptual level.  In robots, differences in sensors, perceptual 

features, and experiences (e.g. instances that are used for learning) can all cause 

heterogeneity at the conceptual level.  Given these underlying causes of conceptual 

heterogeneity, it becomes clear that in a practical sense all robots will have at least some 

degree of heterogeneity.  For example, even sensors that are of the same model will differ  
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somewhat; this problem has been encountered by related work that attempted to 

implement the Talking Heads experiment on two Aibo robots (Nottale and Baillie, 2007).  

Similarly, the experiences of two robots will likely not be exactly the same, especially in 

the presence of sensor noise. 

Table 6 – Algorithm for learning a concept from data. 

 

Although all robots can be argued to be heterogeneous in some sense, the propagation 

of this heterogeneity to the conceptual level is what matters in the end.  If two robots 

differ somewhat in sensing but yield the same concept to an acceptable degree of 

certainty, then communication becomes possible.  However, the problem is that since the 

Algorithm: Learning a Concept from Data 

Input: Instances I , Learning Rateα  

Output: Concept Matrix C 

 

For each instance i 

  For each property P1 

     For each property P2 

 

        // If it is the same property, increment towards the membership value 

        If  P1 == P2 

          Value = i(P1) 

        Else  

          // Get minimum value 

          MinValue = min( i(P1), i(P2) ) 

 

          // Divide by the first property membership 

          Value = MinValue / i(P1) 

        End 

 

        C[P1][P2] = C[P1][P2] + (Value - C[P1][P2]) * α  

 

     End 

  End 

End 

 

Return C 
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same concept may be grounded differently in the two robots; which concepts are mapped 

to each other must be determined.  Furthermore, even the dimensions used to define the 

concepts may differ between the two robots. 

We will now define several classes of heterogeneity at the level of properties and 

concepts, analyzing the differences in the different levels of the representation (Figure 

28).  

H1: Differences in Domains 

H1a: All integral dimensions are shared. 

H1b: Some dimensions are shared. 

H1c: One or more quality dimensions from robot A combinesa set of quality 

dimensions from robot B together. 

Examples of this occur in children, for example confusing notions of 

volume with height alone, or mass and weight (Gärdenfors, 2004). 

 H1d: Domain exists in robot A but does not exist in robot B. 

Note: In addition, there may be differences in the types of sensors used to obtain 

values for the same dimension (e.g. object size via camera and laser), or even 

differences in the parameters of the sensors (e.g. two camera with different color 

characteristics).  These lower-level differences may or may not translate into 

differences in dimensions, properties, and concepts, which is what we are 

ultimately interested in. 

H2: Differences in Properties 

H2a: Regions in shared domain are equal (i.e. regions are completely 

overlapping). 
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H2b: The intersection of some regions in a shared domain is not empty. 

H2c: One region is a complete subset of the other (i.e. the intersection of two 

regions is equal to one of the regions). 

H2d: The intersection of regions in shared domain is empty. 

H3: Differences in Concepts 

 H3a: All properties are shared. 

 H3b: Overlapping sets of properties. 

 H3c: One or more property/concept is subset of other properties. 

 H3d: All or some properties are shared but concepts conflicting. 

 H3e: No properties are shared. 

 

 

 

Figure 28 – Classes of heterogeneity defined by differences in multiple levels of 

representation. 
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Figure 29 – Upper Left: Image showing the USARSim simulation environment.  Upper Right: View 
of the entire village from above.  Lower Left: Ground Talon robot and aerial quadrotor robot used 
in the experiments.  Lower Right: An object (ambulance) from the perspective of the ground robot 

(upper right) and aerial robot and (lower right).  

 

In this dissertation, we will show how two robots can deal with different types of 

heterogeneity that they have through interaction in the environment, and map properties  

and concepts that they do share.  We then show how the resulting mappings can be used 

in tasks involving knowledge exchange and adaptation. Note that heterogeneity types 

H1b, H1c, H2c, and H3c will not be dealt with in this dissertation due to scope.  It is 

anticipated that the more common situation will consist of properties that overlap fully or 

partially, although exploration of these additional types of heterogeneity may be an 

interesting scientific endeavor. 
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3.7. Experimental Platforms 

The principles of this dissertation will be tested with simulation and real-robot 

experiments.  Three different configurations of robots and sets of objects were used, one 

of which was in simulation with the other two consisting of real robots.   

3.7.1. Simulated Platforms 

The first configuration is a ground/aerial robot combination in the USARSim 3D 

simulation environment (Carpin et. Al, 2005).  The robots and environment are shown in 

Figure 29.  USARSim is a realistic 3D simulation environment developed by NIST for 

search and rescue competitions, and is based on the Unreal Tournament 2004 game 

engine.  As such, in incorporates realistic shading and lighting, which adds variability to 

the objects in the environment.  It also includes models of most modern robot and sensor 

platforms.  In this case, we use two robots, a ground tracked robot modeled after the 

Talon robot and an aerial quadrotor robot.  In this situation, there is an inherent 

heterogeneity in perspectives, as the two robots have very different points of view of the 

same objects.   

The environment consisted of an outdoor village containing a large number of 

buildings and objects.  Eight objects, including various cars, vans, and large objects were 

used to test the learning and transfer processes (Figure 30).  Color and texture properties,  

Figure 30 – All eight objects used in the USARSim simulation experiments. 
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Figure 31 – Pioneer 2DX robots used in some of the experiments (left) and images of the same scene 
from each robot (middle and right).  The middle image is from the robot with the web camera, while 

the image on the right is from the robot with the camcorder. 

 

 
 

Figure 32 – Pioneer 2DX robots (left) and Amigobot (right)  robots used in some of the experiments. 

 

obtained from images, were used to represent objects.  Color was represented as median 

values of the object in RGB or HSV color spaces.  These values were then generalized in 

the form of our Gaussian Mixture property representation.  Texture was represented using 

the mean and standard deviation of the output of a single empirically-derived Gabor filter 

over the entire object.  The simulated robots were used to perform various tasks in the 

outdoor environment depicted in Figure 29.  This environment allowed us to test 

applications of the framework laid out in this dissertation to a joint reconnaissance 

scenario, where the two robots explored the outdoor environment and were tasked to find 

and follow various moving objects.   
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Figure 33 – Twelve objects used in some of the real-robot experiments. 

 

3.7.2. Real-Robot Platforms (Configuration 1) 

The first real-robot configuration consisted of two Pioneer 2DX robots, seen in  

Figure 31.  The first robot (left) had odometry, sonar sensors, and a Quickcam Express 

web camera.  The second robot (right) had odometry, sonar sensors, and SICK ladar 

sensor, and a DCR-HC40 Sony Handycam camcorder.  In this case, only the cameras 

were used; range-sensing is used in the next configuration to obtain object characteristics 

such as size and shape.  Again, the same color and texture properties were used to 

represent objects. 

3.7.3. Real-Robot Platforms (Configuration 2) 

In the final configuration, consisting of real robots, a Mobile Robots Amigobot with a 

wireless camera and a Pioneer 2DX robot with a Quickcam Express web camera were 

used.  These robots are shown in Figure 32.  These robots are the same that were used 
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during the experiments earlier in this chapter, except in that case only twelve of the 

thirty-four objects were used.  These twelve objects, representing a subset of all of the 

objects used, are shown in Figure 33.  As can be seen, the objects varied in color, texture, 

size, and shape. 

The Pioneer with the web camera used 320x240 resolution images while the other 

used 640x480 resolution, adding another source of heterogeneity.  Unlike the first robot, 

the Pioneer robot with the web camera had a SICK laser range finder as well, data from 

which was processed to extract object shape (curvature) and size properties.  Color and 

texture properties were derived similar to the other configurations.  

Shape, obtained from range finders, consisted of a curvature metric.  Object sizes were 

obtained by simply calculating the 3D points in which they lied and measuring the three 

dimensional distance between the first point on the object and the last.  The camera and 

laser sensors were calibrated so that points from the laser could be projected onto the 

image.   

In some cases, these features (and therefore properties) were missing if, for example, 

the object was not in full view and the laser readings therefore did not cover the entire 

object.  In these cases, the features and property memberships were considered missing; 

as mentioned, the ability to handle missing features is an important capability to enable 

transfer learning of classifiers.  

3.7.4.   Processing 

Most of the processing was performed in MATLAB offline, although this is not due to 

processing requirements.  Images were gathered from the robots and separated into 

testing and training sets. These images were segmented using the automatic segmentation 
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Figure 34 – Example segmentation of an image.  The top image shows the original image while the 
bottom image shows the resulting segmentation.  Different shades of gray were used to depict 
different segments. 
 

algorithm (Felzenszwalb and Huttenlocher, 2004).  Figure 34 shows an example.  Where 

supervised learning was used, segments were chosen in MATLAB by the user for each 

corresponding object.  Calibration was done using checkerboard patterns and the 

MATLAB Calibration Toolbox.  The 3D point cloud resulting from the laser readings 

were then calculated, and the camera calibration was then used to project the laser points 

onto the image.  Points that were inside the segments of the object were then used to 

determine shape and size as described previously.  

3.8. Experimental Results: Property and Concept Learning 

We now detail our results with respect to the learning of properties and concepts.  This 

first experiment serves to show that properties can be learned from data, conceptual 

spaces can be used to combine these properties and learn object models, that performance 

increases with additional training samples indicating successful learning,  and that the 

object models can then be used to classify objects.  Table 7 summarizes the experiment. 
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Table 7 - Experimental summary for the experiment demonstrating property and concept learning 
using conceptual spaces. 
 

3.8.1. Hypothesis 

The hypothesis of this experiment is that the property abstractions and conceptual 

spaces representation can be used to classify objects.  Specifically, we hypothesize that 

classification rates will be significantly better than chance, and that as the number of 

training instances increases, performance will improve until reaching a plateau.  While 

basic in nature, these experiments serve to show that conceptual spaces is a viable 

representation that can be used for real-world data.  Other hypotheses regarding the 

difficulty of naïve knowledge transfer on heterogeneous robots (Section 3.9) and the 

importance of the property abstraction for learning (Section 3.10) will follow. 

3.8.2. Performance Metrics 

We measure performance using receiver operator curves (ROC), recall rates, and 

precision rates.  The ROC plots show the true positive ratio against the false positive 

ratio.  The true positive ratio, or sensitivity, of a binary classifier is the number of true 

positives divided by the total number of positives in the test set.  The false positive ratio 

Experiment 2: General Experiment Summary 

Property and Concept Learning 

Purpose 
To show that conceptual spaces is a viable representation that 

can be learned using real data. 

Experiment Type 
Simulation, Real-Robot (Configuration 2) 

Hypothesis 
We hypothesize that classification rates will be significantly 

better than chance, and that as the number of training 

instances increases performance will improve (until reaching 

a plateau) 

Procedure 
1. Gather and label sensory data 

2. Train properties using labeled instances 

3. Train concepts using labeled instances 

4. Test learned concepts on testing data 

5. Gather classification accuracy results 

Performance 

Metrics 

Areas under curve for: ROC curves, recall learning curves, 

precision learning curves. 
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is the number of false positives divided by the total number of negatives in the test set.  

The recall rate measures the number of true positives divided by the number of positives 

in the test set, while precision measures the number of true positives divided by the 

number of test set instances that were classified to be positive.  These numbers are 

proportions and can, if desired, be represented as percentages.  For recall and precision, 

learning curves are plotted showing the average performance over all concepts as the 

robot is learning and the number of training instances increases.  For all of these metrics 

(ROC, recall learning curves, and precision learning curves), the area under the curves 

can be used to quantitatively assess the robots’ performance.  The latter two (area under 

the recall and precision learning curves), in particular, assess the robots’ concept 

classification performance throughout its entire learning process. 

 

 

3.8.3. Simulation 

3.8.3.1. Procedure 

We will first describe the simulation experiments for learning of properties and 

concepts.  These results show that our representation can be used to learn about and 

classify objects in the world.  In order to gather data, the simulated robots were 

teleoperated to view the various objects.  The aerial robot flew approximately eight 

Property # 

Number 

Ground Aerial 

Objects 

Included 

Semantic 

Label  

 

3p  

 

1p  

Mailbox 
Trash 

Police Car 

Blue 

1p  
2p  Van Brown 

 

2p  

 

3p  

Ambulance 
Barricade 

Cone 
Race Car 

Red 

4p  
4p  Mailbox 

Barricade 
Police Car 

Smooth 

 
5p  Van (3 types) Textured 

Table 8 - Properties and objects used to represent 
concepts. 
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meters from the ground. A portion of the environment and the two robots can be seen in   

Eight objects were used for testing property and concept learning as well as transfer, all 

of which can be seen from the perspective of the ground robot in Figure 30. A large 

number of images containing each of the objects in many different perspectives were 

gathered. For the van object, three different instances of the van in different lighting 

conditions were used to train the properties. The objects used were realistic, challenging, 

and were found under varied lighting. Out of these, 70 randomly chosen images were 

used for training, and 30 (different) randomly chosen images were chosen for testing. All 

images were automatically segmented using a graph-based image segmentation algorithm 

(Felzenszwalb and Huttenlocher, 2004).   An example segmentation can be seen in Figure 

34. 

In order to train the properties, each object was categorized as belonging into one of 

three color properties (see Table 8). Both robots were trained with instances containing 

these properties, but the ground robot used an RGB color space while the aerial robot 

used an HSV space. The ordering of the properties was randomized for each robot. For 

texture, both robots used the same two dimensional space consisting of the mean and 

standard deviation output of a Gabor Filter. However, the ground robot only had one 

texture category corresponding to smooth objects such as the barricade or mailbox, while 

the aerial robot had an additional property corresponding to the texture pattern of the van 

(object 7 in Figure 30). Hence, the ground robot had four total properties while the aerial 

robot had five (heterogeneity type H2d).   Note that not all objects were used in training 

of all of the properties (e.g. some objects were not used to train texture properties). While 

in simulation there is no heterogeneity in the cameras themselves, in this case 
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heterogeneity originates from utilizing different metric spaces, one robot using an 

additional property that the other did not have, and large differences in perspectives 

which led to different portions of the objects being used during training. 

For each property, 70 images of each object having that property were used to train 

the Gaussian Mixture Model (GMM). During training, a segment corresponding to the 

target property as well as the type of property being trained (e.g. color or texture) were 

(a)  Color properties for the aerial robot 
(HSV color space).  

 

(b)  Color properties for the ground robot 
(RGB color space).  

 

(c)  Texture properties for the aerial robot.   
The space consists of the mean and standard 
deviation output of a Gabor filter. 

 

(d) Texture properties for the ground robot.   
The space consists of the mean and standard 
deviation output of a Gabor filter. 
 

Figure 35 – Color and texture properties, represented as a Gaussian Mixture Model, after 
training with multiple objects. This figure is meant to demonstrate what was learned in the 
simulation experiments with respect to properties. 
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hand-labeled. The target segment was then processed (e.g. median RGB, median HSV, or 

texture output values calculated for that segment), and the resulting set of data points 

were used for training the GMM.  The algorithm for property training that was used is 

described in Section 3.5 and specifically the algorithm in Table 5.  We used up to three 

clusters per property in this case, with the actual number determined by a minimum 

description length criteria applied to the Expectation Maximization algorithm (Bilmes, 

1998).  Figure 35 shows the resulting properties for both color and texture properties. 

After the property representations were learned, there was a second training period 

when the concepts (i.e. objects) themselves were learned. Concept learning was 

performed as described in Section 3.5 and specifically using the algorithm in Table 6.  In 

this case, the incremental version of concept learning was not used since there was much 

less noise in simulation.  Instead, median property membership values were used. Again, 

70 images were used per concept along with a target segment that contained the target 

concept. As described previously, each concept was represented via a matrix containing 

correlations between each pair of properties.  As an example, Figure 36 shows a gray-

scale depiction of the concept matrix for the race car, where brighter values correspond to 

higher values (values range from 0 to 1, inclusive). As can be seen, high values were seen 

Figure 36 –Concept matrix for the race car object (aerial robot).  Lighter values indicates higher 

correlations between properties.   High values can be seen for property 3 (red) and property 5 

(corresponding to textured as opposed to smooth).  
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for property 3 (red) and property 5 (corresponding to textured as opposed to smooth). 

Correlations between properties 3 and 5 were seen as well, since whenever the race car 

had a high red property it also had a high value for the textured property (i.e. there was 

not much variety in the appearance of the race car). 

After the concepts were learned (i.e., all of the training instances were used), we 

tested the accuracy of categorization of six hundred images, some of which contained the 

eight objects but many of which did not contain any of the learned concepts. In total, 600 

images were used for testing, only 30 of which contained any one trained object. Since 

each image contained 34 segments on average in the segmentation, this is a challenging 

categorization task as there can be many small segments that do not contain many pixels 

and spuriously led to false positives. 

In this case, the process was fully automated: each image was segmented, the 

property membership values of each segment were calculated (as described in Section 

3.5), and finally the concept membership values were calculated using the algorithm in 

3.4, namely Table 4.  This algorithm was run for all concepts, resulting in a list of 

concept memberships (one for each learned concept) per instance.   

Detection and categorization accuracy was then determined using standard receiver 

operating characteristic (ROC) curves, which plots the true positive ratio against the false 

positive ratio. Thresholds on the concept membership value were varied from 0 to 1 in 

increments of 0.005.  Each threshold value was used to decide whether a segment 

corresponded to a given concept or not.  These classifications are then compared to 

ground truth (which is known as the data is labeled), resulting in statistics such as false 

positive and negative rates.  In the ROC curve, as the threshold is loosened, more true 
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positives are obtained but potentially resulting in higher false positives. Each false 

positive and true positive value was then plotted.  The best possible classifiers would lie 

at the upper left corner, corresponding to only true positives and no false positives. A 

classifier performing at chance would lie on the diagonal line going from (0,0) to (1,1).  

One measure of total accuracy that can be used is the area under the ROC curve, where a 

value of one is perfect.  A classifier performing at chance would result in an area of 0.5.   

3.8.3.2. Results 

We now describe the classification results, in the form of ROC curves.  Figure 37 

shows the curves for the two robots; the mean area under the ROC curve for all of the 

objects was 0.82 for the ground robot and 0.89 for the aerial robot, representing good 

categorization results given the challenges of using automatic segmentation and a large 

number of test images that did not contain any of the learned concepts. On average, in the 

simulation results, the aerial robot categorized objects better, as HSV is a more effective 

color space and objects viewed from above vary much less than from below where 

Figure 37 – ROC curve for eight concepts on aerial and ground robot.  A classifier performing at 
chance would yield a diagonal line between (0,0) and (1,1).  These results show successful 

classification better than chance.  The mean area under the ROC curve for all of the objects was 
0.82 (left) and 0.89 (right), significantly better than chance performance of 0.5. 
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Table 9 -Properties and example objects 
used to train them. 

 

occlusion and perspective differences can be a problem.  These results confirm our 

hypothesis that conceptual spaces can be used to classify objects at rates significantly 

better than random: 0.82 and 0.89 ROC areas for the ground and aerial robots, 

respectively, compared to 0.5 for random chance.  

3.8.4. Real-Robot (Configuration 2) 

3.8.4.1. Procedure 

 We now describe a similar experiment as in Section 3.8.3, but in this case using real 

robots (configuration 2).  Just as before, in order to train color, texture, shape, and size 

properties, the robots were driven around a laboratory environment, resulting in a large 

amount of stored sensor data.  Thirty-four realistic objects were used, twelve of which 

were shown in Figure 33.  Examples of objects included whiteboards, wood crates, some 

robots (e.g. a different Amigobot as well as an iRobot Create), trash cans, and so on. 

 One hundred images of each object were chosen, seventy of which were randomly 

chosen for training and thirty for testing (note some object categories had somewhat 

fewer testing instances).  Anywhere from one to six objects from the environment per 
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category were chosen for training of properties, some of which are shown in Table 9.  For 

each property, all that is given is the domain to be trained, a set of data instances, and 

segments chosen from the automatic segmentation of the target object.  The color space 

used for the properties included RGB and HSV.  For texture, an empirically-chosen 

Gabor filter was used, with  

(a)  Color properties for the Amigobot (RGB       (b) Color properties for the Pioneer (RGB  
color space).           color space. 

 

(c) Texture properties for the Amigobot.  The               (d) Texture properties for the Pioneer. space 
consists of the mean and standard deviation 
output  of a Gabor filter. 

Figure 38 – Color and texture properties, represented as a Gaussian Mixture Model, after training 
with multiple objects. This figure is meant to demonstrate what was learned in the real-robot 
experiments (robot configuration 2) with respect to properties. 
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the mean and standard deviation of its output comprising the space.  Shape, obtained 

from range finders, consisted of a curvature metric.  Object sizes were obtained by simply 

calculating the 3D points lying on the objects and measuring the three dimensional 

distance between the first point on the object and the last.  The camera and laser sensors 

were calibrated so that points from the laser could be projected onto the image.   

Properties were trained using this data using the EM algorithm described in Section 

3.5, specifically the algorithm in Table 5.  Figure 38 shows the resulting learned 

properties.  After the properties were trained, the concepts were trained using labeled data, 

again described in Section 3.5, specifically the algorithm in Table 6.  Again, the concept 

membership algorithm was run for all concepts, resulting in a list of concept 

memberships (one for each learned concept) per instance.  Recall and precision rates 

were calculated by taking the maximal concept membership for each instance and 

comparing it to the known ground truth concept label.  The recall and precision results 

were calculated for different number of training instances in order to plot learning curves.  

Specifically, rates for the first five training instances were measured, after which results 

Figure 39 – Results demonstrating successful concept learning  
for the Amigobot (left) and Pioneer (right).  Classification results are greater than chance 
(0.5) for all three metrics, and performance increases as more training instances become 

available indicating successful learning. 
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for every subsequent five instance was measured (up to fifty, the total number of training 

instances). 

3.8.4.2. Results  

Figure 39 shows learning curves for concept learning using conceptual spaces.  Each 

instance was used to update the concept matrix, and after instances one through five, and 

every five instances thereafter, accuracy was measured on a test set using manually-

specified ground truth.  As can be seen, both robots achieve better than chance 

performance after seeing all training instances (0.81 recall rate, 0.74 precision rate, and 

0.73 ROC area for the Amigobot; 0.77 recall rate, 0.73 precision rate, and 0.71 ROC area 

for the Pioneer), with recall being higher than precision.  A classifier performing at 

chance would have a recall and precision rate of 0.5.  Furthermore, as the number of 

training instances increases the recall and precision rates improved before reaching a 

plateau, demonstrating successful learning.  In Chapter 5, these same curves will be 

shown again but augmented with the learning curves obtained after knowledge transfer.  

These results confirm our hypothesis that learning is occurring, as the average accuracy 

(as measured by recall and precision) increased as the number of training instances 

increased.  

3.8.4.3. Discussion  

We have demonstrated in this subsection that the use of conceptual spaces is a viable 

method for representing real-world concepts that are sensed by robots through noisy 

sensors.  Classification results are significantly better than chance, and performance 

increases through further training until a plateau is reached, demonstrating learning.  We 
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have shown this through both simulation and real-robot experiments.  The resulting 

properties (which were plotted throughout) and concepts learned in these experiments 

will be used throughout the dissertation to validate further hypotheses regarding the 

nature of learning and knowledge transfer.  Table 10 shows a summary of the experiment. 

Table 10 - Experimental summary and conclusions for the experiment demonstrating property and 
concept learning using conceptual spaces. 

3.9. Experimental Results: Heterogeneity and Direct Property Transfer 

3.9.1. Hypothesis 

We now provide further evidence for our hypothesis that heterogeneity can pose 

difficulty for knowledge transfer when performed without a priori modeling of 

differences (Kira, 2009a).  The hypothesis is that heterogeneity poses a problem during 

uninformed knowledge transfer.  In other words, attempting knowledge transfer without 

understanding robot differences may result in unsuccessful transfer.  We have already 

demonstrated this using a best case scenario (Section 3.1), but will further show this 

using our representations as well, in this case showing that robots could not successfully 

classify property categories using properties obtained from another heterogeneous robot.  

Specifically, we hypothesize that transferring properties directly between heterogeneous 

Experiment 2: General Experiment Conclusions 

Property and Concept Learning 

Hypothesis 
We hypothesize that classification rates will be significantly 

better than chance, and that as the number of training 

instances increases performance will improve (until reaching 

a plateau) 

Conclusions 
Hypothesis is confirmed.  Classification results after training 

are better than chance (simulation and real-robot experiments) 

and learning curves demonstrated improved performance as 

the number of training instances increased (real-robot 

experiment). 
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Blue 
(Recycling Bin)

robots will significantly reduce the classification rate of property categories.  In other 

words, before concepts are even represented, heterogeneity can present a problem during 

the transfer of just the underlying properties. 

3.9.2. Procedure 

 For these experiments, we used two real robots (configuration 1).  In order to show 

that direct transfer or comparison of properties across heterogeneous robots can result in 

a degradation of performance, we directly transferred the learned GMM models from 

robot 1 to robot 2, and vice-versa, for the same RGB color space.  We then tested the 

resulting categorization success in the same manner as before.  In other words, robot 1 

used robot 2’s learned representation on its own data in order to categorize the testing set.   

The process of training properties was similar to that to that of the simulated 

experiments. Specifically, we used the methods described in Section 3.5, particularly the 

algorithm in Table 5.  We used up to three cluster per property in this case, with the 

actual number determined by a minimum description length criteria applied to the 

Expectation Maximization algorithm (Bilmes, 1998).  In order to train color and texture 

properties, the robots were driven around a laboratory environment for 2-3 runs, resulting 

in a large amount of stored sensor data.  Six to eight objects from the environment per 

color category were chosen for training.  For texture, a single empirically-chosen Gabor 

Black 
(Trash Can) 

Figure 40 – Example objects used for testing. 
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filter was used, with the mean and standard deviation of its output comprising the space.  

Examples of objects include a blue recycling bin, a smaller black trash can, and a blue 

Sun computer, all of which can be seen in the images in Figure 40.  In order to avoid bias, 

property numbers were randomly assigned to the actual color or texture that was used 

during training.  It is important to note that symbolic labels were not given to the robots, 

they are only added by the author for clarification of the figures.  For each property, all 

that is given is the domain to be trained (i.e., whether the property is in the color or 

texture domain), a set of data instances, and segmentation of the target object.  In other 

words, the robots could not simply compare labels to determine which of their properties 

mapped.  Table 11 shows the assignments that were given to both robots for the color and 

texture properties.  Knowledge of this mapping is not used by the algorithms, and is what 

must be learned by the robots given instances from a shared context in Chapter 4. 

Table 11 - Table of arbitrary symbols assigned to color categories.  The same symbol (e.g. "Black")  
was arbitrarily assigned as a differently numbered property for the two robots to avoid bias. 

 
 Brown 

Objects 

Black 

Objects 

Blue 

Objects 

Gray 

Objects 

White 

Objects 

Symbol: 

Robot  

A 

Ap1  
Ap2  

Ap3  
Ap4  

Ap5  

Symbol:  

Robot  

B 

Bp1  
Bp3  

Bp5  
Bp2  

Bp4  

 

Out of all of the images recorded, 45 were chosen per category containing an 

approximately equal number of instances from each object in the category, resulting in a 

total of 225 images.  150 of these were randomly chosen for training, while the rest were 

used in testing the categorization and building the confusion matrices.  The same images 

were used for training of texture properties.  The objects were segmented manually in the 
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image, differing from the automatic segmentation performed in experiments using the 

other platforms. 

3.9.3. Results 

Figure 41 shows the resulting property regions for both robots in two color spaces 

(RGB and HSV).  As can be seen, despite being trained on the same objects, the 

representations are quite different.  After training the properties using supervised 

learning, the accuracy of categorizing the color of different views and instances of the 

objects was tested.  Table 12 shows the resulting accuracy results for both robots, 

averaged over five runs (standard deviations are shown).  They both achieved better than 

chance accuracies (80.8% and 79.7% for robot 1 and 2, respectively) given the existence 

of object brightness changes due to changes in perspective.  Interestingly, the results for 

robot 1 (that had an inexpensive web camera) performed similarly to the second robot 

Figure 41 – Color properties, represented as a Gaussian Mixture Model, after training with 
multiple objects with five colors.  Results are shown for two color spaces (RGB and HSV) 

and the two heterogeneous robots.  The resulting models are significantly different for each 
robot, arising due to heterogeneity in training and sensing. 
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that had a more expensive camcorder.  Overall, the camcorder resulted in colors that were 

duller and less bright, as can be seen from the results in Figure 41. 

Table 12 - Color categorization accuracy with and without transfer.  Categorization was significantly 
better than chance when the robot used its own representation, but at chance levels when the robot 
used transferred properties received from the other robot. 

 

 

 

 

 
Table 13 - Experimental summary and conclusions for the experiment demonstrating the failure of 
direct property transfer due to heterogeneity. 

 

The right side of Table 12 shows classification results when the properties were 

transferred between the robots and used by the receiving robot to similarity classify the 

Robot Own Representation Transferred 

Representation 

 #  (/ 75) Percent # (/ 75) Percent 

Robot 1 60.6 80.8 ± 5.0 14.4 19.2 ± 0.7 

Robot 2 59.8 79.7 ± 2.9 16.4 21.9 ± 2.6 

Experiment 3: General Experiment Summary & Conclusions 

Heterogeneity and Direct Property Transfer 

Purpose 
To determine whether heterogeneity can pose difficulty for 

knowledge transfer when performed without a priori 

modeling of differences. 

Experiment Type 
Real robot (configuration 1) 

Hypothesis 
Transferring properties between heterogeneous robots will 

significantly reduce the classification rate of property 

categories by the receiving robot. 

Procedure 
1. Train properties for each robot 

2. Determine classification rate for property categories. 

3. Transfer properties between robots 

4. Determine new classification rate for property 

categories when using received properties. 

5. Compare results from (2) and (4). 

Independent 

Variable 

Source of property models (self-learned or received) 

Dependent Variable 
Performance during classification of property categories. 

Conclusions 
Hypothesis is confirmed.  Using properties received from 

another robot was significantly worse for classification of 

property categories than properties learned by the robot itself. 
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object property.  As can be seen from the right side of Table 12, the results were 

dramatically worse (19.2% and 21.9% for robot 1 and 2, respectively) and close to 

random guessing (which would achieve a 20% accuracy).  The difference is significant 

for both comparisons (p<0.0001 for both).  Hence, even with training sets consisting of 

the same objects and when using the same color space the properties of the two robots 

were incompatible due to sensor heterogeneity.  We have now shown multiple situations 

where naïve transfer of knowledge can fail: The experiments in Section 3.1 and the 

experiments in this subsection.  Table 13 summarizes the experiment in this subsection. 

3.10. The Importance of Property Abstractions for Learning 

The role of properties as an intermediate level of abstraction is important to the 

conceptual spaces representation.  They form the bridge between raw sensory features to 

higher level concepts.  However, one can ask whether the abstraction of data in the form 

of properties is useful.  In this dissertation, we hypothesized two useful roles for property 

abstractions: 1) We hypothesized that property abstractions will aid learning; i.e. that 

learning will be easier and  2) We hypothesized that properties will serve as a buffer for 

heterogeneity between robots, such that similar properties learned by the robots will have 

similar memberships to the same concept, despite differences in the actual data and 

domains.  In this section, we will provide evidence for the first hypothesis (Kira, 2010).  

We will then do the same for the second hypothesis in Chapter 5 which deals with 

knowledge transfer (specifically, Section 5.6).  
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3.10.1. Hypothesis 

For this experiment, the hypothesis is that our method of sensory abstraction in the 

form of properties will aid the learning of object representations when compared to using 

the raw sensory data instead. 

3.10.2. Procedure 

In order to test the hypothesis that these property abstractions improve learning, we 

performed experiments using a support vector machine (SVM) classifier to learn and 

classify objects (specifically, we used the svm
light

 software package (Joachims, 1999)).  In 

this case, we use a standard machine learning algorithm since it allows the robot to learn 

with raw sensory data as a comparison.  We hypothesize that learning with such data 

would be more difficult to do without our property abstraction when using conceptual 

spaces. Furthermore, it again provides a best case scenario, since we use a discriminative 

learner that finds optimal separation from other objects.  Discriminative learning (such as 

SVMs) often performs better than a generative learner (which conceptual spaces falls 

under), although it requires both negative and positive examples.  In addition to 

confirming our hypothesis, by using support vector machines (a popular technique in the 

machine learning community), these experiments indicate that many elements of the 

work in this dissertation are not necessarily tied to the representation of objects used, 

bolstering the generality of our work.  Specifically, the property abstraction methods can 

be combined with other classification methods (besides conceptual spaces), and hence the 

methods for mapping such properties between robots (described in Chapters 3 and 5) can 

also be applied to other object representations. 
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Two conditions were used in this experiment.  In the first condition, the property 

memberships for the previously learned properties were used as attributes.  In the second 

condition, raw sensory data itself (e.g. RGB values or curvature metric) were used as 

attributes for training.  In later chapters, we also used a third condition where raw sensory 

data was used, but the robots used different representations for color, namely one robot 

used an RGB color space while the other used an HSV color space.  In order to gauge 

classification rates, both recall and precision are plotted as the number of training 

instances increases.  These are standard classification metrics, where recall measures the 

number of true positives divided by the number of positives in the test set, while 

precision measures the number of true positives divided by the number of test set 

instances that were classified to be positive. 

3.10.3. Results & Discussion 

Figure 42 shows a comparison between the first two conditions for both robots and 

both recall and precision.  As can be seen, our hypothesis that the abstraction of 

properties results in higher learning curves is confirmed, showing that it is more difficult 

to learn with raw sensory data.   Final recall rates after all training instances are a little 

higher when using raw sensory data (96.0% when using raw values compared to 92.7% 

when using properties, or a 3.4% decrease) but this comes at the expense of lower 

precision (71.8% when using raw values compared to 79.6% when using properties, or 

10.9% increase).   Furthermore, the learning curve is higher when using properties most 
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 operties were used as attributes.  In  

Figure 42 – Results demonstrating the advantage of using abstracted properties as opposed to 
raw sensory data when learning.  These learning curves, showing performance (y-axis) as the 

robot continues to learn and the number of training instances increases (x-axis).  Each subfigure 
shows higher curves (as measured by areas under the learning curves) to demonstrate that 

learning with property abstractions is easier. The figures on the left show precision, while the 
figures on the right show recall.  The figures on the top show results for the Amigobot robot, 

while the figures on the bottom show results for the Pioneer 2DX robot. 
  

(b)  Precision learning curve for the Amigobot. 
The areas under the curve were 0.72 when using 

properties and 0.61when using raw values. 

(a)  Recall learning curve for the Amigobot.  The 
areas under the curve were 0.86 when using 
properties and 0.84 when using raw values. 

 

(d)  Precision learning curve for the Pioneer. 
 The areas under the curve were 0.80 when using 
properties and 0.59 when using raw values. 

 

(c)  Recall learning curve for the Pioneer.  The 
areas under the curve were 0.86 when using 
properties and 0.78 when using raw values. 
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of the time (and especially in the early stages of learning), showing that it is more 

difficult to learn with raw values.   This can be seen more starkly for the Amigobot robot 

in Figure 43, where we plot a histogram of the differences between using properties and 

using raw values.    These values indicate the raw increase in rates when using properties 

over when using raw values.  We measured the overall gain quantitatively by measuring 

the area under the learning curve.   This metric measures the overall classification 

accuracy over the entire training process of the robot and as it obtains more training 

Figure 43 – Results demonstrating the advantage of using abstracted properties as opposed to 
raw sensory data when learning. The figure on the left shows precision, while the figure on the 
right shows recall.  Positive values indicate larger recall and precision rates when using property 
abstractions, while negative values indicate larger rates when using raw values.  The graph is 
dominated by positive values, indicating that learning is easier using property abstractions.  This 
is validated quantitatively by measuring the areas under the learning curve in Figure 44. 
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Figure 44 – This graph shows the areas under the learning curves for the two robots in the two 
experimental conditions (property abstractions vs. raw values).   Higher values are achieved 
when using property abstractions, indicating that learning is easier when using them when 
compared to raw sensory data. 
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instances.    Figure 44 summarizes the results for both recall and precision, for both 

robots.  Areas under the learning curve were smaller for both recall (e.g. 0.86 versus 0.84 

Table 14 - Experimental summary and conclusions for the experiment demonstrating the importance 
of property abstraction for learning. 

for the Amigobot when using properties and raw values, respectively) and precision (e.g. 

a 0.72 recall rate versus 0.61 for the Amigobot when using properties and raw values, 

respectively, and 0.86 precision rate versus 0.78 for the Amigobot when using properties 

and raw values, respectively).  For the Pioneer robot, the recall rate area was 0.72 when 

using properties and 0.60 when using raw sensory data, while the precision rate area was 

0.80 when using properties and 0.59 when using raw sensory data. 

Experiment 4: General Experiment Summary 

The Importance of Property Abstractions for Learning 

Purpose 
To determine whether the abstraction of raw sensory data 

into property abstractions improves learning. 

Experiment Type 
Real-robot (configuration 2) 

Hypothesis 
We hypothesize that property abstractions do indeed aid 

learning.  Specifically, that the learning curves when using 

property memberships to model and classify objects will be 

higher than when using raw sensory data. 

Procedure 
1. Train properties using labeled data. 

2. Train two classifiers for concepts using labeled data 

A. The input attributes to the classifier is raw 

sensory data. 

B. The input attributes to the classifier is 

property memberships. 

Independent 

Variable 

Input attributes to the classifier (raw sensory data vs. 

property memberships) 

Dependent Variable 
Accuracy of concept classification as measured by recall, 

precision, and areas under the resulting learning curves as the 

number of training instances increases. 

Conclusion 
Hypothesis is confirmed.  The learning curves for both robots 

are higher when using property abstractions compared to 

using raw sensory data. 
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 Overall, the data presented in this experiment has shown that it is easier to learn with 

properties than raw sensory data, as determined by areas under the learning curves.  In 

the next chapter, dealing with concept transfer, we will further show that property 

abstractions also aid transfer.  That is, transfer between heterogeneous robots can 

sometimes fail when using raw sensory data as features, but not when using property 

abstractions.  Table 14 summarizes the experiment in this subsection. 

3.11. Summary 

 This chapter laid the foundation for the dissertation.  We began with an experiment 

utilizing three robots and thirty-four real world objects.  We empirically demonstrated 

that perceptual heterogeneity does indeed prevent naïve knowledge transfer even for 

representations that are designed to be resistant to various transformations in the visual 

appearance of objects in the cases tested.  We then described our multi-level 

representation based on conceptual spaces, allowing us to define and explore 

heterogeneity between robots at multiple levels.  In this framework, raw sensory data is 

abstracted into an intermediate representation called properties.  These properties are 

represented as Gaussian mixture models, and can be learned via supervised learning.  The 

algorithms and processes necessary for the learning of properties and concepts were 

described in this chapter.  This representation was successfully used to learn a 

representation of objects and subsequently classify them, in both simulation and real-

robot experiments. 

 In this chapter, we confirmed three hypotheses: 



 109 

1. We demonstrated that the conceptual spaces representation can be used to learn 

underlying object properties as well as combine them to model objects 

themselves.  We hypothesized successful classification (better than chance) as 

well as successful learning (improvement as the number of instances increases).  

Both of these were shown to occur in simulation as well as real-robot 

experiments. 

2. We demonstrated that there is indeed a learning advantage to abstracting raw 

sensory data into the intermediate property representation in the cases tested. 

(Kira, 2010)  This was shown using a state of the art machine learning algorithm 

(support vector machines).  We hypothesized that learning curves, plotting 

classification accuracy as the number of training instances increases, would be 

higher when using the property abstraction compared to raw sensory data for 

learning.  This was confirmed in a real-robot experiment by measuring the areas 

under the learning curves.  In Chapter 5, we will show that in addition to this 

learning advantage, property abstractions can also facilitate transfer.   

3. The final hypothesis we confirmed in this chapter is that perceptual 

heterogeneity prevents properties from being transferred directly between robots 

(Kira, 2009a).   We transferred properties between two real robots, and showed 

that classification of property categories significantly decreased when a robot 

used properties received from the other robot compared to the properties it 

learned by itself. 
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This latter result motivates our contention that robots should explicitly learn about 

and model their differences in order to facilitate knowledge transfer.  This leads us 

to the next chapter, where we present methods and robot interactions for learning 

which properties on one robot correspond to properties on another robot, even if the 

underlying spaces for these properties differ between the two robots. 
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CHAPTER 4  

BUILDING MODELS OF PROPERTY AND CONCEPTUAL 

DIFFERENCES ACROSS ROBOTS 

4.1. Sources of Heterogeneity between Two Robots 

Robots can differ at multiple levels and in different ways.  The way in which two 

robots differ impacts the efficacy of knowledge transfer between them.  In this 

dissertation, we proposed to bridge the gap between two robots at the lowest sensory 

level by building an intermediate property representation.  We showed that such 

abstraction can aid learning in Chapter 3, and will show that it can successfully bridge the 

gap between two robots that use different underlying raw sensory data during knowledge 

transfer in Chapter 5.  Given this, the question then becomes:  

How can two robots determine which properties they have in common?  

This chapter focuses on this question. 

Furthermore, some properties are more important for the representation of one concept 

versus another.  If properties that are important to a concept are not shared, it does not 

matter that all of the other properties a robot has are shared.   We deal with this issue in 

this chapter as well.   We will demonstrate that robots can indeed determine which 

properties are potentially shared.  The process involves joint interaction between the two 

robots in the same environment, leveraging the fact that the robots are embodied.  Once 

property mappings are learned, they can be used to transform concepts when transfer 

occurs from one robot to the other.  Furthermore, by knowing which properties are shared 
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and which are not, in addition to knowing how important a set of properties are to 

representing a concept, the information lost by going from one robot to another can be 

measured via a metric.  We will demonstrate this metric in Chapter 6.  Note that in this 

and the next chapter, we focus on heterogeneity classes H2a and H2d, where properties 

are either shared or unshared.  We will cover other heterogeneity types, where properties 

can overlap by different degrees, in Chapter 6. 

4.2. Modeling Differences in Properties 

As mentioned, properties are regions in domains, in our case represented as Gaussian 

mixture model clusters.  The same property can be represented as clusters with different 

characteristics (for example, different standard deviations) or even domains from 

different sensors (for example, the width of an object as detected by a camera or laser).  

Given these clusterings of a domain, the problem is to find associations between clusters 

from each robot.  In other words, the robots determine which cluster(s) in one robot 

belongs to which cluster(s) in another robot. 

In order to do this, we use an interactive process in which the robots view the same 

scene and compare properties that they see.  Given a scene, each robot processes its 

sensory data to produce a set of knoxels where property memberships in relevant 

domains can be calculated.  For each pair of properties (one from each robot), the 

statistics described below are maintained in order to determine whether they represent 

similar physical properties.  Note that using this method, the robots can also determine 

whether the robots differ in the properties that they can see due to differences in 

perspectives.  This is important to determine, as shown in the first experiment conducted 

in Chapter 3. 
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4.2.1. Confusion Matrices 

The problem of finding mappings between clusters is closely related to comparing 

different clusterings, which has been dealt with in statistics and machine learning 

communities (Rand, 1971),(Fowlkes and Mallows, 1983),(Meila, 2002).  This line of 

research attempts to create measures of similarity between two clusterings.  A major 

representation used in the creation of some metrics is the confusion matrix, which is a 

matrix with k  rows (one for each cluster in the first clustering) and 'k  columns (one for 

each cluster in the second clustering).  Each entry contains the number of points that 

belong to the cluster represented by the row (in the first clustering) and that belong to the 

cluster represented by the column (in the second clustering).  In other words, it is the 

intersection of the clusters 
k

C  and 
k

C ′ .  For the problem of comparing clusterings, the 

confusion matrix is used to calculate some metrics for comparing different clusterings. 

In our case, we seek to map individual clusters to each other, and not to determine 

overall similarity between the clusterings of the entire space.  Hence, instead of 

calculating such a comparison, we utilize the confusion matrix to determine pairs of 

properties that may potentially represent the same physical property.  Suppose that there 

are two clusterings A

i
G  and B

jG  defining regions corresponding to properties A

i
p  and 

B

jp  for robot A and B, respectively.  Also, each clustering for robot A and B has B

jn  and 

B

jn  clusters, respectively.  Finally, suppose that we have a set of instances 
A

I  and 
B

I  

from each robot (obtained using its own sensing) with a sufficiently high membership 

defined by a threshold for property A

ip .  Specifically, the property confusion matrix 

BAPC ,  is calculated as: 
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This matrix is very similar to the concept matrix used to represent concepts (described 

in subsection 3.5), except that it represents properties from different spaces along the 

rows and across columns, and is used to infer which properties map to each other.  Again, 

the min function is used to represent the intersection of property memberships.  For each 

property of a robot, the highest values in the corresponding property’s row will be taken 

and it will be considered potentially corresponding to the respective property of the other 

robot.  This is only true if the value is above a threshold, however; otherwise, it is 

considered not to have a corresponding property in the other robot’s representation. 

Table 16 summarizes the algorithm.  Figure 45 shows the process of updating one cell in 

Figure 45 –Example demonstrating the update of one cell in the confusion matrix, based 
on one instance.  This is done for all instances, and between all properties of robot A 

that have membership above a threshold and all properties of robot B. 

Instances from robot A: 

),(
A

j

A
pis  Ap1

 Ap2
 Ap3

 Ap4
 Ap5

 

 Ai1  0.0 0.00 0.10 0.86 0.08 

Ai2
 0.00 0.09 0.49 0.00 0.04 

Ai3
 0.00 0.61 0.00 0.00 0.60 

… 

 

Instances from robot B: 

),(
B

j

B
pis  Bp1

 Bp2
 Bp3

 Bp4
 Bp5

 

Bi1  0.00 0.75 0.10 0.04 0.08 

Bi2
 0.00 0.03 0.09 0.00 0.60 

Bi3
 0.00 0.02 0.85 0.00 0.60 

… 

 

                   BAPC ,  

 Bp1
 Bp2

 Bp3
 Bp4

 Bp5
 

Ap1
 0.48 0.00 0.00 0.00 0.05 

Ap2
 0.00 0.09 0.49 0.00 0.04 

Ap3
 0.00 0.08 0.00 0.00 0.60 

Ap4
 0.10 0.29 0.00 0.09 0.16 

Ap5
 0.17 0.31 0.00 0.43 0.07 

 j = 4, k = 2, |I|=30,  
BAPC ,

)2,4(
before update is 0.261 

86.0

)75.0,86.0min(1,

)2,4(

,

)2,4(
I

PCPC BABA +=  

87.0
30

1,

)2,4( 







+= BAPC =0.29 
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the confusion matrix. 

This example uses the first five properties in the color domain shown in the previous 

chapter.  Note that the two matrices BAPC ,  and ABPC ,  may differ, since the first robot 

decides which instances to use to update a particular property based on whether its 

memberships is above a threshold.  The mappings between properties of robot A and 

properties of robot B can be inferred by taking the maximal values in each row, with an 

optional empirically-determined threshold.   

In some cases, there are other values in the same row that are relatively high.  Some of 

this can be attributed to correlations between properties on the same robot.  To see this, 

Table 15 shows the confusion matrix between all properties for the same robot (robot B).  

Besides having a maximal value in the diagonal of the matrix (since all property values 

correlate with themselves), there are additional high values.  For example, when Bp4  had 

a large membership, Bp2  did as well.  This is likely because correlations exist between the 

properties either because they are overlapping, or because of correlations in the training 

data (for example, brown apples correlates with rough texture).  In order to remove some 

Table 15 - Learned Confusion Matrix 
BBPC ,

.  Each value measure the correlation between 

pairs of properties, with higher values indicating higher correlations.  Values in the diagonal 
are all 1.0, since all properties are self-correlated.  However, other properties can have non-
zero correlation as well depending on the sensors and set of concepts used.  

 

 Bp1
 Bp2

 Bp3
 Bp4

 Bp5
 

Bp1
 1.00 0.02 0.00 0.01 0.05 

Bp2
 0.00 1.00 0.05 0.03 0.23 

Bp3
 0.00 0.07 1.00 0.00 0.04 

Bp4
 0.00 0.22 0.00 1.00 0.01 

Bp5
 0.05 0.00 0.00 0.00 1.00 
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of these correlations specific to individual robots, the two confusion matrices BAPC ,  and 

ABPC ,  can be combined by an element-wise multiplication of one by the transpose of the 

other.  Figure 46 shows an example.  The resulting matrix, after normalization so that 

each row sums to one, differentiates the mapped properties with a reduced effect of inter-

property correlations.  Table 16 summarizes the algorithm. 

Figure 46 – Example of element-wise multiplication of the confusion matrix from one 
robot and transposed confusion matrix from another robot.  This removes inter-object 

property correlations. 
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Table 16 – Algorithm for building the confusion matrix from data. 

 

Algorithm: Building the Confusion Matrix from Data 
 

Input: Properties P1, P2 (from robot 1 & 2) 

Output: Confusion Matrix CM 

 

// Establish a shared context.  This can be done using manually-picked images 

// viewing the same scene, or behaviors such as following, pointing, etc., e.g. 

// as described in (Kira & Long, 2007). 

 

For each shared context instance si 

 

    // Calculate property memberships for both robots 

    Values1 = P1(si) 

    Values2 = P2(si) 

 

    // Add them to training instances 

    Instances.add(si, Values1, Values2) 

End 

 

For each property p1 in P1 

  For each property p1 in P2 

    // Make sure there is low uncertainty; that is a high membership for P1 

    GoodInstances = Find in Instances values where p1 is maximal 

  

     CM[P1][P2] = 0 

     For each GoodInstance gi 

       AddedValue = min ( gi.Values1(p1) , gi.Values2(p2) )  (equation 7) 

       AddedValue = AddedValue / gi.Values1(p1) 

       CM[P1][P2] = CM[P1][P2] + AddedValue 

     End 

      

     // Normalize by the number of instances 

     CM[P1][P2] = CM[P1][P2] / GoodInstances.size() 

  End 

End 

 

Return CM 

 

 



 118 

4.3. Modeling Differences in Concepts 

Once shared properties are known, the robots can use a similar methodology to create a 

model of shared concepts.  Specifically, given instances from two concepts A

ic  and B

jc , a 

concept confusion matrix CC  is calculated as follows:  

∑=
i

A

j

B

k

A

j

kj
cis

ciscis
CC

),(

)),(),,(min(
),(  kj,∀       (8) 

Again, for each concept we find the most similar ones and estimate information loss 

between the two concepts.  In this case, a concept consists of multiple cluster regions in 

different domains, and so we combine the information loss within each domain.  Note 

that this not only determines whether a concept is shared (i.e. they both have the 

representation for the concept), but by placing a threshold on the information loss it 

determines whether the concept can ever be successfully shared, assuming the current set 

of shared properties.  It can even inform the robots which properties would be useful to 

transfer, by calculating the most informative property that would lessen the information 

loss.  

4.4. Locally-Shared Context 

 In the context of machine learning and statistics literature discussed above, the 

clusterings that are being compared are always in the same space.  In other words, they 

both utilize the same data, and the data uses the same dimensions.  In our case, we are 

attempting to compare clusters between spaces, where the axes (the dimensions) may 

differ.  Hence, there is an additional correspondence problem in terms of whether an 

instance in one space corresponds to the same instance in another space.  Data gathered in 
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a random context from each robot will be difficult to analyze because of confounding 

variables such as differences in the environment or perspective.  Hence, some shared 

context must be established first.  This can be established using interaction such as 

following behaviors, etc. that are perceptually driven (assuming robots can detect each 

other, and determine things such as pose).  Instances from each robot viewing the same 

scene can also be picked manually by a user or obtained by teleoperating the robots 

accordingly.   

Figure 47 – Protocol for building models of property mappings between two robots.  This 

same overall procedure is also used for building of concept mappings. 
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Alternatively, if they share certain properties that can provide context (e.g. shared 

frame of reference or other properties such as distances to objects, etc.) then these can be 

used instead.  We call properties, such as locations in the environment, context 

properties.  The strongest sense of a shared context is a physically shared context, in 

which two robots occupy the same (or similar) positions in the environment.   

Figure 47 shows the general protocol involved.  One robot, the leader, picks a random 

sensory data instance either from memory of by moving to a location in the environment.   

If the properties detected are not of high certainty, then a new scene is picked.  Otherwise 

the leader robot sends the local context information (e.g. location) so that the follower 

robot can obtain sensory data from a similar context.  Again, this can be done using 

methods from previous work (Kira and Long, 2007), where the follower robot moves to a 

nearby location, or it can obtain instances from memory fitting the constraints if they 

exist.  The experiments in Kira and Long, 2007) did not use conceptual spaces, but the 

behaviors for achieving a shared context are nonetheless applicable.  If pairs of instances 

are chosen manually or teleoperated, this is not needed.  The two robots now have pairs 

of sensory data (and corresponding properties and concepts activated), and the confusion 

matrices can be calculated as described previously in the algorithm in Table 16 located in 

Section 3.5.  Additional analysis in the form of information-theoretic metrics (Variation 

of Information or VI) can also be performed.  This is covered in Chapter 6. 

4.5. Experimental Evaluation: Building Property Mappings       

We now describe experiments validating that robots can indeed build confusion 

matrices representing correct property mappings between robots ((Kira, 2009a) and (Kira, 

2009b)).  Table 17 summarizes the experiment. 
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4.5.1. Hypothesis 

The hypothesis is that robots can leverage a shared context in order to build 

accurate mappings between shared properties.  Ground truth is known since in these 

experiments properties are trained using the same real-world objects for both robots.  For 

example, the “blue” property was trained using the same blue objects in the for both 

robots.  Hence, we can use the supervised learning model in order to obtain the ground 

truth mappings.  Most of the analysis will be done on the real robot data (both real robot 

configurations 1 & 2), although we will show that the same results can be obtained in 

simulation. 

Table 17 - Experimental summary for the experiment the building of property mappings. 

 

 

Experiment 5: General Experiment Summary 

Building Property Mappings 

Purpose 
To determine whether robots can use instances from a shared 

context in order to infer property mappings between the robots. 

Experiment Type 
Simulation, Real-robot (configurations 1 & 2) 

Hypothesis 
We hypothesize that using instances from a shared context, 

robots will be able to build confusion matrices and subsequently 

infer the mapping between properties on one robot and 

properties on the other robot. 

Procedure 
1. Train properties using labeled data. 

2. Obtain instances from a shared context 

3. Build confusion matrices from these instances 

(algorithm in Table 16) 

4. Obtain property mappings by taking maximal property 

pairs for each row 

5. Compare property mappings to ground truth. 
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4.5.2. Real Robot Results (Configuration 1) 

4.5.2.1. Procedure 

In order to conduct experiments with regard to building property mappings, we first 

used the learned property data from the previous experiments for this configuration 

(Section 3.9).  In all of these experiments, we used an RGB color space for robot A and 

HSV color space for robot B.  75 test images were used for learning the confusion 

matrices.  For each training instance, images viewing the same object were paired and 

 

 Bp1
 Bp2

 Bp3
 Bp4

 Bp5
 

Ap1
 0.48 0.00 0.00 0.00 0.05 

Ap2
 0.00 0.09 0.49 0.00 0.04 

Ap3
 0.00 0.08 0.00 0.00 0.60 

Ap4
 0.10 0.29 0.00 0.09 0.16 

Ap5
 0.17 0.31 0.00 0.43 0.07 

 

  

 Ap1
 Ap2

 Ap3
 Ap4

 Ap5
 

Bp1
 0.61 0.00 0.00 0.29 0.14 

Bp2
 0.08 0.07 0.29 0.47 0.14 

Bp3
 0.00 0.76 0.00 0.00 0.00 

Bp4
 0.02 0.00 0.00 0.14 0.64 

Bp5
 0.05 0.06 0.54 0.34 0.00 

  

 

 Bp1
 Bp2

 Bp3
 Bp4

 Bp5
 

Bp1
 1.00 0.02 0.00 0.01 0.05 

Bp2
 0.00 1.00 0.05 0.03 0.23 

Bp3
 0.00 0.07 1.00 0.00 0.04 

Bp4
 0.00 0.22 0.00 1.00 0.01 

Bp5
 0.05 0.00 0.00 0.00 1.00 

 

 

 Bp1
 Bp2

 Bp3
 Bp4

 Bp5
 

Ap1
 1.00 0.00 0.00 0.00 0.00 

Ap2
 0.00 0.03 0.97 0.00 0.00 

Ap3
 0.00 0.06 0.00 0.00 0.94 

Ap4
 0.13 0.60 0.00 0.04 0.22 

Ap5
 0.09 0.12 0.00 0.79 0.00 

   

Figure 48 – Upper Left: Learned Confusion Matrix 
BAPC ,

 from robot A’s perspective.  Upper Right: 

Learned Confusion Matrix 
ABPC ,

 from robot B’s perspective.  Lower Left: Learned Confusion 

Matrix 
BBPC ,

.  These confusion matrices represent correlations between properties from respective 

robots.  Bold values are maximal values in the rows, while highlighted cells represent ground truth.  
All mappings were correctly obtained.  The matrix on the lower right is the normalized combined 

confusion matrix.  This matrix combines 
BAPC ,

 and 
ABPC ,

and shows the result after normalization. 
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given as instances from a shared context.  Given this data, the algorithm in Table 16 was 

performed.  Specifically, the property memberships for both robots were calculated, and 

values in the confusion matrix corresponding to properties that were maximally high in 

each instance were used to update the cell. 

4.5.2.2. Results 

Figure 48 (upper left) shows the confusion matrix from robot A’s perspective and 

Figure 48 (upper right) shows it from robot B’s perspective.  For intuition, each value 

BA

kjPC
,

),(
 in the matrix is modified for each instance in which property j has the largest 

membership according to robot A’s property models.  The amount that it is updated by 

depends on the property membership ascribed to an instance in the same context by robot 

B (see equation 7 and Figure 27 for an example).  Note that the two matrices may differ 

(as they do in this case), since the first robot decides which instances to use to update a 

particular property based on whether its memberships are the highest compared to the 

other properties.  

As discussed, the inferred mapping between properties of robot A and properties of 

robot B can be determined by taking the maximal value in each row (in bold).  In this 

case, the maximal values in both matrices (in bold) corresponded to the correct mappings 

(highlighted).  This can be verified using Table 19, which shows the ground truth 

mapping; for example, in BAPC ,  the highest value for row Ap2  is in the column corresp- 
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Table 18 – Left: Numerical representation of un-normalized confusion matrix for the five color 
properties.  Right: Numerical representation of confusion matrix for the three texture properties.  
Bold represents maximal values in rows.  Highlighted cells represent ground truth mappings.  All 
mappings were correctly obtained, as can be verified from Table 19. 
 

 

 

 

 

Table 19 – This table shows the color properties trained (e.g. “blue”) and the corresponding property 
number for each robot.  The property numbers represents the ground truth mappings between the 
robots and can be used to verify the property mappings learned by the robots.  

 

 

 

onding to Bp3 (0.49), which is correct.  In some cases, there are other values in the same 

row that are relatively high.  Some of this can be attributed to correlations between 

properties on the same robot.  For example, when Bp4  (corresponding to white) had a 

large membership, Bp2  (corresponding to gray) did as well (see Figure 48, lower left).  

This is because some gray objects were light gray and some white objects were dirty or 

not purely white.  This indicates that independent properties are preferable for cross-robot 

mapping.  If these correlations are segregated by combining both of the robot’s learned 

confusion matrices, the resulting matrix differentiates the mapped properties more 

profoundly.  This can be seen in Figure 48 (lower right).  Similar results were obtained 

 Ap1
 Ap2

 Ap3
 

Bp1
 0.03 0.00 0.35 

Bp2
 0.41 0.09 0.03 

Bp3
 0.19 0.24 0.00 

 Ap1
 Ap2

 Ap3
 Ap4

 Ap5
 

Bp1
 0.29 0.00 0.00 0.00 0.00 

Bp2
 0.00 0.01 0.37 0.00 0.00 

Bp3
 0.00 0.02 0.00 0.00 0.32 

Bp4
 0.03 0.14 0.00 0.01 0.05 

Bp5
 0.03 0.04 0.00 0.27 0.00 
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Bp5  
Bp2  

Bp4  
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for texture properties, where all of the correct mappings were inferred (again, this can be 

verified by comparing the maximal values in the matrix on the right in Figure 49 to the 

ground truth mapping in Table 19).  Figure 49 shows the gray-scale representation for the 

color and texture mappings (in this case they were separated), and Table 18 shows the 

numerical values.  Again, the mappings were determined with 100% accuracy.    

4.5.3.  Real Robot Results (Configuration 2) 

We now describe results for determining the property mappings between the robots (Kira, 

2010).  Recall that in this configuration, color, texture, size, and shape properties were 

used.  Color properties represented median RGB or HSV values for the object, while 

texture was represented using the mean and standard deviation of the output of a single 

empirically-derived Gabor filter over the entire object.  Size and shape, which were only 

detected by the Pioneer robot, were determined using the lidar sensor.  In order to learn 

the mappings, the confusion matrix was created using all test instances of the thirty-four  

Figure 49 – Gray-scale representation of property mappings.  Highlighted values indicate 

ground truth mappings. 
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Figure 50 – Left: Gray-scale representation of the property mappings, where the rows correspond to 
properties of the Amigobot robot and columns correspond to properties of the Pioneer robot.  Note 

that the latter robot has four more properties, utilizing its SICK range finder.  By taking the 
maximal values of each row, eight of ten properties are mapped correctly (ground  truth is the 

diagonal, highlighted).  Right: This graph shows the number of correctly mapped properties between 
the robots as the number of instances grows (learning curve).  For each point, the corresponding 

number of instances are used to build the confusion matrix, maximal values for each row are 
determined, and the mappings are compared to ground truth.  The end of the graph is significantly 

different than the first point (p<0.0001) demonstrating significant learning. 

objects.  Hence, the shared context in this case was manually guaranteed (i.e. images 

from each robot sensing the same object were chosen).  For each instance, each robot 

picked properties that were high for that instance, and added to the average the ratio of 

the other robot's property membership to its own.   

Figure 50 (left) shows a gray-scale representation of the learned confusion matrix, 

where lighter values correspond to higher values (i.e. more highly correlated properties).  

The diagonal represents the ground truth mappings (since we trained the properties in the 

same order) and are highlighted.  Note that there are fewer rows than columns since four 

of the properties do not exist on the second robot (heterogeneity type 2d).   By taking the 

maximal values in each row, eight of ten properties were mapped correctly.  

In this case, the texture properties were highly correlated across all objects, meaning 

that the properties were not independent.  Again, this shows that such dependencies can  
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Figure 51 – Left: This graph shows the number of correctly mapped properties between the robots as 
the number of instances grows, using instances from the teleoperated robots.  Right: This graph 
overlays the graph when using manually chosen images (thin blue line) with the graph on the left 
(bold blue line), showing that similar trends are obtained.

 
cause errors in the property mappings, an important fact for future work when we will 

work on unsupervised learning of the properties since some unsupervised algorithms do 

not guarantee this.  Figure 51 (right) shows the number of correct mappings, averaged 

across ten randomized validation runs, as the number of testing instances increases.  As 

can be seen, there is an initial steep learning curve where the first five or six properties 

are correctly mapped.  The rest of the properties are more difficult to map and take 

additional instances, likely due to cross-property correlations in objects.  We also tested 

this with sixty four instances where the two robots were teleoperated to view the same 

object.  Figure 51 (left) shows the graph when using those instances.  As can be seen, the 

color properties that were not correlated in the same object (unlike the texture properties) 

were quickly learned.  After all of the instances were processed, five of ten property 

mappings were correct (when compared to the known ground truth), showing similar 

results as the graph where images were manually chosen (Figure 50, right).  Figure 51 

(right) combines the two graphs to show that similar trends are obtained in both 

situations.  This shows that, assuming the robots can localize or detect each other, these 
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mappings could be learned autonomously once behaviors for following or pointing from 

our previous work performed in simulation are applied to the real robots (Kira and Long, 

2007).     

4.5.4. Simulation Experiments 

 We now demonstrate that the same mappings can be learned in simulation.  In 

these experiments, manual selection of image pairs (one from each robot) containing the 

same object was performed.  However, since one robot was on the ground while the other 

was in the air, the perspectives were different. Figure 52 shows the resulting matrix in 

gray-scale image format. The ground truth mappings are highlighted and can be verified 

from Table 8.  The maximal values of each row correspond to the correct mapping, 

although there is an ambiguity between the first property of the ground robot (“brown”) 

and the fifth texture property of the aerial robot. This can be resolved in this case since it 

is less than the maximal property in the same row, but future work will look into 

Figure 52 – Simulation results.  Left: Property mappings in the form of a confusion matrix.  
Bold cells represent the maximal values along the rows.  These also correspond to the 

ground-truth mappings, which are highlighted, showing that all correct mappings were 
found.  Right: Gray-scale representation of property mappings between the ground and 

aerial robots, where larger values are lighter.  Highlighted cells represent the ground truth 

mappings and also correspond to maximal values..  
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mechanisms for disambiguating such potential false positives. Table 20 summarizes the 

hypothesis and conclusions of this experiment. 

Table 20 - Experimental conclusions for the experiment the building of property mappings. 

4.6. Summary 

In this chapter, we have shown that two robots can use instances from a shared context 

in order to infer mappings between their respective properties.  This was done using 

confusion matrices, which measured the correlation between property memberships for 

all property pairs.  Maximal values in the rows of the confusion matrix could then be 

used to infer property mappings.  We hypothesized that a shared context would enable 

this, and the hypothesis was confirmed using simulation experiments (Section 4.5.4) as 

well as two different real-robot experiments (Section 4.5.2 and Section 4.5.3).  Given that 

robots can use property abstractions to successfully learn concepts (shown in Chapter 3) 

and that robots can map properties between each other (shown in this chapter), we now 

move on to demonstrate knowledge transfer given these property mappings.  This is done 

in the next chapter. 

Experiment 5: General Experiment Conclusions 

Building Property Mappings 

Hypothesis 
We hypothesize that using instances from a shared context, 

robots will be able to build confusion matrices and subsequently 

infer the mapping between properties on one robot and 

properties on the other robot. 

Conclusions 
Hypothesis is confirmed.  Property mappings were learned with 

a high degree of accuracy (100% accurately for simulation 

experiment and robot configuration 1, and 80% accuracy for 

robot configuration 2) using instances from a shared contex. 
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CHAPTER 5  

CONCEPT TRANSFER USING PROPERTY MAPPINGS 

The preceding chapter required the two robots to be in the environment in order to build 

models that map shared properties and concepts.  This was done in order to find out what 

a priori differences and similarities exist.  We now describe various scenarios in which 

these models can be used, starting with the clear application of knowledge exchange in 

the form of one robot communicating an entire concept to another robot.  Using the 

methods described previously, it can be detected whether a concept in one robot exists in 

the other robot’s representation within an acceptable amount of information loss.  If this 

is not the case, then the entire concept’s representation can be communicated and 

assigned a new label by the receiving robot.  It may be that the reason the concept does 

not exist in the second robot is that it does not have the proper dimensions or properties 

to describe the concept accurately; in this case, the process of transferring the concept 

will fail as well.  However, it may be that the second robot simply did not encounter the 

concept but has sufficient capabilities to describe it, in which case the process would 

succeed. 

5.1. Perceptual Heterogeneity: The Space of Possibilities 

The richness of communication between two robots can vary depending on whether the 

two robots share similar dimensions, properties, and concepts.  Table 21 shows a table 

enumerating all of the possible configurations.  The first two situations involve two 

robots that do not share any similar properties.  In other words, BA

cP ,  is the null set and 
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additionally there are no shared context properties.  In this case, regardless of whether the 

robots utilize a common representation, structured knowledge sharing (i.e. sharing 

concepts directly and their hierarchies) is not possible.  Supervised learning, however, 

may be possible where one robot provides a label to the other.  This is only true if they 

share some similar dimensions, whereby one robot can send its values to the other with a 

label, or they have various behavioral methods for achieving a locally shared context, 

such as those described in (Kira & Long, 2007).  The receiving robot can then learn 

concept models using its own properties from this labeled data.  This boils down to the 

second robot performing supervised learning of concepts from scratch.  In general, it is 

unlikely that dimensions will be directly transferable though, as even sensors of the same 

models can produce dimension heterogeneity. 

Table 21 – Types of Heterogeneity and Communication Possible 

Type of Knowledge Alignment  
Methods Possible 

Similar 
Dimensions? 

Similar 
context 
properties? 

Similar concept 
properties? 

Entire Concept Context Structure 

No No No    

Yes No No    

No Yes No    

Yes Yes No    

No No Yes    
Yes No Yes    
No Yes Yes    
Yes Yes Yes    

In most cases, there will be at least some properties in common.  For example, even if 

visual properties are not shared, position information such as odometry may be.  If only 

odometry is shared, then robots can establish a physically shared context and use 

supervised learning to train properties and symbols.  This makes sense with respect to our 

notion of context, in that the only properties in common in this case are those that can be 
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used to define a context (location properties).  In general, if properties that can be 

successfully used to ensure a shared context are similar between the two robots (but the 

actual perceptual properties used to describe the concept are not), this type of alignment  

Figure 53 - Flow chart for alignment of a symbol (representing a concept). 

can be used.  This is similar to supervised learning of concepts in the previous situation 

(when no properties are in common) except that such learning can be done when no 

dimensions are shared since each robot obtains data from its own sensors (that satisfy the 

shared context).   
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In any case, since the perceptual features used to describe objects are not shared, 

structured knowledge sharing is again not possible. 

5.2.  Ontology Alignment with Shared Properties 

The richest form of communication is possible when underlying concept properties are 

shared.  Entire concept matrices can then be transferred directly.  The flow chart for 

mapping or sharing a symbol (representing a concept), is shown in Figure 53. 

The algorithm takes in all of the knowledge representations and similarity models 

described previously, as well as a symbol s that robot A has in its knowledge base.  The 

algorithm first checks if the ontology mapping model has information on the symbol, and 

if the similarity is greater than a threshold.  This indicates that the mapping between 

symbol s and another symbol s’ in robot B’s knowledge base has already occurred.  If 

this is not true, the actual alignment process begins. 

First, a list of shared properties used in the representation of the concept is found.  This 

is done using the property mapping model (as discussed in Chapter 4).  The algorithm 

then inputs this to a reorganization or knowledge adaptation function that zeroes out 

entries in the concept matrix associated with unshared properties.  In the case dealt with 

in this subsection, in which a sufficient number of properties used in the shared concept’s 

representation, the function returns the same or slightly modified representation.  This 

function only returns successfully if the loss of information, as measured by variation of 

information, is sufficiently small.  If this is the case, it is then a simple matter of 

transferring this representation to robot B, assigning it the same symbol name, and 

updating the concept mapping model to reflect this new mapping.  If the adaptation 

function returns unsuccessfully, then again the robots must fall back on sharing instances 
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with a shared context and utilizing supervised learning where robot B attempts to learn to 

identify the symbol with its own dimensions and properties.  This is different than the 

instance-sharing in the paragraph above, since if the properties used in the representation 

of the communicated concept are shared, then a shared context is not necessary; all robot 

A has to do is send its own representation to robot B.  Note that this is only possible if 

physical interaction is possible. 

No matter how a concept is shared, whether via direct transfer or by one robot 

providing a supervisory signal, it is important to note that the knowledge transfer may fail.  

In the case of direct knowledge transfer, the models describing which properties are 

shared may be noisy or contain errors, and in the case of providing a supervisory symbol 

it may be that the receiving robot does not have the capability to represent the concept 

correctly.  Hence, it is important to verify that the transferred concept can indeed be 

detected by the receiving robot, and that the information loss is not unacceptable.  This 

can be done using the protocols and algorithms described in Chapter 4 (specifically 4.2.1 

and algorithm in Table 16), whereby confusion matrices are created, and Chapter 6 where 

variation of information is measured.   

5.3. Sources of Error in Concept Transfer 
 

We have argued for the importance of being able to estimate the effectiveness of 

knowledge transfer a priori.  The goal is to utilize the models of differences and 

similarities learned between robots in the previous chapter.  In order to do this, we must 

first analyze common sources of error when transferring concepts from one robot to the 

other.   
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One source stems from heterogeneity type 2d and 3d; that is, properties may simply be 

missing on one robot when compared to another robot (see Section 3.6).  However, some 

properties are more important to representing a concept than others, usually due to 

different modalities being more important.  For example, to a human, sound properties 

may not be as useful to classify a fruit while taste will be.  This can take into account not 

only the inherent importance of a modality or property to an object, but also the 

availability of the modality.  For example, in our case smaller objects that reside below or 

above the SICK lasers have no observed size or shape properties because the objects are 

simply not in the robot’s point of view. 

Since the confusion matrices described in the previous chapter encode precisely which 

properties are shared, these models can be used to estimate how effective knowledge 

transfer will be.  Using test data containing known concept labels, the transferring robot 

can calculate how well a concept can be classified using the exact properties the receiving 

robot shares with it.  Using the conceptual spaces representation, this is an easy process 

that can be done by zeroing out the appropriate rows and columns of the concept matrix, 

as was shown previously (Section 5.4).   

A second source of error in transfer lies in heterogeneity types 2b and 3b, where 

properties are shared but not completely overlapping (see Section 3.6).  In this case, it is 

more difficult for the sending robot to estimate the resulting performance on the receiving 

robot using a test set.  However, in Chapter 6 we introduce an information-theoretic 

metric that will allow the characterization of the amount of overlap between properties.  

The robots will then be able to estimate information loss using this metric. 
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Note that in general, these methods only produce estimates of post-transfer 

performance.  There can be additional sources of error such as random noise (for example, 

in the property memberships), poor recall rates of the properties, effects due to 

combinations of properties working in concert, etc.  One strength shared by the 

conceptual spaces and this approach, though, is that if the receiving robot has additional 

properties, knowledge transfer will not negatively impact classification with respect to 

those properties.  In other words, since the entries in the concept matrix for these 

additional properties will be zeroed out (because the properties are not shared), 

classification will not be affected.  As we will show, however, the receiving robot can 

continue learning if it encounters the concept and learns the values for these unshared 

properties.  Learning will be bootstrapped as much as possible by the shared properties 

by transferring shared properties, and learning can then continue on the receiving robot to 

additionally learn correlations between properties that it had but the other robot did not. 

 
5.4. Transferring Concepts in Conceptual Spaces 

We will now describe how concepts can be transferred from one robot to the other.  

Table 22 shows pseudocode for the overall algorithm.  Suppose that robot A will attempt 

to transfer concept c to robot B.  Let A

cP  be all of the properties involved in the concept, 

as defined previously in Section 3.3, Equation 2.  Let 
B

P  be all properties that robot B 

has.  We define BA

c

BA

c PPP ∩=,  as the intersection of these sets, with two properties A

ip  

and B

jp  being equal if 
BA

jiPC
,

, , i.e. their confusion matrix value is smaller than a 

threshold (that is empirically determined).  We then perform knowledge adaptation, 

where the connection matrix associated with concept c is transformed based on robot B’s 
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Figure 54 –Example demonstrating the transfer of a concept, using the property mapping model to 
remove unshared properties. 

capabilities by zeroing out all values in row i and all values in column j for each property 

BA

c

B

i Pp ,∉ .   

 

Figure 54 shows an example.  Upon receiving the concept matrix, robot B also 

substitutes its own property labels for each of robot A’s property labels, based on the 

model mapping each robot’s properties to each other.  An interesting alternative to 

zeroing out values for non-shared properties is to create new labels and property numbers 

for robot B, tagging it with an attribute that specifies that it cannot be sensed by the robot, 

and leave the values in the matrix.  This allows another form of knowledge transfer: the 

augmentation of new properties for a robot that it cannot actually sense.  Using the values 

in the transmitted concept matrices, however, it will be able to assign a likelihood for the 

value of this property despite not being able to sense it.  For example, it can infer that 

since an instance of an apple is brown, it is highly likely that it is wrinkled.  In this 

           
 Ap

6
 Ap7

 A
p8

 Ap10
 Ap9

 Ap10
 

     Property Mapping Model 
Ap6  Ap7  Ap8  Ap1  Ap9  Ap10  

‘p_A_6423’ ‘p_A_1826’ ‘p_A_1756’ ‘p_A_1289’   

Bp8  
Bp7  

Bp6  
Bp9  X X 

‘p_B_7831’ ‘p_B_1756’ ‘p_B_1876’ ‘p_B_8752’   

 

Bp8
 Bp7

 Bp6
 Bp1

 X X 



 138 

dissertation we have not explored such augmentation, but it remains an interesting 

capability to explore for future work. 

Table 22 - Algorithm for transferring a concept from one robot to the other and reorganizing the 
concept matrix based on shared and unshared properties. 

 

Algorithm: Concept Transfer from Robot A to Robot B 

Input: Properties AP , Properties BP , PropertyMapping PM, Concept matrix AC  

Output: Concept matrix BC  

 

// Note: PropertyMapping PM consists of an array where PM[ p ] 

// contains the index to the property 'p on robot A that maps to  

// property p on robot B.  These mappings are obtained using the  

// methods in Chapter 4. 

 
BC  = Matrix of size 

BB
PP ×  initialized with zeros 

For each property P1 in BP  

  For each property P2 in BP  

     // Both properties P1 and P2 map to existing properties on robot A 

     If ( PM[P1] > 0 & PM[P2] > 0 ) 

         // Find corresponding cell value based on property mapping 

        BC [P1][P2] = AC [ PM[P1] ][ PM[P2] ] 

     Else 

       // One of the property pairs do not correspond to a property on Robot A, do  

       // nothing 

     Endif 

  End 

End 

 

Return BC  

5.5.  Experimental Evaluation Overview 

Thus far, we have described a framework for ontology alignment between two robots.  A 

key factor of the process is that it takes into account the levels at which two robots differ, 

which determines the amount and type of knowledge sharing possible.  To evaluate the 

system, we wish to show that the model of differences learned previously and the 

alignment process described here can allow effective knowledge sharing.  First, we 
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provide evidence for our hypothesis that property abstractions aid knowledge transfer 

when the underlying representations for the properties differ.  We then show that concept 

transfer using conceptual spaces is effective and results in better overall performance 

throughout the robot’s learning process.  We also analyze different situations in which 

different subsets of properties are shared between the robots to demonstrate the 

estimation of performance on the receiving robot after transfer.  Most of the analysis will 

be done on the real robot data, although we will show that similar results can be obtained 

in simulation.  

5.6. Experimental Results: The Importance of Property Abstractions for Transfer 

 We will begin our experiments by demonstrating that the property abstractions aid 

transfer, in addition to learning (which was shown in Section 3.8.4) (Kira, 2010).   

5.6.1. Hypothesis 

 We hypothesize that property abstractions do indeed aid transfer in the case of 

different representations.  Specifically, we hypothesize that transfer learning in this case 

will remain as effective when using properties but not when using raw sensory data. 

5.6.2. Procedure 

These experiments use the same robots from configuration 2 and the procedure is the 

same as well (Section 3.10).  Specifically, a Mobile Robots Amigobot with a wireless 

camera and a Pioneer 2DX robot with a Quickcam Express web camera were used.  

Properties were learned using algorithms in Section 3.5 (specifically the algorithm in 

Table 5).  These learned properties were then combined to learn object models.  For the 
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condition using properties, each training instance was used to calculate the property 

memberships and these served as the input to the classifier.  Again, we used support 

vector machines to classify objects.  The input to the classifier was either the raw median 

RGB values or the property memberships, depending on the condition.  Recall that two 

conditions were used in the experiment.  In the first condition, the property memberships 

for the previously learned properties were used as attributes.  In the second condition, raw 

sensory data itself (e.g. RGB values or the curvature metric) were used as attributes for 

training.  In this section, unlike before, we also used a third condition where raw sensory 

data was used, but the robots used different representations for color.  Namely one robot 

used an RGB color space while the other used an HSV color space.   

In order to gauge classification rates, both recall and precision are plotted as the 

number of training instances increases.  These are standard classification metrics, where 

recall measures the number of true positives divided by the number of positives in the test 

set, while precision measures the number of true positives divided by the number of test 

set instances that were classified to be positive.  The learning curves for both of these 

metrics were then plotted, showing the recall and precision rates as the number of 

training instances increased. 

5.6.3. Results 

Figure 55 shows the recall and precision results when comparing the first two 

experimental conditions when the Amigobot is receiving learned representations from the 

Pioneer.  As described in Section 3.10, the recall rate measures the number of true pos- 
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(a) Recall learning curve for the Amigobot.       (b) Precision learning curve for the Amigobot. 
The areas under the curve were 0.86 when using        The areas under the curve were 0.72 when using 
properties and 0.84 when using raw values.                 properties and 0.61 when using raw values. 

 

 
 
(c)  Recall learning curve for the Pioneer.  The          (d) Precision learning curve for the Pioneer.   
areas under the curve were 0.86 when using              The areas under the curve were 0.80 when using 
properties and 0.78 when using raw values.               properties and 0.59 when using raw values. 

 
 

Figure 55 – Results demonstrating the advantage of using abstracted properties as opposed to raw 
sensory data when learing.  The figures on the left show precision, while the figures on the right show 

recall.  The figures on the top show results for the Amigobot robot, while the figures on the bottom 
show results for the Pioneer 2DX robot. 
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itives divided by the number of positives in the test set, while precision measures the 

number of true positives divided by the number of test set instances that were classified 

to be positive.  These numbers are proportions and can be represented as percentages.  

The graphs compare results without transfer (“Own Learning”), transfer (“Transfer”), and 

continued learning by the receiving robot after transfer (“Transfer + Learning”).  The 

“Transfer” curve shows how the concepts transfer as the expert robot learns on more 

instances.  In other words, for each point in the curve (say x=10, i.e., ten instances), the 

expert trains on ten instances per concept and then transfers all the concepts to the 

receiving robot.  The recall and precision rates on the receiving robot’s test set (using the 

transferred representation only) is then calculated.  This represents one point on the 

curve.  For the “Transfer + Learning” curve, transfer occurs for all concepts after the 

expert robot trained on all of its training instances.  The receiving robot then takes the 

transferred representation, continues to learn, and again tests the recall and precision rates 

on a test set.  In that case, a point on the curve (say x=10, i.e. ten instances) means that 

the receiving robot took the transferred representation, continued adapting it using ten of 

its own training instances, and then tested its accuracy. 

 The blue curve shows results for classification using property memberships while the 

red curve shows classification using raw sensory data.  As can be seen, transfer learning 

results in the bootstrapping of both recall and especially precision.  This can be seen by 

the fact that the “Transfer + Learning” begins and continues higher than the “Own 

Learning” curve.  In fact, the receiving Amigobot robot immediately classifies objects at 

an average recall rate of 74.0% and precision of 73.7%, without having been trained on 

any instances itself.  The rates are significantly better than a classifier performing at 
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chance rates (50%) and outperform rates achieved by the robot after five instances when 

the robot learns by itself (recall of 53.8% and precision of 37.2%).  In other words, 

transfer learning improves upon learning with five instances by 37.5% for recall and 

98.1% for precision.  This is true despite the fact that the robot did not perform any 

training by itself.  These results are the first demonstration in this dissertation of the clear 

advantage of knowledge transfer between robots.   

In the results above, the classification accuracy immediately after transfer was 

significantly better than chance and better than classification rates when the robot learns 

by itself after only five instances.  This occurred not only for learning using properties, 

but was even more pronounced when learning with raw values (a more difficult task).  

Specifically immediate rates after transfer were 93.8% for recall and 70.6% for precision, 

compared to when the robot learns by itself after five instances where the recall was 

50.0% and precision was 27.8%.  These numbers represent an 87.6% improvement in 

recall and 154.0% improvement in precision.  This shows that as learning becomes more 

difficult, transfer learning becomes even more advantageous. This is because lower rates 

are achieved by the robot when learning by itself (for harder learning tasks), but transfer 

learning is still effective. 

 Note that the transfer graph in Figure 55 represents the transferred SVM classifier 

being directly tested on testing data from the receiving robot.  To perform continued 

learning after receiving classifiers from another robot, we instead use the support vectors 

from the transferred SVM classifier as input instances to a new classifier.  This 

sometimes led to a slight performance change (e.g. an increase of 2.84% for recall and 

5.26% for precision when using properties, and a decrease of 5.11% for recall and 3.53% 
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for precision when using raw sensory data).  Subsequently, additional training instances 

were added as input to the classifier (plotted as “Transfer + Learning”). As can be seen 

from the “Transfer + Learning” curves, the Amigobot robot could achieve higher recall 

and precision (74.0% and 73.7%, respectively), even without having seen any instances 

by itself, compared with rates after training by itself with only five instances (e.g. 53.8% 

and 37.2%, respectively). 

 As the receiving robot began to receive additional training instances, it could combine 

the received classifier with these instances and eventually achieve similar rates than when 

learning by itself from scratch (recall of 92.1% and precision of 80.3% after all instances 

in the “Transfer+Learning” condition, compared to 92.7% recall and 79.6% precision 

after all instances in the “Own Learning” condition).  This shows that combining learned 

knowledge with received knowledge did not pose a problem in this case.  The same trends 

exist for the learning curves of the Pioneer robot (recall of 96.3% and precision of 86.1%  

after all instances in the “Transfer+Learning” condition, compared to 94.8% recall and 

86.3% precision after all instances in the “Own Learning” condition). 

One aspect of knowledge transfer between robots is that certain concepts may be 

transferred more effectively than others.   This was seen in our first experiment using 

SIFT vocabulary trees (Section 3.1), where catastrophic failures occurred for some 

objects.  Figure 56 shows a bar graph of the difference between using transfer learning  

(and no continued learning) over learning by the receiving robot itself after only five 

instances.  In other words, for each object, we subtracted the recall and precision rates 

when the robot learned by itself for five instances from the recall and precision rates after 
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transfer learning.  The differences are shown for all thirty-four objects.  Positive values 

indicate an improvement in the rates when using transfer learning over self-learning with 

five instances.  As can be seen, the large majority of objects had positive improvement, 

and only a few objects had negative degradations in recall (all decreases were less than 

20%) and only one object had a negative degradation in precision (a difference of less 

than 10%).  In one sense, this is an unfair comparison, as transfer is compared to learning 

after five instances.  Transfer is an improvement across the board with no training 

instances at all, as the results without transfer would correspond to random chance. 

 The results shown thus far depict results when both robots use the same underlying 

color space (RGB) for the color properties.  In that case, transfer learning was successful 

both when using properties or raw sensory data as discussed above.  This is a bit of a 

surprise, as raw RGB values do differ between the two robots for the properties.  

Figure 56 – Bar graph showing recall (left) and precision (right) improvements when using 
knowledge transfer compared to learning after only five instances.  Positive values indicates an 
improvement when using transfer learning.  62% of objects (21/34) received an improvement in 

recall and the for the rest the rates were never worse than a 20% decrease.    97% (33/34) of 

objects received an improvement in precision. 
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However, it seems that the discriminative learning (support vector machines) is powerful 

enough to overcome these differences in distributions by normalizing the attributes.   

We now test our hypothesis that knowledge transfer using properties will continue to be 

successful even when the properties themselves are represented using different spaces on 

each robot.  In this case, the Amigobot robot used the HSV color space to represent the 

same color properties.  Other properties, such as texture, remained the same as before 

(and the same as the other robot).  Figure 57 shows the results when using the abstraction 

of data via properties.  Despite the fact that the robots used different underlying metric 

spaces, transfer learning was still successful.  The advantage is less pronounced for recall 

in the transfer case when the two robots used different representations compared to when 

both robots used RGB, but overall transfer learning allowed the receiving robot to 

classify instances well, especially in terms of precision. 

Figure 57 – Results demonstrating the success of transfer learning when using properties, 
even when the underlying representations used by the robots differ (one uses an RGB color 

space while the other uses HSV).  This data shows classification by the Amigobot robot.  

The “Transfer + Learning” are higher than the “Own Learning” condition ( 
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Figure 58 – Results demonstrating the success of transfer learning when using properties, even when 
the underlying representations used by the robots differ (one uses an RGB color space while the 

other uses HSV).  This data shows classification by the Amigobot robot. 

  Figure 58 show the classification results in Figure 57 (in blue), when compared to 

using raw sensory values (red).  The results are shown for both robots.  As can be seen, 

transfer learning when using properties to learn continued the same trend as before, with 

gains after transfer over self-learning after five instances even when the receiving robot 

had not seen any learning instances itself (recall of 72.2% and precision of 72.8% 

immediately after transfer, compared to 79.3% recall and 59.0% precision after five 

instances in the “Own Learning” condition).  In this case the recall immediately after 

transfer is lower compared to learning with five instances but the overall area under the 

learning curves is still higher for transfer learning as we will see below (Figure 60). 
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 Transfer when using raw sensory data, however, did not result in the same gains and in 

some cases led to reduced overall effectiveness in learning.  In order to quantitatively 

demonstrate the failure of transfer learning when using raw sensory data, we plotted the 

percentage difference in the area under the recall and precision learning curves when 

transfer learning is used relative to when self-learning is performed.  Figure 59 shows the 

graph for the Amigobot robot.  Positive values indicate an improvement over learning by 

one self while negative values indicate that transfer learning actually causes worse overall 

learning.   

When property values are used, both recall and precision are improved over self-

learning.  This is true both when the same representation is used (8.33% precision 

 
 

Figure 59 – Graph of percent improvement by transfer learning for Amigobot over self-
learning in the area under the learning curves for both robots, recall and precision, and two 

conditions (same and different representations).  When the robots used the same 
representation, transfer learning when using both property abstractions and raw sensory 
data yielded a net positive improvement.  When using different representations, however, 

transfer learning with raw sensory data resulted in lower overall performance.  This 

confirms our hypothesis that the property abstractions can aid knowledge transfer. 
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improvement and 4.48% recall improvement) as well as when different representations 

are used by the two robots (6.64% precision improvement and 2.89% recall 

improvement).  When using raw values, however, transfer learning is effective  when the 

representations are the same (17.37% precision improvement and 9.11% recall 

improvement) but actually causes worse learning performance when different 

representations are used (38.78% decrease in precision rates and 34.10% decrease in 

recall rates).  Even when the receiving robot continues to learn by itself (the “Transfer + 

Learning” curve), it fails to catch up to self-learning until a significant number of training 

instances are used.  This is likely because the detrimental classifier received from the 

other robot must be overcome via training by the receiving robot.  In this case, when 

using raw sensory values, it would likely have been better if the Amigobot had not 

received anything from the other robot.  As shown quantitatively, transfer when using 

properties, however, remained as effective as before.  This confirms the hypothesis that 

property abstractions can provide a buffer against underlying sensory differences and 

allows transfer learning to retain its advantages.  

In this case, the results for the Pioneer robot differed.  Figure 60 shows the same graph 

showing percent improvement via transfer learning over self learning.  For the Pioneer, 

transfer did not cause a decrease in performance as for the Amigobot when using raw 

sensory data and different representations (there was an 8.22% precision improvement 

and 6.57% recall improvement).  However, the transfer was still less effective than when 

properties were used (26.13% precision improvement and 15.12% recall improvement).  

Table 23 summarizes this experiment. 
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Figure 60 – Graph of percent improvement by transfer learning for Pioneer over self-learning in the 
area under the learning curves for both robots, recall and precision, and two conditions (same and 
different representations).  When the robots used the same representation, transfer learning when 
using both property abstractions and raw sensory data yielded a net positive improvement.  When 

using different representations, however, transfer learning with raw sensory data resulted in smaller 
gains. 

5.6.4. Discussion 

These results confirm our hypothesis that the abstraction of data into properties aids 

transfer, and is especially more effective than raw values when the robots utilize differing 

representations.  We have now shown the value of abstracting raw sensory data both for 

learning (shown in experimental Section 3.10) and knowledge transfer (shown in this 

section).  The abstraction of raw sensory data into higher level object properties such as 

color, texture, shape, and size serves as a buffer for lower-level differences in the robots.  

As a result, the knowledge that the robots learn becomes more transferable, as shown in 

the results. 
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Table 23 - - Experimental summary and conclusions for the experiment regarding the importance of 
property abstractions for knowledge transfer. 

 

 

 

 

Experiment 6: General Experiment Summary 

The Importance of Property Abstractions for Transfer 

Purpose 
To determine whether the abstraction of raw sensory data into 

property abstractions aids transfer when robots use different 

underlying representations. 

Experiment Type 
Real-robot (configuration 2) 

Hypothesis 
We hypothesize that property abstractions do indeed aid 

transfer in the case of different representations.  Specifically, 

we hypothesize that transfer learning will remain as effective 

when using properties but not when using raw sensory data. 

Procedure 
1. Train properties using labeled data. 

2. Train two classifiers for concepts using labeled data 

A. The input attributes to the classifier is raw 

sensory data 

B. .The input attributes to the classifier is 

property memberships. 

3. Train two classifiers for concepts using labeled data. 

4. Measure improvement of transfer learning over self-

learning by measuring the area under the learning 

curve for each condition. 

 

Independent 
Variable 

Input attributes to the classifier (raw sensory data vs. property 

memberships), Types of color space representations used 

(same representation vs. different representations). 

Dependent Variable 
Accuracy of concept classification as measured by recall, 

precision, and areas under the resulting learning curves as the 

number of training instances increases. 

Conclusion 
Hypothesis is confirmed.  The improvement in terms of area 

under the learning curve decreased when using raw sensory 

data but not when using property abstractions. 
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Table 24 - Experimental summary and conclusions for the experiment demonstrating concept 
transfer for concepts represented within the conceptual spaces framework. 

5.7. Experimental Results: Concept Transfer when using Conceptual Spaces 

Having established that abstracting raw sensory data via properties is important, we now 

show the same knowledge transfer capabilities using the conceptual spaces 

representation.  Table 24 summarizes this experiment. 

 

Experiment 7: General Experiment Summary 

Concept Transfer when using Conceptual Spaces 

Purpose 
To determine whether robots can transfer concepts, 

represented in the conceptual spaces representation, classify 

concepts, and subsequently continue learning. 

Experiment Type 
Simulation, Real-robot (configuration 2) 

Hypothesis 
We hypothesize that the robots will indeed be able to transfer 

concepts between each other and classify concepts, and that 

the overall resulting performance throughout the robot’s 

learning process will be better than without transfer (as 

measured by higher learning curves). 

Procedure 
        1.  Train properties using labeled data (algorithm in  

             Table 5) 

        2.  Train concepts using labeled data  algorithm in   

             Table 6) 

  3.  Transfer concepts from one robot to the other  

       (algorithm in Table 22) 

  4.  Classify concepts in test data 

5.  Measure resulting performance  

 

Independent Variable 
Source of concept matrices used by the robot on test data 

(self-learned or transferred) 

Dependent Variable 
Accuracy of concept classification as measured by recall, 

precision, ROC, and areas under the resulting learning 

curves as the number of training instances increases. 

Conclusion 
Hypothesis is confirmed (Figures Figure 59 and Figure 60).  

There was improvement in terms of the area under the 

learning curves when transfer learning was used compared to 

self-learning. 
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Figure 61 – ROC curve for concept categorization after concept transfer.  The concept matrices used 
are from the other robot entirely.  Right: Area under the ROC curve for concept categorization 
accuracy as new instances are combined with the representation received from the other robot (cone 
concept). 

5.7.1. Hypothesis 

We hypothesize that the robots will indeed be able to transfer concepts between each 

other and classify concepts, and that the overall resulting performance throughout the 

robot’s learning process will be better than without transfer (as measured by higher 

learning curves). 

5.7.2. Simulation Results 

5.7.2.1. Procedure 

We first demonstrate knowledge transfer results in simulation (Kira, 2009b).  This 

experiment builds upon the first simulation experiment presented in Section 3.8.3.  Recall 

that first, property representations were learned using methods presented in 3.5, and 

specifically the algorithm in Table 5.  After the property representations were learned, 

there was a second training period during which the concepts (i.e. objects) themselves 

were learned. Concept learning was performed as described in Section 3.5 and 
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specifically the algorithm in Table 6.  Once learning was performed, we transferred the 

resulting concept matrices between the robots. 

Given the transferred concept matrices, the receiving robot then classified concepts 

using the received representations.  We also measured performance when the receiving 

robot used its own learned representations as a comparison.  We measured performance 

using receiver operator curves (ROC).  The ROC plots show the true positive ratio 

against the false positive ratio.  The true positive ratio, or sensitivity, of a binary classifier 

is the number of true positives divided by the total number of positives in the test set.  

The false positive ratio is the number of false positives divided by the total number of 

negatives in the test set.  The best possible classifiers would lie at the upper left corner, 

corresponding to only true positives and no false positives. A classifier performing at 

chance would lie on the diagonal line going from (0,0) to (1,1).  One measure of total 

accuracy that can be used is the area under the ROC curve, where a value of one is 

perfect.  A classifier performing at chance would result in an area of 0.5. 

5.7.2.2. Results 

We transferred all learned concepts from the ground robot to the aerial robot, and vice-

versa, and tested the resulting accuracy. Learned property mappings that do not match, 

according to the property mappings learned, were used to modify the matrix as described 

previously in Section 5.4. Note that the concept matrix is transferred, but during 

categorization the receiving robot's own property memberships are used.  Figure 61 

shows the resulting ROC curves for the aerial robot. Most objects were categorized with 

very similar accuracy, despite the robot never having seen any instances of the concept.  
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Specifically, the mean area under the ROC curve for the ground robot was 0.77 and 0.81 

for the aerial robot, only slightly worse than when the robot learns itself (0.82 for the 

ground robot and 0.89 for the aerial robot, or a difference of 6.1% and 9.0%). 

Our last simulation result shows that the robots can take the concept representation 

given to it by the other robot, and continue learning using new instances.  We do this by 

averaging the received concept matrix with the newly learned concept matrix.  With this 

additional learning, the accuracy of the robots closely approaches the accuracy had the 

robot learned the concept itself from the beginning (3.7% difference for the aerial robot 

and 10.6% difference for the ground robot).  Figure 61 shows the area under the ROC 

curve for one concept (cone), after an increasing number of new training instances are 

seen by the receiving robot. As can be seen, eventually the two performances almost 

converge (with a final difference of 0.15%). Note that for easier concepts where learning 

from a few instances results in high accuracy, the transferred concept does perform 

slightly worse than when the robot learns the concept itself. In all cases, though, the 

performance is comparable and if further training is performed the performances 

converge. This shows that a robot can receive a new concept from another robot (despite 

heterogeneity), successfully categorize the new objects almost as well as if the robot had 

learned the concept itself and then can continue learning. For harder concepts, such 

bootstrapping can allow the robot to perform well until it learns the concept itself.   

Note that the improvements of knowledge transfer in simulation are not as great as for 

real robots, as will be shown in the next subsection.  This is because learning in 

simulation was much easier, and in fact it only took a few instances to learn a concept 

well (e.g. five instances to get within 1.75% of the best measured performance for the 
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aerial robot).  This raises an interesting point regarding transfer learning.  In previous 

results shown for real robots, we have shown that as learning becomes harder the 

transfer of knowledge becomes even more advantageous and important (Section 5.6, 

particularly Figure 59 and Figure 60).  Conversely, the results here suggest that if 

learning is extremely easy and only requires an instance or two, then the transfer of 

knowledge becomes less advantageous.  

5.7.3. Real-Robot Results (Configuration 2) 

5.7.3.1. Procedure 

This experiment builds upon the previous experiments with robots in this configuration 

(specifically, Section 3.8.4).  One robot (the expert robot) first learns concept matrices 

for a set of concepts, builds similarity models with another robot based on the procedures 

described in the previous chapter (Section 4.2.1 and specifically algorithm in Table 16), 

and transfers the concepts using the algorithms outlined (Table 22).  The non-expert 

robots differ from the expert robot in many ways, including sensor, feature, and property 

differences.  The concepts are then tested on the receiving (non-expert) robot, using its 

own sensors but using the representations it received from the expert robot.  After this 

first phase of testing, the receiving robot then continues to learn using labeled instances 

to show that it can continue learning successfully, adding to the representations received 

by another robot. 
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Figure 62 – Results demonstrating the success of transfer learning when using conceptual spaces, for 
both robots.  In this case, both robots used the RGB color space for color properties. 

5.7.3.2. Results 

Figure 62 shows the results.  The left portion shows “Own Training” versus 

“Transfer”, as before.  These graphs show the ROC area in addition to the recall and 

precision.  As can be seen, transfer learning is successful here just as before.  There is a 

significant advantage for the recall and precision rates achieved immediately after 

transfer without the robots having seen any instances when compared to the robot 

learning by itself for one instance (72.2% versus 49.5% for recall and 66.4% versus 

46.6% for precision on the Amigobot, and 77.3% versus 46.3% for recall and 69.4% 

versus 45.0% for precision on the Pioneer). 
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Figure 63 – Bar graph showing recall (left) and precision (right) improvements when using 

knowledge transfer compared to learning after only one instance. 

 Interestingly, the Pioneer robot (which has additional properties that the Amigobot 

does not) goes through a period of adaptation for approximately fifteen instances in the 

beginning after transfer and continued learning (green curves on lower right panel of 

Figure 62).  The transferred representation achieves high accuracy (69.4% precision, 

77.3% recall), after which it dips (to 66% precision and 70.0% recall) and then begins to 

move upward again (finishing at 73.1% precision and 77.9% recall).  We conjecture that 

this is likely because the concept matrix at first does not include the properties that it does 

not share with the Amigobot.  After it begins to learn using its own instances, these begin 

to be filled in.  As the number of such instances increases, the Pioneer robot then begins 
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 Figure 64 – Results demonstrating the success of transfer learning when using conceptual 
spaces, for both robots.  In this case, the Amigobot used an HSV color space for the color 

 properties while the Pioneer used an RGB color space.  Again, transfer learning is advantageous, as 
seen by higher initial performance (0 instances) as well as higher learning curves for 

“Transfer+Learning” condition over “Own” condition.   

to move back towards its maximum performance.  Figure 63 shows the bar graphs that 

show the recall and precision improvements for each concept, compared with only one 

instance when the receiving robot learns by itself.  Again, a majority of concepts (all but 

three for recall, or 91%, and all but two for precision, or 94%) obtain an advantage from 

knowledge transfer.  Figure 64 shows the learning curves with and without transfer when 

the two robots use different underlying spaces for the color properties (HSV versus 

RGB).  Again, transfer learning is still successful compared to self-learning after one 

instance (77.3% versus 46.7% for recall and 69.4% versus 44.9% for precision on the 

Amigobot, and 77.5% versus 46.3% for recall and 69.0% versus 45.0% for precision on 



 160 

the Pioneer).  Table 25 shows all of the relevant data including the areas under the curves 

and performance after the first, fifth, and final training instances.   

Table 25 - Complete results showing the advantage of transfer learning over self-learning. 
 

 Pioneer (Same Representations)      

 Self-Learning  Transfer   Transfer + Learning  

 Precision Recall 
ROC 
Area Precision Recall 

ROC 
Area Precision Recall 

ROC 
Area 

Area 0.64 0.68 0.62 0.64 0.71 0.62 0.67 0.72 0.66 

First 45.01 46.29 40.17 41.80 46.62 37.38 69.40 77.28 67.47 

Fifth 56.23 58.78 53.42 54.12 61.47 52.55 64.85 70.07 62.39 

Final 72.67 77.23 70.93 69.40 77.28 67.47 73.10 77.88 71.42 

          

 Amigobot (Same Representations)      

 Self-Learning  Transfer   Transfer + Learning  

 Precision Recall 
ROC 
Area Precision Recall 

ROC 
Area Precision Recall 

ROC 
Area 

Area 0.68 0.74 0.66 0.62 0.67 0.60 0.73 0.79 0.72 

First 46.59 49.48 40.88 51.84 54.48 43.48 66.35 72.23 64.76 

Fifth 58.25 64.23 56.31 59.24 62.59 55.41 74.18 79.00 73.10 

Final 74.38 80.62 73.42 66.35 72.23 64.76 74.95 81.02 73.59 

 58.25 66.35        

          

 Pioneer (Different Representations)      

 Self-Learning  Transfer   Transfer + Learning  

 Precision Recall 
ROC 
Area Precision Recall 

ROC 
Area Precision Recall 

ROC 
Area 

Area 0.64 0.68 0.62 0.63 0.71 0.61 0.67 0.71 0.66 

First 45.01 46.29 40.17 42.18 45.67 39.04 68.95 77.48 67.45 

Fifth 56.23 58.78 53.42 53.74 59.58 51.92 64.72 68.62 63.10 

Final 72.67 77.23 70.93 68.95 77.48 67.45 73.03 77.80 71.69 

          

 Amigobot (Different Representations)      

 Self-Learning  Transfer   Transfer + Learning  

 Precision Recall 
ROC 
Area Precision Recall 

ROC 
Area Precision Recall 

ROC 
Area 

Area 0.70 0.76 0.69 0.64 0.71 0.62 0.77 0.83 0.75 

First 44.95 46.71 39.72 41.80 46.62 37.38 69.40 77.28 67.47 

Fifth 59.62 63.89 57.49 54.12 61.47 52.55 76.80 82.78 74.86 

Final 79.15 84.38 78.17 69.40 77.28 67.47 79.68 85.30 78.15 
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5.8. Experimental Results: Estimating Post-Transfer Performance 

This chapter’s final real-robot learning experiment investigates the ability of the expert 

robot to estimate, using its own performance and only shared properties, how effectively 

the receiving robot will perform with the transferred representations. 

5.8.1. Hypothesis 

We hypothesize that the sending robot will be able to estimate the performance of the 

receiving robot when classifying test instances using transferred concepts. 

5.8.2. Procedure 

Table 26 - Conditions used for experiment, where random subsets of properties were used (the first 
condition used all properties). 

Condition # 
Properties Used 

1 
1     2     3     4     5    6     13    14    15   16 

2 
1     2     3     4     5    13    14    15 

3 
1     2     3     4     6    14    15    16 

4 
1     2          4    13    14       16 

5 
1 13 

6 
1     4     5    13 

7 
2     3    16 

8 
2         13 

9 
14 

10 
1 2 3 4 5 6 

  We used nine random configurations, representation random subsets of the actual 

properties that they share.    In addition, we also used one fixed configuration that uses all 

actually shared properties.  Table 26 shows the configurations.  In this case, the 

Amigobot was the expert (transferring) robot while the Pioneer was the non-expert  
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Figure 65 – Plot of the estimated and real recall and precision.  The Amigobot was the transferring 
robot, and hence its performance was used as an estimate (red).  The estimates were accurate with a 
mean difference of only 0.072 for recall rate and 0.033 for precision rate. 

(receiving) robot.  For each configuration, the Amigobot used the randomly chosen 

subset of properties to classify all concepts.  These recall and precision results were used 

as estimates in terms of how accurate the classification will be once these concepts are 

transferred to the Pioneer.  For each configuration, we compared the difference between 

the estimate and the actual resulting accuracies.  Two comparisons were made.  First, we 

compared the means of the estimated accuracies over all concepts.  The estimates and 

real performance values are shown in Figure 65.  We also compared the estimated 

accuracies concept by concept, and hence measured the mean absolute difference 

between the estimation and occurring accuracies.  In other words, we measured the 

difference between the means and the mean of the absolute differences.  We measured 

both of these in two conditions, “Own” and “Transfer”.  One measured the differences 

between the actual performances in the two robots when both learned using their own 

respective instances (“Own”).  The second condition measured the differences between 
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the actual performance of the transferring robot (which represents the estimate) and the 

performance on the receiving robot using the transferred representations (“Transfer”). 

Table 27 - Results for transfer estimation.  The difference in means had significantly smaller mean 
differences between estimate and real performance, while the mean difference had much larger 
means and standard deviation. 

 

5.8.3. Results 

 Figure 66 shows all of the results and Table 27 shows the values for the “Transfer” 

condition along with significance tests. The panel on the left in the figure shows the 

difference in means between the estimated accuracy and actually occurring accuracy.    

The results are averaged over the ten configurations.  As can be seen, the Amigobot can 

successfully use its mean performance (over all concepts) to estimate the mean 

performance of the Pioneer.  The “Own” condition shows that the two robots achieve 

approximately the same mean accuracy over all concepts given the same subset of 

properties.  The “Transfer” condition is not much different, showing that the mean 

performance achieved by the transferring robot can be accurately used as an estimate 

(within a recall rate of 0.07 and precision rate of 0.03) of how well the receiving robot 

will perform (on average over all concepts) given the transferred representation. 

The right panel of Figure 66 shows the difference between estimated accuracy and 

actual accuracy taken on a concept-by-concept basis.  The resulting errors in estimation 

are far larger with larger standard deviations than the previous comparison (see Table 

27). 

 
Difference in 
Means  Mean Difference  

 Mean (N=10) Std Mean (N=10) Std P value 

Recall 0.072 0.038 0.214 0.179 0.024 

Precision 0.033 0.028 0.174 0.200 0.041 
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Figure 66 – Graphs demonstrating the efficacy of a priori estimation of the accuracy of the 
transferred representation.  The left graph shows the effectiveness of estimation in terms of mean 
accuracy over all objects.  The right graph shows the effectiveness of estimating the accuracy of 
individual concepts.  As can be seen, it is more difficult to estimate the success of transfer for a 

particular concept, but the mean accuracy over many concepts can be estimated.  The difference 
between the transfer estimates in the difference in means (a difference of 0.07 for recall rate and 0.03 

precision rate) is significantly different than the mean difference (0.21 for recall rate and 0.17 for 
precision rate).  The p values were 0.0242 for the recall rate and 0.0405 for the precision rate, 

representing significant differences (< 0.05).  Both graphs show two conditions.  The “Transfer” 
condition compares accuracy of estimation for transferred concepts, while the “Own” condition 

compares accuracy of estimation for concept accuracy when each robot learns on its own. 

  The difference between the transfer estimates in the difference in means (a difference 

of 0.07 for recall rate and 0.03 precision rate) is significantly different than the mean 

difference (0.21 for recall rate and 0.17 for precision rate).  The p values were 0.0242 for 

the recall rate and 0.0405 for the precision rate, representing significant differences 

(p<0.05).  Table 28 summarizes this experiment. 

In other words, predicting how well transferring a particular concept will work results 

in much more uncertainty.  If the transferring robot uses its own performance as an 

estimate, it will be off by an average rate of about 0.21 for recall and 0.17 for precision, 

with a large standard deviation in the estimation found in this case.  This may or may not 

be acceptable depending on the task.  In summary, the two robots perform about the same 

when averaged over all concepts (with a difference in the rates less than 0.1 for both 

recall and precision).  In other words, the hypothesis that performance can be predicted 

on an average basis is confirmed.  This can be used as a useful estimate of how well the 
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Table 28 - Experimental summary and conclusions for the experiment regarding the a priori 
estimation of transfer performance. 

receiving robot will perform given a particular set of shared properties.  This capability, 

by itself, can be potentially useful.  For example, suppose two robots are performing a 

particular task that requires the recognition of a set of concepts.  The expert robot can 

determine, given shared properties, whether the receiving robot will be able to perform 

Experiment 8: General Experiment Summary 

Estimating Post-Transfer Performance 

Purpose 
To determine whether the sending robot can estimate the 

performance of the receiving robot given knowledge of 

shared and unshared properties.. 

Experiment Type 
Real-robot (configuration 2) 

Hypothesis 
We hypothesize that the sending robot will be able to 

estimate the performance of the receiving robot when 

classifying test instances using transferred concepts. 

Procedure 
1. Train properties using labeled data for both   

      robots(algorithm in Table 5) 

2.  Train concepts using labeled data  for both robots    

      (algorithm in Table 6) 

  3.  Transfer concepts from one robot to the other  

       (algorithm in Table 22) 

5. Estimate performance of receiving robot by the  

       sending robot by converting the concept matrix to  

       use only shared properties. 

  4.  Compare estimates to actual receiving robot’s  

       Performance 

  5.  Perform 1-4 for different subsets of shared properties 

 

Performance 

Metrics 

We calculate the difference between estimated performance 

(by the sending robot) and actual performance (by the 

receiving robot) both for estimation of performance of a 

single concept as well as estimation of mean performance on 

all concepts. 

Conclusion 
Hypothesis is not confirmed for estimation of individual 

concepts.  Predicting performance on a per-concept basis 

resulted in higher means and variances than predicting 

performance of mean performance over all concepts.  

Hypothesis that performance can be predicted on an average 

basis is confirmed. 
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that task well.  However, it is not guaranteed that the two robots will perform the same on 

any given concept.  Hence, the hypothesis is not confirmed for estimation of individual 

concepts.  Predicting performance on a per-concept basis resulted in higher means and 

variances than predicting performance of mean performance over all concepts.  It is much 

more problematic due to performance differences between the robots to use the 

performance of the transferring robot on a particular concept to estimate the performance 

of the receiving robot on that same concept. 

 
 

5.9. Summary 

This chapter has laid a foundation for the transfer of knowledge across heterogeneous 

robots.  We began by exploring how robots can differ at different levels of representation, 

and proposed an interactive process that determines how to align these differences.  The 

most useful communication can occur when the robots have some overlap in the 

properties they use to represent concepts.  Given such overlapping properties, which are 

found via algorithms detailed in Chapter 4, two robots can transfer concepts between 

each other.  We showed how concepts, represented as matrices as described in Chapter 3, 

can be adapted to the receiving robot before it is transferred. 

After detailing the framework and algorithms, we conducted several experiments.  

First, in Section 5.6, we have provided evidence for our hypothesis that abstracting raw 

sensory data into properties aids in transfer, for example by making it possible despite 

differences in the underlying property representation used by the robots (Kira, 2010).  

Properties effectively provide a buffer against differences in the lower-level sensors and 

features.  We then demonstrated, using real robot data, that robots can indeed effectively 
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transfer concepts given knowledge of what properties are shared between them.  This was 

shown using both support vector machines (Section 5.6) and conceptual spaces (Section 

5.7), demonstrating generality across different concept representations.  We also showed 

quantitatively that the advantages of knowledge transfer occur for almost all of the thirty-

four concepts we have tried (Figure 56 and Figure 63).   

Further experiments were also performed to test whether the classification accuracy of 

the expert robot, using only the shared properties, can be used to estimate how effectively 

the receiving robot will perform (Section 5.8).  We showed that such estimations are 

problematic on a concept-by-concept basis due to large inaccuracies and standard 

deviations.  However, average performance over a number of concepts can be accurately 

estimated, as shown. 

Finally, we have shown that the same principles can work in simulation (Section 5.7.2) 

(Kira, 2009b).  However, since learning is easier due to lack of significant noise, 

knowledge transfer is less advantageous.  Despite this, transfer still allows the receiving 

robot to classify new concepts with no training.  

Now that we have established a successful framework for knowledge transfer, the 

remaining chapters will explore the resulting capabilities further.  Until now, we have 

assumed that two robots either share a property or not, i.e. the mapping is binary.  One of 

the advantages of using supervised learning for properties was that we could control the 

learning such that both robots learned similar properties.  We did this by using the same 

objects with consistently similar properties as training.  In the next chapter, we will look 
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at how to handle knowledge transfer in the situation where properties between robots 

only overlap partially, by varying the property training regime in the two robots.   
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CHAPTER 6  

MEASURING INFORMATION LOSS IN CONCEPT TRANSFER 

In the preceding chapters, we have described methods for transferring learned knowledge 

between robots given a mapping between their respective properties represented as 

confusion matrices (Section 4.2.1).  Membership values for those properties that were 

shared were kept in the transferred concept matrices, while those that were not shared 

resulted in adaptation of the learned knowledge (Section 5.4).  In other words, the 

mapping between properties was completely binary: shared or unshared.  In this chapter 

we look at the case where properties may overlap, and we measure the amount of overlap 

using an information-theoretic metric.  We show that this metric correlates with the 

performance of transfer learning.  In Chapter 7, we will leverage the entire framework, 

including this metric, to perform several types of communication tasks such as picking 

the most similar robot.    

6.1. Property Overlap: A Source of Error in Concept Transfer  

    In Section 5.3 we discussed potential sources of error during concept transfer between 

two robots.  Recall that the purpose of analyzing sources of error was to be able to 

estimate a priori the performance of knowledge transfer.  This is important for cognizant 

failure; that is, the ability to know when the transfer of knowledge will result in 

unacceptable performance.  Note that in general the methods presented in Section 5.3 and 

its associated experiments (Section 5.8), as well as the methods below, only produce 

estimates of post-transfer performance.  There can be additional sources of error such as 
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random noise (for example, in the property memberships), poor recall rates of the 

properties, effects due to combinations of properties working in concert, etc.   

In Section 5.3, we identified two major sources of error: 1) Unshared properties and 2) 

properties that only partially overlap.  In some sense, the first source of error is really an 

edge case of the second where the degree of overlap between properties is zero.  In other 

words, unshared properties are properties that are completely non-overlapping.  

Properties that partially overlap will have some correlation and therefore have non-zero 

values in the confusion matrices learned in 4.2.1 (algorithm in Table 16).  For each 

property on one robot, the property mapping algorithm will select the property on robot 

two that has the highest overlap.  However, we have thus far treated mapped properties as 

equivalent and have not used the amount of overlap in order to estimate the performance 

of concept transfer.  In terms of the heterogeneity types defined in Section 3.6 (see Figure 

Figure 67 – Classes of heterogeneity defined by differences in multiple levels of 
representation.  In Chapter 4, we looked at properties as either shared or unshared 
(Types H2a, H2d, H3a, and H3d).  This chapter deals with types 2b and 3b, where 

properties may overlap partially. 
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67 for a summary), we considered properties as shared or unshared (heterogeneity types 

H2a, H2d, H3a, and H3d) (see Chapter 4).   In this chapter, we will consider the degree of 

overlap with potential heterogeneity H2b and H3b. 

6.1.1. Defining Property Overlap 

Heterogeneity types H2b and H3b specify that properties can partially overlap.  The 

notion of property overlap has a physical meaning when properties are represented as 

Gaussians.  Specifically, one can measure the physical overlap of the hyper-ellipsoids.  

However, the Gaussians representing properties do not necessarily exist in the same 

space for both robots.  Similar to the discussion in Section 4.2, instead of comparing the 

property representations directly, an interactive process is used instead.  The robots 

achieve a shared context (Section 4.4), calculate property memberships, and use these 

memberships to build a model of the amount of overlap.  The previous method used 

fuzzy confusion matrices as the model (Section 4.2.1).  Note that we use the term fuzzy 

due to the usage of the min function, not in the sense of standard fuzzy logic.  In this 

section, we use a metric grounded in information theory to actually measure the amount 

of information loss when moving from one property representation to another. 

6.2. Variation of Information Metric 

In order to define and calculate information loss, we again take inspiration from 

methods used to compare clusterings in machine learning.  Specifically, we use the 

variation of information metric (VI, described below) used to compare clusterings (Meila, 

2002).  In our case, we consider each property pair (one from each robot) and calculate 

the variation of information between them.  The clusters correspond to the property in 
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robot 1, all other parts of the space not in the property for robot 1, the property in robot 2, 

and all other parts of the space not in the property for robot 2.  In other words, for each 

robot we consider the property to be used as one cluster and the rest of the space as the 

other cluster.  Hence, there are four clusters in total. 

We begin by defining a discrete random variable for each cluster (in our case a 

property), g, representing the probability that an instance (picked out at random) will 

belong to that cluster (Meila, 2000).  Assuming each instance has an equal probability of 

being picked, and that all instances belong to a cluster, it can be expressed as: 

n

n
gP

g
=)(        (9) 

where gn  is the number of instances in cluster g.  Since in our case the membership to a 

property (or cluster) is continuous, this value can instead be calculated by taking the 

mean property membership across all instances.  To calculate the probability of 

belonging to the second cluster (i.e. not the property), we subtract the probability of being 

in the property from one (1.0).  The entropy of this random variable is expressed as: 

∑
=

−=

A
in

g

gPgPGH
1

)(log)()(        (10)   

This defines the entropy associated with one clustering G.  We can now define mutual 

information between two clusterings.  Let )',( ggP , where A

iGg ∈  and B

jGg ∈' , be the 

probability that an instance belongs to both clusters, i.e. 
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This probability can be estimated using the instances.  The mutual information between 

the two clusterings can finally be defined as: 
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The relationship between the entropy of each clustering, conditional entropies, and 

mutual information can be seen in Figure 68.  The variation of information (VI) is then 

defined as: 
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This metric measures the loss of information when going from one clustering to 

another.  Intuitively, this is what we want to measure when communication occurs 

between two robots.  If the information loss is greater than a certain empirically-

determined threshold, then we consider the properties to be not shared; i.e., A

ip  and B

jp  

are considered shared if and only if θ<),( B

j

A

i GGVI .  Note that the threshold depends 

largely on the task.  If a high classification rate is extremely important, for example in a 

search and rescue task where a life may depend on it, then a fairly tight threshold is 

Figure 68 – Venn diagram depicting relationship between entropy, conditional entropy, 

variation of information, and mutual information for two clusterings (Meila, 2000). 
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needed.  If the task is entertainment by a household robot, then a looser threshold can be 

employed.  If the property pairs do not meet the criteria, the pair can be removed from the 

property mapping model.  We also use this measure of information loss when sharing 

entire concepts, or between entire sets of properties that robots have, which can be 

defined by combining the information loss of its constituent properties.  In Chapter 7, we 

will utilize this to perform such tasks as picking the most similar robot from a conceptual 

standpoint in order to improve knowledge transfer.   

6.3. Calculating the Variation of Information from Data 

Table 29 details the algorithm implementing the equations above and shows how to 

calculate the variation of information metric using instances.  First, instances from a 

shared context (Section 4.4) are gathered.  Property memberships are then calculated for 

each robot.  These membership values are then used to calculate the metric, as described 

above as well as in the algorithm below. 

Table 29 – Algorithm for calculating the variation of information metric from data 

 

Algorithm: Calculating the Variation of Information Metric from Data 
 

Input: Properties P1, P2 (from robot 1 & 2) 

Output: Variation of Information Matrix VI 

 

// Establish a shared context.  This can be done using manually-picked images 

// viewing the same scene, or robot behaviors such as following, pointing, etc., e.g. 

// as described in (Kira & Long, 2007). 

 

For each shared context instance si 

 

    // Calculate property memberships for both robots 

    Values1 = P1(si) 

    Values2 = P2(si) 

 

    // Add them to training instances 

    Instances.add(si, Values1, Values2) 
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End 

 

// Calculate VI for each property pair 

For each property p1 in P1 

  For each property p1 in P2 

 

     // Get property memberships for the two properties for all instances 

     Values1 = gi.Values1(p1) across all instances 

     Values2 = gi.Values1(p2) across all instances 

 

     // Calculate )(gP  and )'(gP  

     P_g = Mean(Values1) 

     P_gp = Mean(Values2) 

 

     // Calculate the entropy of the random variable (Equation 10) 
     H_G = -(P_g .* log2(P_g)) - ((1-P_g) .* log2((1-P_g))); 

     H_Gp = -(P_gp .* log2(P_gp)) - ((1-P_gp) .* log2((1-P_gp))); 

 

     // Calculate I_G_Gp (Equation 12) 
     I_G_Gp = 0; 

 

        this_cluster = []; 

        that_cluster = []; 

 

        // Here, we consider the four clusters (p1, not p1, p2, and not p2) 

        // We calculate the individual probabilities, where the probability of not 

belonging to  

        // a cluster is one minus the probability of belonging to the cluster, since there 

are  

        // only two clusters spanning the entire space. 

        for k=1:4 

            if (k == 1) 

                // Situation 1: Instances from robot 1 that belong to property p1 and 

instances   

                // from robot2 that belong to property p2 as well 

                this_P_g = P_g;    

                this_cluster = Values1; 

                that_P_gp = P_g; 

                that_cluster = Values2; 

            else if (k == 2) 

                // Situation 2: Instances from robot 1 that do not belong to property p1 and  

                // instances  from robot2 that belong to property p2 

                this_P_g = 1-P_g; 

                this_cluster = 1-Values1; 

                that_P_gp = P_g; 

                that_cluster = Values2; 
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            elseif (k == 3) 

                // Situation 3: Instances from robot 1 that belong to property p1 and  

                // instances  from robot2 that do not belong to property p2 

                this_P_g = P_g; 

                this_cluster = Values1; 

                that_P_gp = 1-P_g; 

                that_cluster = 1-Values2; 

            elseif (k == 4)    

                // Situation 4: Instances from robot 1 that do not belong to property p1 and  

                // instances  from robot2 that do not belong to property p2 

                this_P_g = 1-P_g; 

                this_cluster = 1-Values1; 

                that_P_gp = 1-P_g; 

                that_cluster = 1-Values2; 

            end 

 

            // Calculate joint probability (represented as a fuzzy logic operation, the min   

            // function) 

            P_g_gp = mean( min(Values1, Values2) ); 

             

            // Mutual information between two clusterings 

            if (P_g_gp > 0) 

                I_G_Gp = I_G_Gp + (P_g_gp * log2(P_g_gp / (this_P_g*this_P_gp)));               

            end 

        end 

 

        // Calculate variation of information metric 

       VI(p1,p2) = H_G + H_Gp - 2*I_G_Gp (Equation 13) 

  End 

End 

 

Return VI 

6.4. Experimental Results: Calculating the Variation of Information Metric 

This first experiment seeks to determine whether the variation of information metric 

correlates with the degree of overlap in properties.  We seek to determine whether this is 

the case when the metric is calculated using real test data obtained from a manually-

guaranteed shared context (as in Section 4.5.3).  Here, the fact that properties are human-

supervised becomes very useful as the degree of overlap can be controlled 

experimentally.  The method for controlling this variable is described in Section 6.4.2. 
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6.4.1. Hypothesis 

The hypothesis of the experiment is that as the amount of overlap between the 

properties is varied (as controlled experimentally), the variation of information metric 

will linearly increase.  In other words, we hypothesize that the metric, when calculated 

using real robot data, reflects the degree of overlap between properties. 

6.4.2. Procedure 

In order to control the amount of overlap between properties, the training regime used 

by the Amigobot in prior experiments (Section 3.8.4) was modified.  Specifically, the 

training instances for two color properties were used to train only one property.  This 

resulted in the merging of two property representations.  This was done for three pairs of 

the color properties (there were six color properties in total).    The resulting properties 

can be seen in the right side of Figure 69, and are much larger than the original properties 

(left side of Figure 69).  This merged property representation only partially overlaps with 

the corresponding properties on the other robot since the latter ones were not modified.  

Figure 69 – This figure shows how the properties on the Amigobot were modified in order to 
change their overlap with the properties on the Pioneer.  Left: The original properties.  Right: 
The modified properties.  The modified properties represent two properties merged into one.  
Since the other robot’s representation was not modified, there will be less overlap between the 

two respective property representations.  The blue ellipses represent the covariances. 
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The properties were modified for the Amigobot robot, and the variation of information 

metric was then calculated as described in Section 6.3 (algorithm in Table 29) and 

experimental Section 4.5.3.  The metric was averaged over all shared property pairs.  

Figure 70 shows an example image pair used to calculate the metric.  This first 

experiment serves to show whether using these properties as opposed to the original 

properties will result in increases of the variation of information metric.  This shows that 

the metric does indeed vary with different degrees of overlap.  The next experiment will 

analyze the effect of this modification on knowledge transfer.  

Eight different conditions were used for this experiment.  The eight possibilities 

correspond to a decision of whether to replace a pair of properties with the merged 

representation or whether the original properties (that are split) should be used.  Since 

there are three pairs in this case and a binary decision for each, this resulted in eight 

combinations.  Table 30 shows these possibilities.  The hypothesis is that the variation of 

information metric will be least when all of the original properties are used (since they 

were learned using the same training regime as the other robot), while the last 

Figure 70 – An example image pair used to calculate the variation of information metric 
between the two robots.  Left: Image from the Amigobot.  Right: Image of the same scene from 

the Pioneer robot. 
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combination where all pairs are replaced with the new regime should yield the highest 

variation of information. 

 

Table 30 – Eight conditions used for the first experiment.  A “No” means that the property  
pair was not merged (i.e. the original representation for the two properties was used). A 
”Yes” means that the instances for the property pair was treated as one and a merged  

representation was created. 
 

 Merge Representation for:  

Condition Properties 1 & 2 Properties 3 & 6 Properties 4 & 5 

1 No No No 

2 No No Yes 

3 No Yes No 

4 No Yes Yes 

5 Yes No No 

6 Yes No Yes 

7 Yes Yes No 

8 Yes Yes Yes 

 

Table 31 –   Variation of Information (VI) results for each condition.  The column displaying the 
number of properties with partial overlap counts the number of “Yes” entries for that row.  For each 
“Yes”, a merged property representation is used instead of the original properties.  This merged 
property representation will  only partially overlap with the corresponding separate properties on 
the other robot.  As the number of properties with partial overlap increased, so did the VI metric. 
 

 

 

 Merge Representation for:    

Condition 
Properties 

1 & 2 
Properties 

3 & 6 
Properties 

4 & 5 

Number 
w/ Partial 
Overlap VI Metric 

1 No No No 0 0.7170 

2 No No Yes 1 0.7729 

3 No Yes No 1 0.7525 

4 No Yes Yes 2 0.8085 

5 Yes No No 1 0.7631 

6 Yes No Yes 2 0.8191 

7 Yes Yes No 2 0.7986 

8 Yes Yes Yes 3 0.8546 
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6.4.3. Results and Discussion 

Table 31 shows the raw data for the variation of information (VI) metric for each 

condition.  As the number of partially overlapping properties varied from zero to three, 

the metric increased as hypothesized, from 0.72 to 0.85.  The results are summarized as a 

graph in Figure 71.  It shows how the variation of information metric varies as the 

number of partially overlapping properties increases.  As hypothesized, the metric 

increased, signifying greater non-overlap or loss of information going from one clustering 

to the other. 

Table 32 summarizes this experiment.  The results of this experiment show that the 

variation of information metric behaves as hypothesized.  We controlled for the amount 

of overlap between property representations of the two robots.  This was possible because 

the properties were trained in a supervised manner, and hence the supervised training 

Figure 71 – This figure shows how the variation of information metric varies as the number 
of partially overlapping properties increases.  As hypothesized, the metric increased, 

signifying greater non-overlap or loss of information. 
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Table 32 – Experimental summary and conclusions for the experiment regarding the calculation of 
the variation of information . 

regime was able to be changed to include instances for two properties at a time as 

opposed to one.  Such a training regime led to larger Gaussians (as seen in Figure 69) for 

one robot while the property Gaussians for the other robot remained the same.  Now that 

we have verified that the metric can accurately reflect the amount of overlap between 

properties, we present in the next subsection results that show that the metric correlates 

inversely with the performance of knowledge transfer between the two robots. 

 

 

Experiment 9: General Experiment Summary 

Calculating the Variation of Information Metric 

Purpose 
To determine whether the variation of information metric 

increases as the degree of overlap between properties 

increases. 

Experiment Type 
Real-robot (configuration 2) 

Hypothesis 
We hypothesize that the variation of information metric will 

increase when more properties overlap only partially. 

Procedure 
1.  Train properties using labeled data for both   

     robots(algorithm in Table 5).  The training regime  

     for the Amigobot was changed such that instances  

     from two properties were joined. 

2.  Obtain instances from a shared context (Section 4.4) 

  3. Compute variation of information metric for different  

     numbers of partially overlapping properties 

     (algorithm in Table 29). 

Independent 
Variable 

The number of partially overlapping properties. 

Dependent Variable 
The value of the variation of information metric. 

Conclusion 
Hypothesis is confirmed.  As the number of partially 

overlapping properties increased, so did the variation of 

information metric. 
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6.5. Experimental Results: Correlating the V I Metric and Transfer Performance 

 In the previous experiment (Section 6.4), we have shown that the VI metric increases 

as the number of partially overlapping properties increases.  This establishes that the 

information loss of going from one clustering to the other, as measured in an information-

theoretic sense (Section 6.2), increases between the two sets of property representations.  

The purpose of this metric, however, is to be able to estimate the ultimate classification 

performance of actual knowledge transfer between the two robots.   In other words, in 

order for the metric to be useful it must correlate with the actual classification 

performance.  In theory, this should be the case, since as the amount of overlap between 

properties increases the membership values for those properties would increasingly differ 

between the two robots.  However, it is important to validate that this does indeed occur 

on real robots using real-world data that is noisy. 

6.5.1. Hypothesis 

The hypothesis of this experiment is that the variation of information metric will 

inversely correlate with the efficacy of knowledge transfer, as measured by classification 

performance by the receiving robots.  In other words, that the theoretical information loss 

measure will indeed signify loss of classification performance.  

6.5.2. Procedure 

The procedure of this experiment begins with the properties used in the previous 

experiment (Section 6.4).  Recall that the experiment used a modified training regime for 

the Amigobot robot, where property pairs were merged into one representation.  This was 
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done for three pairs (six properties total).  Eight conditions were used, where each 

condition specified whether the property representations for each property pair remained 

separate (i.e. unmodified as used in Sections 3.8.4, 4.5.3, and 5.7.3).  Unlike the previous 

experiment in Section 6.4, after the properties were trained we then performed a second 

training process to learn concepts, as described in 3.5 using the algorithm in Table 6.  In 

this case, we trained the first 26 of the original 34 concepts used in prior sections 

(Sections 3.8.4, 4.5.3, and 5.7.3).  For the Pioneer robot, all of the properties remained 

the same and hence the concepts were the same as in prior experimental sections for this 

robot configuration.  After the concepts were trained, they were transferred from the 

Amigobot robot to the Pioneer robot for all eight conditions (shown in Table 30). 

For each condition, the performance over all concepts was measured in addition to the 

variation of information metric (shown in Table 31).  The hypothesis of the experiment is 

that the two will inversely correlate; that is, as the variation of information metric 

increases (representing smaller overlap between properties and hence more information 

loss), classification performance will decrease.  Just as before, we measure performance 

using receiver operator curves (ROC), recall rates, and precision rates.  The ROC plots 

show the true positive ratio against the false positive ratio. The true positive ratio, or 

sensitivity, of a binary classifier is the number of true positives divided by the total 

number of positives in the test set.  The false positive ratio is the number of false 

positives divided by the total number of negatives in the test set.  The area under this 

curve represents overall accuracy over all of the objects.  The recall rate measures the 

number of true positives divided by the number of positives in the test set, while 

precision measures the number of true positives divided by the number of test set 
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instances that were classified to be positive.  These numbers are proportions and can, if 

desired, be represented as percentages.   

Table 33 – The VI metric and raw performance data (recall, precision, and area under the ROC 
curves).  The VI metric and performance data inversely correlated, as verified by Pearson’s 
correlation (Table 34).  

Given the VI metric and the three performance measures (area under the ROC curves, 

recall, and precision), we would like to measure the correlation between them.  One 

method to perform this analysis is Pearson Product Moment Correlation, or Pearson’s 

correlation coefficient for short (Snedecor & Cochran, 1980).  This coefficient measures 

the degree of linear relationship between two random variables.  It varies from -1 

(indicating a strong inverse correlation) to 1 (indicating a strong direct correlation).  

Given two data sets (in our case the VI metric and performance metric for the eight 

conditions), the coefficient (r) can be measured as: 

      
yx

yxCov
r

σσ

),(
=

          (15) 

where ),( yxCov  is the sample covariance of the two sets and xσ  and  yσ  are the sample 

standard deviations of the data sets x and y, respectively. 

Condition 

Number 
w/ Partial 
Overlap VI Metric Recall Precision ROC Area 

1 0 0.7170 0.8237 0.7641 0.7404 

2 1 0.7729 0.7897 0.7293 0.7120 

3 1 0.7525 0.7776 0.7237 0.7121 

4 2 0.8085 0.7473 0.6908 0.6786 

5 1 0.7631 0.7173 0.6641 0.6478 

6 2 0.8191 0.7040 0.6492 0.6317 

7 2 0.7986 0.7028 0.6613 0.6478 

8 3 0.8546 0.6870 0.6412 0.6253 
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6.5.3. Results and Discussion 

Table 33 shows the raw data for the recall, precision, and area under the ROC curve 

for the eight conditions.  It also reproduces the VI metric from Table 31.  Figure 72 plots 

the performance data against the corresponding VI metric.  The two data sets inversely 

correlated, as hypothesized.   In order to quantitatively verify this, we show the Pearson’s 

correlation values for the three metrics in Table 34.  The results show an inverse 

correlation (-0.84, -0.83, and -0.83 for recall, precision, and ROC area, respectively) 

between the VI metric and knowledge transfer performance.  P-values are shown to prove 

statistical significance (p-value equals 0.0095, 0.0109, and 0.0111 for recall, precision, 

 
Pearson's 
Correlation 

P-
value 

Recall -0.8374 0.0095 

Precision -0.8294 0.0109 

Area -0.828 0.0111 

Table 34 – The correlation between the variation of information metric and respective performance 
measure.  High negative values, as shown, indicate strong negative correlation between the two 

random variables.  P-values shown indicate that these correlations are statistically significant. 

Figure 72 – This figure graphs the variation of information metric versus recall, precision, 
and area under the ROC curves when the receiving robot (Pioneer) classified concepts using 

test data.  An inverse correlation is apparent, verified using Pearson’s correlation in Table 34.  
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and ROC area, respectively), where the values indicate the probability of getting the corr-

elation observed by random chance.   

Table 35 – Experimental summary and conclusions for the experiment regarding the correlation 
between variation of information and knowledge transfer effectiveness. 

Table 35 summarizes this experiment. The results of this experiment demonstrate an 

important characteristic: The information loss metric, as measured using information 

theory, inversely correlates with actual classification performance on real robots using 

real noisy data.  In other words, the robots can rely on the information loss metric to 

Experiment 10: General Experiment Summary 

Correlating Variation of Information and Transfer Learning Performance 

Purpose 
To determine whether the variation of information metric 

correlates with the effectiveness of knowledge transfer. 

Experiment Type 
Real-robot (configuration 2) 

Hypothesis 
We hypothesize that the variation of information metric will 

inversely correlate with the resulting performance of 

knowledge transfer.  In other words, as the variation of 

information increases, knowledge transfer effectiveness will 

decrease. 

Procedure 
1.  Train properties using labeled data for both   

     robots(algorithm in Table 5). 

2.  Train concepts using labeled data  for both robots    

      (algorithm in Table 6). 

3. Transfer concepts from one robot to the other  

      (algorithm in Table 22). 

4.    Classify concepts for test data (Table 4). 

5.    Measure classification performance on receiving  

       robot on test set. 

Independent 

Variable 

The number of partially overlapping properties. 

Dependent Variable 
The value of the variation of information metric and the 

classification performance after knowledge transfer. 

Metric 
Pearson’s Correlation, which measures the statistical 

relationship between two random variables. 

Conclusion 
Hypothesis is confirmed.  The variation of information 

inversely correlated with knowledge transfer effectiveness in 

a statistically significant way. 
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reflect the performance of knowledge transfer.  This indicates that the robots may be able 

to use the metric to estimate the efficacy of knowledge transfer a priori (i.e., before 

actual transfer occurs).  We will show in the next chapter that this is indeed the case, and 

can be used to pick robots for knowledge transfer in a manner that maximizes knowledge 

transfer performance.   

6.6. Summary 

This chapter dealt with heterogeneity types in class H2b and H3b, where robots may 

have partially overlapping properties.  While previously (e.g. in Chapter 4) we treated 

properties as matching or not matching, here we treat their overlap in a continuous 

manner.  In Section 6.1, we discussed how such partial overlaps may be a source of error 

during knowledge transfer between two robots.  We then introduced the notion in Section 

6.2 that information theory can aid the robots in determining how much information is 

lost when such partial overlaps occur.  Specifically, the variation of information (VI) 

metric, used in the clustering community to measure information loss when going from 

one clustering to another (Meila, 2002), can be used to measure the amount of 

information loss (non-overlap) between candidate property pairs.  We detailed the 

algorithm for measuring this metric using real data in Section 6.3.  

We tested two hypotheses in this chapter regarding the variation of information metric:  

1) We hypothesized, and confirmed the hypothesis, that the metric will indeed increase 

as the number of partially overlapping properties increases (Section 6.4).  Since the 

training data for the properties consists of supervised labels, we were able to modify 

the training for one of the robots to merge pairs of properties together, resulting in 
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larger properties than the other robot.  As hypothesized, as the number of properties 

pairs that were merged increased, the variation of information metric increased as well.  

This demonstrated that the metric could indicate the amount of overlap between 

properties.  

2)  We hypothesized, and confirmed the hypothesis, that the variation of information 

metric will inversely correlate with knowledge transfer efficacy (Section 6.5).  That is, 

as the properties overlapped to a lesser extent, knowledge transfer using these 

properties will become less effective.  We confirmed the hypothesis by transferring 

concepts that used the modified (partially overlapping) properties and showed that the 

variation of information metric inversely correlated with classification performance 

measured using recall, precision, and area under the ROC curves.  Correlation was 

measured using Pearson’s correlation coefficient, and the correlations were shown to 

be statistically significant.   

In summary, we have shown that the VI metric can measure the amount of overlap 

between properties and that this characteristic inversely correlates with knowledge 

transfer performance.  This suggests that robots may be able to take into account property 

overlaps using this metric to estimate the performance of knowledge transfer a priori.  

Recall that we have previously discussed methods for accounting for the other source of 

knowledge transfer error (missing properties on one robot and their relative importance) 

in Section 5.8.  In the next chapter, we combine both of these methods to pick a robot 

from a set of robots such that the knowledge transfer performance is maximized.  We also 

demonstrate other methods of communication, such as picking a distinguishing property 
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that can distinguish a concept from a set of concepts.  These methods combine technique 

and results that we have discussed thus far in this dissertation.     
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CHAPTER 7  

UTILIZING LEARNED SIMILARITY MODELS FOR 

COMMUNICATION AND COORDINATION  

7.1. Utilizing Similarity Models for Various Types of Communication 

The preceding two chapters (5 & 6) dealt with transfer of an entire concept, facilitated 

by the property mapping models discussed in Chapter 4 and the variation of information 

metric models discussed in Chapter 6.  There are several other useful ways in which both 

of these similarity models can facilitate communication and task performance.  We now 

turn our attention to these practical applications, including various scenarios in which 

these models can be used to pick the distinguishing properties of a concept that will be 

understood by the receiving robot and to pick the concept among a set of concepts that 

are more likely to be classified well based on the information loss measure.   

7.2. Choosing Distinguishing Properties 

 

One possible type of communication that will be required in a search and rescue 

scenario (among others) is a description of a particular instance of a concept that can 

distinguish it from a surrounding context.  For example, a robot with CO2 sensors can 

describe the victim that is still living based on perceptual features that another robot (that 

may not have that sensor) can distinguish.  This can also be useful in cue-based 

navigation where directions such as ‘turn right at the blue box’ can be given.   

Let B

c

A

c

BA

c PPP ∩=,  be the set of shared properties involved in robot A’s 

representation for concept c (this can be the matrix representation for the concept, or the  
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Table 36 - Algorithm for determining a distinguishing property of a concept from a set of concepts. 

conversion of a particular instance into the matrix representation, as described in Section 

3.4).  Now suppose that there is a set of concepts C’ consisting of concepts from which c 

must be distinguished (either because they are nearby, or in the case of cue-based 

navigation in the same environment).  The goal is to provide a distinguishing property 

that can distinguish concept c from its surroundings.  Of course, the robots must first 

build a model of which properties are shared or unshared (Chapter 4) in order to avoid 

using properties that the other robot does not have. 

Algorithm: Choosing Distinguishing Properties 
 

Input: A set of concepts 'C  and a target concept c 

           Properties AP , Properties BP , PropertyMapping PM, 

Output: Value and property number of a distinguishing property 

 

// Note: PropertyMapping PM consists of an array where PM[ p ] 

// contains the index to the property 'p  on robot A that maps to  

// property p on robot B.  These mappings are obtained using the  

// methods in Chapter 4. 

 

// Obtain diagonals of surrounding concept matrices (if instances are used 

// as opposed to abstract concept, this is not necessary). 

PropertiesOfInstances = Diagonals of all concepts matrices in 'C  

 

PropertiesOfTarget = Diagonal of c 

 

// Find maximal value for each property (Step 1) 

MaxPerProperty = max(PropertyOfInstances) 

 

// Find complement of each value (one – value) (Step 2) 

ComplementPerProperty = 1 – MaxPerProperty 

 

// Intersect (min operation) with properties of c (Step 3) 

IntersectionPerProperty = min(PropertiesOfTarget, ComplementPerProperty) 

 

// Find maximal value, as long as it is in the PropertyMapping model (Steps 4 & 5) 

DistinguishingProperty = argmax(IntersectionPerProperty) for all properties in PM 

 

Return DistinguishingProperty 
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Table 36 shows the algorithm for doing this, and Figure 73 shows an example.  We begin 

by finding the union of all shared properties present in the concepts 'C  (Step 1).  If 

properties are continuous, as they are in this work, the set operation can be performed 

using the max operator.  If concept matrices are used (representing abstract concepts), the 

property memberships are located in the diagonal of the concept matrix.  For 

distinguishing actual instances of objects, the property memberships for each instance can 

be used directly.  The max operator is then performed on these values across all concepts 

in 'C .  We call the resulting property memberships 'CP .  These values represent properties 

Figure 73 – Example demonstrating choice of a property distinguishing the target 

instance from other surrounding instances. 
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that have high membership in at least one of the surrounding concepts.  This being the 

case, even if the target concept c has a strong membership in these properties, they cannot 

be used to distinguish the target concept (e.g., if some of the surrounding objects have 

high memberships in the “blue” property, then this color property cannot be used to 

distinguish the target concept). 

The second step is to take the complement of 'CP ; in fuzzy logic one can subtract the 

original memberships from one (Step 2).  High values in the complement of 'CP  represent 

properties that are not high in the surrounding concepts (e.g. none of the objects are 

“green”).  High values for the target concept for these properties can be then used to 

distinguish it. 

The properties of the target concept c can then be intersected with the complement of 

'CP  (Step 3).  This results in properties that have high memberships for the target concept 

but not the surrounding concepts.  Figure 73 shows an example for finding such a 

property.  Properties with high memberships represent distinguishing properties.  

Properties that are not shared are then removed from potential properties to choose from 

(Step 4).  Since these are taken from only the shared properties, robot B will be able to 

distinguish concept c using any of the remaining properties.  In order to estimate the most 

distinguishing property, the property with the maximal value can be used (Step 5).  Once 

the most distinguishing property is determined, it is then transferred to the receiving 

robot.  Using the similarity or property mapping model (built using the algorithms and 

methods in Chapter 4), the receiving robot can then find the concept whose distinguishing 

property is closest to the value received from the other robot.  Figure 74 summarizes the 

procedure.  We will now describe experiments validating this approach. 
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7.2.1. Experimental Hypothesis 

We hypothesize that the robot will be able to successfully find distinguishing 

properties (and in particular the most distinguishing property), taking into account shared 

properties and utilizing fuzzy logic, that the receiving robot can then use to distinguish a 

concept accurately from surrounding concepts.  Specifically, we hypothesize that when 

the receiving robot uses the most distinguishing property, performance in terms of 

Figure 74 – Example demonstrating the steps involved in the procedure of the experiment.  
First, the Amigobot calculates the property memberships, using properties it learned.  

Using the algorithm in Table 40, the Amigobot then picks a distinguishing property and 
sends it (along with the membership value for that property) to the Pioneer.  The Pioneer 

robot then calculates property memberships using its own sensors and properties, and 
finds the closest one to the distinguishing property received from the Amigobot.  The 

resulting concept is the estimated target, and can be compared to ground truth. 
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choosing the target concept will be better than when choosing a random concept or when 

using a particular property across all trials. 

7.2.2. Experimental Procedure 

In order to test the hypothesis, we first trained both robots as in Section 3.8.4.  One 

robot (the expert robot) first learned concept matrices for a set of concepts, and built 

similarity or property mapping models with the other robot based on the procedures 

described in the previous chapter (Section 4.2.1 and specifically algorithm in Table 16).  

In this case, the expert robot was the Amigobot while the receiving robot was the 

Pioneer.  From the resulting thirty-four concepts, three random concepts were then 

chosen.  One of them was randomly designated as the target concept, while the other 

concepts were designated as the surrounding concepts.   

The expert robot then used the algorithm in Table 36 to pick a distinguishing property.  

The receiving robot then determined which of its properties corresponded to the 

distinguishing property (based on the property mapping model), and then determined 

which concept had a similar membership as the received value for this distinguishing 

property.  This concept is what the receiving robot has estimated to be the target concept.  

This chosen concept was then compared to the ground truth target concept, and accuracy 

was determined over 100 such trials.  Accuracy was measured by the number of times the 

target concept was chosen correctly, divided by the number of trials.  The entire process 

was then repeated ten times, with means and standard deviations being measured.  As a 

means of comparison, the accuracy of picking out the target concept using one particular 

property across all 100 trials was measured as well. 
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7.2.3. Experimental Results and Discussion 

Figure 75 shows the results of the accuracy results averaged over ten trials (each 

consisting of one hundred trials).  Using the algorithm (“Distinguishing Property”), the 

receiving robot was able to distinguish the target concept 71% of the time, significantly 

better than when using any fixed property across all instances (whichachieved a 

maximum accuracy of 45%) as well as random chance (which would achieve 30% 

accuracy).  These results show that the concept representation in conceptual spaces 

allows a robot to pick distinguishing properties.  Unshared properties can be ruled out 

using the similarity models developed in Chapter 4.  In other words, the models of which 

properties are shared are useful not just for knowledge transfer, but also for various 

communicative acts such as this one.  Table 37 summarizes this experiment. 

Figure 75 – Graph showing the accuracy of the receiving robot in locating the target concept 
from two other concepts.  The results are averaged over all ten trials, each consisting of a 

hundred situations.  The accuracy of the algorithm in Table 36 is shown on the left 
(“Distinguishing”), while the rest of graph shows the accuracy when one particular property is 

used across all trials.   The algorithm was able to correctly pick out the target concept 
significantly better than choosing any particular property (rate of 0.71 versus maximum of 0.45) 

as well as better than chance, which would achieve an accuracy of 0.33.   
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Table 37 – Experimental summary and conclusions for the experiment regarding choosing a 
distinguishing property. 

7.3. Favoring a Concept Among a Set of Concepts 

Another type of communication that would be useful is for one robot to pick a concept 

from among a set of concepts.  This would be useful, for example, for describing a 

Experiment 11: General Experiment Summary 

Choosing Distinguishing Properties 

Purpose 
To determine whether a robot can use the property mapping 

model and conceptual spaces representation to choose a 

distinguishing property that distinguishes one concept from a 

surrounding set of concepts. 

Experiment Type 
Real-robot (configuration 2) 

Hypothesis 
We hypothesize that the robot will be able to successfully find 

distinguishing properties, taking into account shared 

properties and utilizing fuzzy logic, that the receiving robot 

can then use to distinguish a concept from its surroundings. 

Procedure 

 

The following procedure was run ten times, each of which 

consisted of 100 situations: 

1.  Train properties using labeled data for both   

     robots(algorithm in Table 5) 

2.  Train concepts using labeled data  for both robots    

     (algorithm in Table 6) 

3. Set up a situation with three concepts, one designated    

    as the target. 

4.  Expert robot determines the most distinguishing  

     Property (Table 36) 

5.  Send the distinguishing property to the receiving   

      robot 

6.  The receiving robot determines which of its properties  

     corresponds to the distinguishing property (based on  

     the property mapping model), and then determines  

     which concept has a similar membership as the  

     received value for this distinguishing property. 

Metric 
Accuracy as measured by the number of times the receiving 

robot correctly picks out the target concept divided by the 

total number of trials. 

Conclusion 
Hypothesis is confirmed.  The receiving robot was able to 

correctly distinguish the target concept at a significantly better 

percentage than chance or when using a fixed property across 

all trials. 
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particular room based on objects that are in it.  The objective is for robot A to estimate 

which concept will maximize the chance that robot B will detect it.  This can be done 

using the models of robot differences learned, including the property mapping model 

(algorithm in Table 16) as well as the variation of information metric (algorithm in Table 

29).  Given these models, robot A can find the concept that has the minimal amount of 

variation of information in shared properties that are involved in the concept.   

Table 38 describes the algorithm.  The algorithm is given as input a set of concepts to 

choose from and the variation of information metric between all property pairs shared by 

the robots (built using methods in Chapter 6, specifically the algorithm in Table 29).  The 

goals is to choose one concept from the set, the classification rate of which should be 

higher than the other concepts.  In practice, the robot that will be transferring concepts 

(the expert robot) to the other robot can only estimate the resulting performance.  It does 

this by calculating, for each concept in the set, the summation of variation of information 

for all property pairs used in the concept (i.e. the degree of non-overlap between the 

properties).  This is combined with the actual property values along the diagonal of the 

concept matrix for the respective properties of the concept.  The idea is that properties 

that have low memberships for the concept are less important, and hence the variation of 

information metric for that property is not as important as for highly-valued properties.  

In this dissertation, we use a simple combination where the two values are multiplied.  

Other more sophisticated combination methods, for example utilizing machine learning, 

are possible. 

In addition, we further combine this estimate with the one obtained as was detailed in 

Section 5.8.  Specifically, the expert robot performs classification using its learned 
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Table 38 - Algorithm for picking a concept from a set of concepts that maximizes the receiving 
robot’s classification accuracy. 

Algorithm: Favoring a Concept Among a Set of Concepts 
 

Input: A set of concepts C , Performance Estimates E 

           Properties
AP , Properties

BP , PropertyMapping PM, Variation of Information VI 

Output: Value and concept number of best estimated concept 

 
// Obtain diagonals of surrounding concept matrices (if instances are used 

// as opposed to abstract concept, this is not necessary). 

PropertiesOfInstances = Diagonals of all concepts matrices in 'C  

 

MaxConceptIndex = 0 
MaxConceptEstimate = -Infinity 

For each concept c in 'C  

     // Obtain property memberships in c for all properties 

     PropertiesOfTarget = Diagonal of c 

 
     VI_sum = 0 

     IncrementCount = 0  

    
     // Find average VI for all shared properties used in the concept, weighted by 

     // actual membership in concept 

     For each property p1 in 
AP  

        // Property is not shared between the two robots 

        If PM[p1] < 0  

            // Do nothing 
         Else 

            VI_sum = VI_sum + VI( PM[p1], p1) * PropertiesOfTarget(p1) 

            IncrementCount = IncrementCount + 1 
         End 

      End 

   

      // Divide by total number of VI values used (to obtain average) 
      VI_sum = VI_sum / IncrementCount 

 

       // Combine VI with performance estimate (from Section 5.8) 
       CombinedValue = E[c] / VI_sum 

       If (CombinedValue > MaxConceptEstimate) 

          MaxConceptIndex = c 
          MaxConceptEstimate = CombinedValue 

       End 

    End 

End 
 

Return {MaxConceptIndex, MaxConceptEstimate} 
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models with the unshared properties removed.  This estimate is then divided by the 

average variation of information metric over shared properties involved in the concept.  

In other words, the estimate is downgraded if the corresponding properties only partially 

overlap.  Again, future work can involve the development of a more sophisticated 

combination method. We will now describe experiments validating this capability. 

7.3.1. Experimental Hypothesis  

The hypothesis is that a robot can effectively use the learned similarity models 

(confusion matrices learned as per the algorithm in Table 16 and the variation of 

information metric learned as per the algorithm in Table 29) to describe aspects of the 

world in a manner that maximizes understandability by the receiving robot.  Specifically, 

we hypothesize that using this information, the transferring (expert) robot can pick a 

concept that will be more accurately classified by the receiving robot than picking a 

concept at random. 

7.3.2. Experimental Procedure  

In order to demonstrate the efficacy of the methods, we will build on the experiments in 

the previous subsection.  Specifically, the experiment will start with two heterogeneous 

robots, one of which learns a set  of concepts.  The two robots also learn models of their 

differences in the form of confusion matrices and variation of information metric, as 

described previously  (algorithms in Table 16 and Table 29, respectively).  One robot, the 

expert, will pick a concept from a set of concepts based on the methods described above 

(algorithm in Table 38).  The other robot is the novice robot.  This robot will have some 

overlapping set of properties and concepts, with varying degrees of differences.  In this 
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case, the expert robot was the Amigobot while the novice robot was the Pioneer.  From 

the resulting thirty-four concepts, ten random concepts were then chosen as the set of 

concepts to choose from.  The expert robot then chose one concept from this set based on 

the algorithm described in Table 38.  The classification performance of the chosen 

concept by the novice robot was then recorded, and the average performance over one 

hundred of these trials was measured.  Performance was again measured using recall 

rates, precision rates, and the areas under the ROC curves.  The conditions for this 

experiment consisted of a control in which the expert robot only picked concepts 

randomly, and the experimental condition where the expert robot took into consideration 

the capabilities of the novice robot.  The performance of choosing the best possible 

concept overall was also recorded for comparison. 

We expect that when the expert takes into account the capabilities of the novice robot, 

the performance of the novice robot will be better than when choosing randomly.  

Performance in this case will be measured as the ability of the novice robot to distinguish 

concepts using the properties given to it by the expert robot, and to detect particular 

concepts given to it by the expert robot.   

7.3.3. Results and Discussion 

Table 39 shows the results.  The “Random” column shows the performance metrics 

(averaged over all 100 trials) by the receiving robot for a randomly-chosen concept.  The 

“Estimate” column shows the performance metrics for the concept chosen by the expert 

robot using the algorithm in Table 38.   The results for the latter (precision rate of 0.75, 

recall rate of 0.77, and ROC area of 0.74) is significantly better than for a randomly-
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chosen concept (precision rate of 0.68, recall rate of 0.71, and ROC area of 0.67).  The 

differences are significant, as shown in the “P-Value” column, which were less than 0.05 

for all metrics.  Finally, the last column shows the best possible performance that can be 

achieved (0.90 precision rate, 0.95 recall rate, and 0.89 ROC area).  Although the use of 

the algorithm resulted in performance that was significantly better than a randomly-

chosen concept, it did not achieve rates equivalent to the optimal choice.  As stated 

earlier, the estimated performance values calculated by the expert robot are only 

estimates, and could be off due to noise or other factors.  Also, as mentioned, more 

sophisticated methods of combining the variation of information metric, the importance 

of a property to a concept, and the performance estimates could yield significantly better 

results.   

 

Table 39 - Results demonstrating the advantage of choosing a concept from a set 
based on models of robot differences.  The "Random" columns shows the three 
performance metrics for when the expert robot randomly chose a concept.  The 
"Estimate" column shows the results when the robot chose a concept using the 

algorithm.  Significantly higher average performance is achieved when using the 
algorithm.  Statistical significance is shown in the “P-Value” column which shows the 

significance of differences between using the algorithm and randomly choosing a 
concept.   The final column to the right shows the best possible performance that can 

be achieved. 
 

Table 40 summarizes this experiment.  In this experiment, we showed that information 

obtained by combining the performance estimates (obtained as described in Section 5.8) 

as well as the variation of information metric can result in significant gains when a robot 

needs to pick a concept from a set of concepts such that the receiving robot will classify it 

 Random  Estimate   Best 

 Mean Stdev Mean Stdev P-Value Mean 

Precision 0.681 0.186 0.747 0.153 0.007 0.905 

Recall 0.716 0.212 0.771 0.164 0.042 0.946 

ROC Area 0.668 0.181 0.742 0.156 0.002 0.886 
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well.  This shows the first evidence of the usefulness of the information-theoretic metric 

described in Chapter 6.  In that chapter we showed that the metric correlated with 

knowledge transfer, and here we show that such correlations can be leveraged during 

decision making and communication.  In the next section, we show further evidence of 

this, in the form of a robot being able to pick the most similar robot to itself using VI. 

Table 40 – Experimental summary and conclusions for the experiment regarding choosing the best-
recognized concept from a set of concepts. 

Experiment 12: General Experiment Summary and Conclusion 

Favoring a Concept Among a Set of Concepts 

Purpose 
To determine whether a robot can use the property mapping 

model and variation of information to choose a concept from a 

set of concepts such that the classification performance of the 

receiving robot is increased compared to randomly choosing a 

concept. 

Experiment Type 
Real-robot (configuration 2) 

Hypothesis 
We hypothesize that the robot will be able to successfully 

choose a concept based on models of robot differences, and 

that the performance on the receiving robot will be better for 

this concept than for a randomly chosen concept. 

Procedure 
1.  Train properties using labeled data for both   

     robots(algorithm in Table 5) 

2.  Train concepts using labeled data  for expert robot    

     (algorithm in Table 6) 

3. Choose ten concepts from the thirty-four at random. 

4.  Determine the best estimated concept (algorithm in  

      Table 38). 

5.  Transfer all ten concepts to receiving robot. 

6.  The receiving robot classifies all ten concepts using  

     the received representation.  The performance on the  

     chosen concept is compared to a randomly-chosen  

     concept. 

Metric 
Accuracy of classification, as measured by recall rate, 

precision rate, and area under the ROC curve. 

Conclusion 
Hypothesis is confirmed.  The receiving robot was able to 

classify the chosen concept significantly better than a concept 

chosen at random. 
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7.4. Speaking to Like-Minded Robots: Measuring Levels of Conceptual 

Discordance 

 A final way that we utilize the similarity models and consider heterogeneity is in the 

decision of which peer to exchange knowledge with.  We use both the estimation of 

performance based on shared properties (Section 5.8) as well as the variation of 

information (VI) metric (Section 6.2).  Specifically, we use the former method to estimate 

the performance that would result after knowledge transfer.  This estimate is then 

multiplied by the variation of information metric subtracted from one.  This downgrades 

the performance estimate by the amount of non-overlap between the shared properties.  

This is done for all potential robots, and the robot with the maximal estimated 

performance is chosen to transfer knowledge to the receiving robot.  Table 41 shows the 

algorithm. 

7.4.1. Experimental Hypothesis 

The goal of this experiment is to show that a measure combining the two methods of 

knowledge transfer estimation can be successfully used to choose robot partners in order 

to increase the effectiveness of the communication.  It also further demonstrates the 

usefulness of the learned models of robot similarities and differences.  The hypothesis is 

that the variation of information metric and a priori estimation based on unshared 

properties can be used to successfully choose a robot partner.  In other words, that robot 

partners chosen using these methods will result in higher after-transfer performance 

compared to choosing a robot at random or without incorporating the VI metric. 
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Table 41 - Algorithm for picking a robot from a set of robots in order to maximize post-transfer 
classification accuracy. 

 

Algorithm: Picking the Most Similar Robot 
 

Input: A set of concepts C , Performance Estimates E, a set of robots R, VI weight w 

           Properties
AP , Properties

BP , PropertyMapping PM, Variation of Information VI 

Output: Most similar robot r 

 

// Obtain diagonals of surrounding concept matrices (if instances are used 

// as opposed to abstract concept, this is not necessary). 

PropertiesOfInstances = Diagonals of all concepts matrices in 'C  

 

MaxRobotIndex = 0 

MaxRobotEstimate = -Infinity 

For each robot r in R 

     // Obtain property memberships in c for all properties 

     PropertiesOfTarget = Diagonal of c 

 
     VI_sum = 0 

     IncrementCount = 0  

    
     // Find average VI for all shared properties 

     For each property p1 in 
AP  

        // Property is not shared between the two robots 
        If PM[p1] < 0  

            // Do nothing 

         Else 
            VI_sum = VI_sum + VI( PM[p1], p1) 

            IncrementCount = IncrementCount + 1 

         End 
      End 

   

      // Divide by total number of VI values used (to obtain average) 

      VI_sum = VI_sum / IncrementCount 
 

       // Combine VI with performance estimate (from Section 5.8) 

       CombinedValue = E[r] * ( (1-VI_sum) * w) 

       If (CombinedValue > MaxRobotEstimate) 

          MaxRobotIndex = r 

          MaxRobotEstimate = CombinedValue 
       End 

    End 

End 
 

Return {MaxRobotIndex, MaxRobotEstimate} 
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Figure 76 – The steps involved in the procedure of the experiment.  First, the Pioneer robot 
calculates the metric for each partner (Step 1).  This consists of calculating the a priori estimate 

(Step 1A) as was done in Section 5.8.  The VI metric is also calculated, using the algorithm in 
Table 29 (Step 1B).  The VI metric varies depending on the condition, which changes the 

Amigobot’s properties, resulting in different amounts of overlap between the properties of the 
Amigobot and Pioneer.  These two metrics are combined according to Equation 16.  Finally, 
the best partner robot is chosen.  Knowledge transfer efficacy can then be compared when 

using this best robot or a partner robot. 
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Table 42 – Experimental summary and conclusions for the experiment regarding picking the best 
robot from a set of robots. 

 

 

7.4.2. Experimental Procedure  

Table 42 summarizes the experiment and Figure 76 depicts the procedure.  In order to 

demonstrate the efficacy of the measure of heterogeneity, we will build on the 

experiments in the previous chapters.  The procedure of this experiment begins with the 

Experiment 13: General Experiment Summary and Conclusion 

Choosing the Best Robot for Knowledge Transfer 

Purpose 
To determine whether a robot can use the property mapping 

model and variation of information to choose a robot from a 

set of robots such that the classification performance of the 

receiving robot after knowledge transfer is better than picking 

a robot at random. 

Experiment Type 
Real-robot (configuration 2) 

Hypothesis 
We hypothesize that the robot will be able to successfully 

choose a most-similar robot based on models of robot 

differences, and that the performance on the receiving robot 

will be better for this robot than for a randomly chosen robot. 

Procedure 
1.  Train properties using labeled data for both   

     robots(algorithm in Table 5) 

2.  Train concepts using labeled data  for expert robot    

     (algorithm in Table 6) 

Build property mapping model (algorithm in Table 15)  

and variation of information metric (algorithm in    

     Table 29) 

3.  Determine the best robot for transfer (algorithm in  

     Table 41). 

5.  Transfer all concepts to all potential partner robots. 

6.  The receiving robot classifies all concepts using the    

     received representation.  The performance on the  

     chosen robot is compared to a randomly-chosen  

     robot. 

Metric 
Accuracy of classification, as measured by recall rate, 

precision rate, and area under the ROC curve. 

Conclusion 
Hypothesis is confirmed.  The chosen receiving robot was 

able to classify the concepts significantly better than a 

randomly-chosen robot. 
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properties used in the previous experiment (Section 6.4).  Recall that the experiment used 

a modified training regime for the Amigobot robot, where property pairs were merged 

into one representation.  This was done for three pairs (six properties total).  Eight 

conditions were used, where each condition specified whether the property 

representations for each property pair remained separate (i.e. unmodified as used in 

Sections 3.8.4, 4.5.3, and 5.7.3).  Unlike the previous experiment in Section 6.4, after the 

properties were trained we then performed a second training process to learn concepts, as 

described in Section 3.5 using the algorithm in Table 6.  In this case, we trained the first 

26 of the original 34 concepts used in prior sections (Sections 3.8.4, 4.5.3, and 5.7.3).  

For the Pioneer robot, all of the properties remained the same and hence the concepts 

were the same as in prior experimental sections for this robot configuration.  After the 

concepts were trained, they were transferred from the Pioneer robot to the Amigobot 

robot.  For each potential partner robot, the condition varied from one to eight (the eight 

conditions shown in Table 30).  This determined how many partially overlapping 

properties the Amigobot had.  Recall that as the number of partially overlapping 

properties increased, so did the variation of information metric (Section 6.4).  

Furthermore, as the number of partially overlapping properties increased the knowledge 

transfer performance decreased (Section 6.5). 

In addition, a random subset of properties was chosen as shared between the two 

robots.  Specifically, eight random subsets were used to represent eight random 

configurations of the Amigobot robot that the Pioneer robot could transfer knowledge to.  

Each trial used anywhere from five to ten randomly chosen properties to be shared.  This 
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diverges from the experiments in sections 6.4 and 6.5, and adds another source of 

potential error during knowledge transfer.   

For each trial, the estimated performance over all concepts was measured in addition to 

the variation of information metric (shown in Table 31).  The performance was estimated 

a priori by measuring the performance of the transferring robot (the Pioneer) using only 

the shared properties (as was done in Section 5.8).  The performance estimate for each of 

the eight potential partner robots was then multiplied by one minus the variation of 

information metric (since higher VI or information loss would result in lower 

performance).  Formally: 

)1(* VIEstimateateFinalEstim −=     (16) 

Note that other techniques for combining the two estimates are possible.  For example, 

machine learning could be used to decide how best to combine this information to better 

predict the performance of the receiving robot.  The maximal estimate value was then 

used to choose the best partner robot.  The after-transfer performance was then measured 

(by testing the transferred representations on the Amigobot, as was done in Section 

5.7.3).  The entire process (with eight random partner robots) was then repeated twenty 

times, and the average actual achieved performance by the chosen robot was measured.  

This was compared to the results when choosing a random robot, as well as when using 

only the a priori estimation without using the variation of information metric.  The 

hypothesis is that higher classification performance will be achieved when using both the 

a priori estimate as well as the VI metric compared to using estimation without the VI 

metric.  We further hypothesize that both of the methods will result in better performance 
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than picking a random partner robot out of the eight potential choices. Note that the 

methods in this section are applicable to both directions of transfer (determining who to 

transfer knowledge to as well as determining who to receive knowledge from).  In this 

experiment the Pioneer robot determines who to transfer to.   

Just as before, we measure performance using receiver operator curves (ROC), recall 

rates, and precision rates.  The ROC plots show the true positive ratio against the false 

positive ratio. The true positive ratio, or sensitivity, of a binary classifier is the number of 

true positives divided by the total number of positives in the test set.  The false positive 

ratio is the number of false positives divided by the total number of negatives in the test 

set.    The area under this curve represents overall accuracy over all of the objects.  The 

recall rate measures the number of true positives divided by the number of positives in 

the test set, while precision measures the number of true positives divided by the number 

of test set instances that were classified to be positive.  These numbers are proportions 

and can, if desired, be represented as percentages.  

7.4.3. Experimental Results and Discussion 

 To analyze the results, we begin by showing results for one of the twenty trials, 

consisting of the Amigobot choosing from a set of eight robots.  Subsequently we will 

show results averaged over all trials. Table 43 shows the raw data for the eight randomly- 

chosen partner robots, including the “1-VI” condition, the a priori estimated performance  

(“Estimate”), the combination of a priori estimation and VI (“Estimate with VI”), and 

resulting knowledge transfer performance in the form of recall (“Transfer”). 
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Figure 77 – Graph showing the recall rate after transfer to the eight partner robots.  The “Estimate” 
values do not change much, but the actual transfer performance degrades due to partial overlaps in 

the properties of the two robots.  This can be captured by the variation of information metric.  

 
 

Table 43 – Table showing the experimental results for one of the twenty trials.  The “1-VI Metric” 
shows the results when the VI metric is used alone, while the “Estimate” column shows the results 
when the estimates from the methods in Section 5.8 are used.  In combining the two, the best results 
are achieved.  Here, both the “1-VI Metric” and “Estimate with VI” correctly pick the first robot as 
the best robot partner (bold) while the “Estimate” alone does not.  

Figure 77 plots these results in graphical form.  Note that the “Estimate with VI” is not 

normalized to correspond to a true performance estimate.  Since all that is needed is a 

maximal value in order to choose the best partner (argmax), normalization is not needed.  

Overall, there seems  to  be  a  strong correspondence  to  the estimate with VI  compared 

to the a priori estimation alone.  In other words, leveraging the VI metric seems to allow 

Partner 

Robot 
Number 

Condition 

# 

Properties Shared 1-VI 

Metric 

Estimate Estimate 

with 
VI 

Trans

fer 

1 1 1 2 3 4 5 6 7 8 10 0.281 0.747 0.210 0.684 

2 2 1 2 3 4 7 8 9 0.175 0.770 0.123 0.640 

3 3 1 2 3 4 5 6 7 8 9 0.246 0.727 0.179 0.669 

4 4 1 4 5 6 7 0.112 0.735 0.082 0.588 

5 5 1 2 3 4 5 6 7 8 9 0.234 0.727 0.170 0.632 

6 6 1 3 4 5 6 8 0.242 0.723 0.175 0.614 

7 7 1 2 3 4 5 6 8 0.248 0.766 0.190 0.663 

8 8 1 2 3 5 6 7 0.095 0.699 0.066 0.614 
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for better estimation of post-transfer performance; we now quantitatively verify this by 

showing results averaged over all trials. 

Figure 78 shows the results for the five conditions (an additional “VI Only” condition 

was added) averaged over the twenty trials.  Using the additional information provided by 

the variation of information metric performed both better than random (recall rate of 0.68, 

precision  of  0.65,  and  ROC  area  of  0.62  compared  to randomly choosing the 

partnerrobot which achieved 0.65 recall rate, 0.62 precision rate, and 0.60 ROC area, 

with all results being significant with p = 0.0013, precision p=0.0035 and ROC area 

p=0.0031).  The difference between “Estimate with VI” (recall rate of 0.68, precision of 

0.65, and ROC area of 0.62) and “Estimate” only (recall of 0.65, precision of 0.63, and 

Figure 78 – Graph showing results averaged over all trials, for the three performance metrics.  
The “Estimate with VI” performs significantly better than randomly choosing a partner robot 

and also outperforms the “Estimate Only” control except for ROC area which was not 
significant.  This shows that combining the performance estimates with the variation of 

information metric can provide significant boosts in post-transfer performance estimation.  The 

last column shows the best possible performance if the best robot is chosen at each trial. 
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ROC area of 0.61) was also significant except for ROC area (p=0.0035 for recall, 

p=0.023 for precision, p=0.0791 for ROC area).  

Note that the last condition on the right shows the best possible performance when the 

best robot is always chosen.  In this case, the difference between the best and a randomly-

chosen robot is significant (p=0.0001 for all metrics) but not great (a difference of about 

5%) since there is redundancy in the properties and in many cases the missing properties 

did not affect performance greatly.  In other words, the eight partner robots to choose 

from did perform differently, but in the future there should be greater differences to 

compare the methods.  Future experiments should be run to reproduce these experiments 

where there is less redundancy between properties. 

Again, these results show that the robot was able to leverage the information provided 

by the VI metric to better estimate the post-transfer performance of the receiving robot, 

with significant differences of about three to four percent.  In other words, the correlation 

between the variation of information and knowledge transfer shown in 6.5 has proven to 

be useful in decision-making.     

7.5. Summary 

In this chapter, we have shown that the ability of robots to model their similarities and 

differences, using methods in chapters 4 and 6, is useful for more than just knowledge 

transfer.  All of these experiments used real-robot configuration 2, with real-world data 

and objects.  Specifically, we have demonstrated three different capabilities:  
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1) Choosing a property to distinguish a concept from a set of concepts (Section 7.2).  

We hypothesized that the transferring robot would be able to use mappings between 

properties on the two robots (obtained via confusion matrices, as described in Section 

4.2.1) and set operators to find a distinguishing property that would allow the receiving 

robot to pick out the target concept.  We confirmed this hypothesis by running 100 trials 

where a target concept had to be distinguished from three concepts by the receiving 

robot.  When the algorithm in Table 36 was used to determine the distinguishing 

property, the resulting accuracy of the receiving robot correctly picking the target concept 

was significantly higher than picking a concept at random or any other single property.   

2) Choosing a concept from a set of concepts that is estimated to be classified the best 

by the receiving robot (Section 7.4).  Here, we combined the variation of information 

metric for shared properties between the robots (Section 6.3, algorithm in Table 29), the 

importance of the properties in the concept, and the a priori estimates (as described in 

Section 5.8) in order to pick the best concept from a set of eight concepts.  Over a 

hundred randomized trials, the expert robot was able to use the algorithm in Table 38 to 

pick concepts that were classified significantly better by the receiving robot than picking 

a concept at random.   

3) Choosing the most similar robot in order to maximize performance after knowledge 

transfer (Section 7.4).  Here, we combined the variation of information metric for shared 

properties between the robots (Section 6.3, algorithm in Table 29) and the a priori 

estimates (as described in Section 5.8) in order to choose a robot from a set of eight 

robots in order to maximize the post-transfer performance.  We hypothesized that the 

variation of information metric could be leveraged by the expert robot to improve its 
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knowledge transfer estimate, and we confirmed the hypothesis.  Using the algorithm in 

Table 41, the expert robot was able to pick a robot in order to obtain classification rates 

higher than a randomly-chosen robot as well as when using a priori estimates alone 

(without the VI metric). 

In all, these results have combined the methods for calculating property mappings 

between robots (Section 4.2), the variation of information metric between property pairs 

of the two robots (Section 6.2), and a priori estimates of knowledge transfer (Section 5.8) 

to perform useful communication and decision-making.  These capabilities are in addition 

to the knowledge transfer capabilities previously shown in Chapter 5 (e.g. Section 5.7). 
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CHAPTER 8  

CONCLUSIONS AND FUTURE WORK 

In this dissertation, we have introduced a framework for modeling and reasoning about 

perceptual differences between two heterogeneous robots, and using the resulting models 

for knowledge sharing and communication.  In this final chapter, we will review the 

contributions made by the dissertation, discuss how they relate to the research questions 

laid out in Chapter 1, and plan a path forward in terms of future research directions. 

8.1. Contributions 

There are several contributions that have resulted from this dissertation.  They include: 

• Demonstration that perceptual heterogeneity does indeed pose a problem for the 

transfer of learned object representations, even using modern computer vision 

algorithms that use object features specifically designed to be repeatable across 

images (Section 3.1).  We have conducted an experiment using three robots with different 

cameras, twelve real-world objects, and a state of the art computer vision algorithm to 

explore the importance of learning with the robot’s own embodiment and the effect of 

perceptual differences on knowledge transfer.   We showed that even when using features 

which are explicitly designed to be both repeatable and distinctive to particular objects, the 

highest accuracy is achieved when the robots use their own particular sensing to learn.  

Transfer from other robots can bootstrap learning, but can also result in catastrophic failures 

where the accuracy drops dramatically for certain objects due to missing features.  This 

experiment demonstrated that, even in the best case scenario, perceptual heterogeneity can 

pose problems for knowledge transfer and that understanding the differences between the 

robots is important.  Furthermore, we have shown that heterogeneity prevent properties, 

represented as Gaussian Mixture Models, from being transferred as well (Section 3.9). 
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• Demonstration that using abstractions of lower-level sensory data to learn can 

facilitate not only learning itself but also knowledge transfer, compared to using 

the raw sensory data to learn.  We have conducted experiments using two robots with 

different sensors, thirty-four real-world objects, and a state of the art classification algorithm 

(support vector machines) analyzing whether our method for sensory abstraction actually 

improves learning and/or knowledge transfer.  We demonstrated that it does improve both 

learning (Section 3.10) and knowledge transfer (Section 5.6), especially when the underlying 

sensory data used by the robots differ (e.g. one robot uses an RGB color space while another 

uses an HSV color space).  

 

• Algorithms and methods for implementing conceptual spaces and demonstration 

that they can be used to classify concepts using real-world noisy data.  Expanding 

the work of (Rickard, 2006), we developed a grounded representation of properties (e.g. 

‘green’) and their combination for concepts (physical objects, e.g. ‘apple’) in Section 3.3, and 

developed algorithms for learning them from real data in Section 3.5 (algorithms in Table 5 

for properties and Table 6 for concepts).  We have also developed methods for learning these 

concepts even with missing data (Section 3.5) as well as adapting the resulting concepts when 

transferring them from one robot to another when some properties are not shared (Section 

5.4). 

 

• Algorithms and representations suitable for learning models of perceptual 

differences between two robots at multiple levels, utilizing sensory data obtained 

after the two robots achieve a shared context.  We have demonstrated that, given 

instances from a shared context whereby robots are viewing the same scene, two robots can 

accurately build mappings between their respective properties (Chapter 4, experiments in 

Section 4.5).  This was demonstrated using two different real-robot pairs (Section 4.5.2 and 

4.5.3) as well as in simulation (Section 4.5.4)).  In addition, we took potentially shared 

properties and further calculated how much information is lost when converting a concept 
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from one robot’s representation to another robot’s representation, using information-theoretic 

measures (Chapter 6).  The resulting models represent which properties and concepts are and 

are not shared by the two robots. 

 

• Methods for the a priori estimation of knowledge transfer performance.  We have 

shown that a robot can successfully estimate a priori how well a set of concepts (on average) 

will transfer by using its own performance using only shared properties (Section 5.8).  In 

addition, we have applied an information theoretic metric (variation of information) in order 

to estimate information loss.  After developing an algorithm for learning the metric from 

observations (Section 6.3), we showed that the metric does indeed measure the amount of 

overlap between properties (Section 6.4) and correlates inversely with knowledge transfer 

performance (Section 6.5).  

  

• Protocols and algorithms for using these models for knowledge exchange in 

several scenarios: transfer of a concept unknown to one robot, choice of 

properties that will distinguish an object in the receiving robot’s representation, 

and choice of one concept over another based on whether information will be 

lost by the receiving robot.  We show how the models of similarities and differences 

between the robots can be used to perform these types of communication and knowledge 

transfer.  We show how the models of similarities and differences between robots can be used 

to adapt existing knowledge by modifying the concepts to reflect missing properties (Section 

Section 5.4). Further, it is determined whether sufficient information is left to represent the 

concepts accurately (Sections 5.8 and 6.5).  We have also demonstrated the ability to pick 

distinguishing properties to pick out one concept from a set of concepts, taking into account 

the robot’s differences (Section 7.2).  For example, these are useful for search and rescue 

domains where one robot must describe an object’s appearance to another.  We also showed 

similar capabilities for choosing a concept from a set of concepts such that the receiving robot 

would be able to classify it better than a randomly-chosen concept (Section 7.3). 



 219 

 

• Methods for choosing the best robot from a set of robots in order to maximize 

knowledge transfer efficacy.  By combining the a priori estimate (Section 5.8) as well 

as the variation of information metric (Chapter 6), we demonstrated that one robot can pick 

the best robot to transfer knowledge to from a set of robots, resulting in better post-transfer 

performance than picking a robot randomly (Section 7.4).  

8.2. Research Questions Revisited 

How can robots model their differences in perception to improve their ability to 

communicate, and how can the establishment of a shared context help, if at all? 

  We have demonstrated that robots can model their similarities and differences (Section 

4.2) within a grounded multi-level representation (Section 3.2).  This is possible by 

abstracting raw sensory data into an intermediate representation (properties, Section 3.3).  

A mapping between properties on each respective robot can then be built using instances 

from a shared context (Chapter 3).  Furthermore, the variation of information metric, 

which leverages information theory, can be used to further model differences in partially 

overlapping properties (Chapter 6). 

 

What is the role of abstraction of sensory data in communication and knowledge 

transfer? 

The abstraction of raw sensory data was shown to be highly useful for both learning 

(Section 3.10) as well as knowledge transfer (Section 5.6).  The abstractions represented 

higher-level characteristics of objects (e.g., color, texture, shape, and size) and essentially 

provided a buffer against lower-level sensory differences between the robots.  This was 

especially true when the robots used different spaces to represent the same physical 

characteristics (e.g. RGB versus HSV representations for color properties) (Section 5.6).   
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What dialogues and protocols can allow two heterogeneous robots to use these 

models to align their knowledge and synchronize their symbols? How does the type 

of knowledge transfer possibly differ depending on the level of similarity that exists 

between the two robots? 

We have developed several protocols for the building of similarity models (Section 

4.4), knowledge transfer (Section 5.2), and communication between heterogeneous robots 

(Chapter 7).  These methods allowed the robots to build mappings between their 

respective properties (Chapter 3) as well as information-theoretic models of differences 

in their properties (Chapter 6).  As discussed in Section 5.1, different types of knowledge 

transfer are possible depending on what properties are shared, how they relate to the 

concepts, and how much they overlap. 

 

How can these models be used to make the knowledge-sharing and communication 

processes sensitive to the capability differences between the robots? 

The models of similarities and differences between the robots allowed the robots to not 

only transfer knowledge (Section 5.7), but also to estimate the performance of transfer a 

priori (Section 5.8), to pick distinguishing properties of a concept to differentiate it from 

its surrounding context (Section 7.2), to pick a concept from a set of concepts to 

maximize performance (Section 7.3), and to pick a robot from a set of robots to maximize 

knowledge transfer efficacy (Section 7.4).  Overall, the explicit modeling of similarities 

and differences between the robots enabled these capabilities to outperform their controls. 

 

How can these models be used to pick peer robots that are more similar in terms of 

properties and concepts, for a particular domain of knowledge? 

By combining our methods for estimating knowledge transfer performance a priori 

(Section 5.8) with the information-theoretic metric for property overlap (Section 6.5), we 
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were able to show that a robot can successfully choose one robot from a set in order to 

maximize knowledge transfer efficacy over a set of concepts (Section 7.4). 

 

Primary Research Question 

What interaction, dialogue, and adaptation processes are necessary to allow 

heterogeneous robots to model their differences, to use these models to exchange 

concepts and learning experiences, and how can such a system be used to improve 

the performance of a robot? 

We have developed several protocols for the building of similarity models (Section 

4.4), knowledge transfer (Section 5.2), and communication between heterogeneous robots 

(Sections 7.2, 0, and 7.4).  These methods allowed the robots to build mappings between 

their respective properties (Section 4.5) as well as information-theoretic models of 

differences in their properties (Section 6.4 and 6.5).  Performance was shown to improve 

after knowledge transfer both in terms of immediate classification accuracy after transfer 

(before the receiving robot has seen any training instances itself), as well as after the 

receiving robot continued learning in the form of higher learning curves (Sections 5.6 and 

5.7).  Furthermore, the chapter demonstrating various communication acts (Chapter 7) 

showed that even without knowledge transfer, the performance of a robot in picking out a 

target concept from its surroundings (Section 7.2) or in classifying a concept received 

from another robot (Section 7.3) is significantly better than the controls when using the 

methods outlined in the dissertation. 

8.3. Future Work 

We now discuss future research directions that stem from the research questions and 

framework presented in this dissertation.  
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8.3.1. Increasing the Feature Space 

These days, there is an increasing availability of sensors that robots can have.  For 

example, the now-familiar SICK ladar sensor has been expanded to allow three 

dimensional point clouds instead of being restricted to a plane.  As a result, many more 

features or object properties can be sensed.  This includes three dimensional shape 

characteristics, the sound objects make, the feel of an object given a touch sensor, or even 

chemical characteristics.  It would be interesting to demonstrate that these additional 

object properties can be represented in the same conceptual spaces representation.  These 

properties can be fused with the ones already used in this dissertation in order to increase 

the classification rates of the objects.   

Furthermore, objects are more than their appearance.  They can be felt, moved, 

pushed, dropped, sat on, etc.  In other words, the affordance that an object provides is 

important for representing them (Gibson, 1977).  Each affordance can potentially create a 

new space or domain with which to represent the object.  For example, a “sittable” 

affordance can be represented using a continuous one-dimensional space.  Properties in 

this space can carve out different degrees of applicability to the affordance.  These types 

of properties can be combined with the normal perceptual properties in order to represent 

the concepts. 

8.3.2. Social Symbol Grounding and Language 

   The grounding of symbols across a large group of agents is an open problem that is 

related to the work in this dissertation.  Conceptual spaces has been proposed as a 

psychologically-inspired mechanism for bridging lower level sensory data to higher level 

symbols (Gärdenfors, 2000).  We have made use of this fact in the form of properties, 

which provided a common abstraction of low-level sensory data between heterogeneous 
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robots.  It would be interesting to continue to explore these links by having robots that 

continually learn and transfer knowledge throughout their lives (i.e. life-long learning 

(Thrun & Mitchell, 1995)).  Such an exploration could yield fruitful insight into how 

language and symbols can evolve through time. 

Conceptual spaces also accounts for various characteristics of language, such as the 

modification of meaning depending on the context (e.g. “white” wine is different than a 

“white” wall).  Future work can explore such capabilities using real robots that ground 

such symbols to sensors.  Furthermore, the connection between such symbols can form 

ontologies, where concepts can be categorized into higher and higher levels.  For 

example, an animal can be categorized based on the fact that it is a living thing, the type 

of animal it is, whether it is a mammal, etc.  The building of such ontologies by robots 

using conceptual spaces is an interesting future direction, and investigation into the 

transfer of entire ontologies between robots becomes possible. 

8.3.3. Applications to Transfer of Knowledge Relating to Action 

   Finally, this dissertation has specifically focused on perceptual heterogeneity.  

However, the problem of transferring task knowledge is still an open problem.  

Perception is an important aspect of knowing how to act.  As a result, the transfer of 

perceptual knowledge can itself be useful for transferring task knowledge.  For example, 

using the methods in this dissertation, two robots can transfer concepts that serve as 

indexes to a case-based reasoning system.  After aligning the underlying indexes, the 

transfer of case knowledge becomes possible.  Similarly, solutions to Markov Decision 

Process problems in the form of policies use the notion of an observable state.  On a real 

robot, such states would consist of features that robots can perceive.  Given a mapping 

between the perceptual states of two robots, it may be possible to transfer the policies 

themselves.  Estimates of knowledge transfer, as developed in this dissertation (Sections 
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5.8 and 7.4) could serve useful for determining when the transfer of policies would be 

effective. 

Another avenue of study could be the direct understanding and modeling of motor 

heterogeneity between two robots.  This topic has been touched upon in the past (e.g. 

(Alissandrakis et al., 2002) but there is certainly room for further research.  For example, 

it may be possible to abstract motor primitives, similar to what we have done with 

perceptual properties, in order to bridge motor heterogeneity between two robots.  Such 

abstraction could allow robots to explicitly model their motor differences and determine 

when transfer is not possible if the differences are too large. 

8.4. Final Words 

The future of robotics is certain to eventually lead to collections of robots that interact 

in their environment.  This dissertation has proposed the explicit modeling of difference 

between robots at a conceptual level in order to make such interactions effective.  Several 

application areas can benefit from the deployment of the framework laid out here, namely 

tasks such as reconnaissance or search and research.  The methods proposed in this 

dissertation are also not necessarily tied to mobile robots only, but can also be applied to 

distributed sensor networks containing heterogeneous sensors.  This greatly extends the 

applicability of the work.  As stated in the introduction, heterogeneity poses both 

challenges as well as opportunities.  The framework laid out in this dissertation seeks to 

understand and overcome the challenges posed by heterogeneity, so it can be leveraged 

when it is needed.  Furthermore, it is anticipated that leveraging theoretical fields such as 

information theory will continue to be useful in analyzing the output of sensory data, both 

within and across robots.  
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APPENDIX A 

GLOSSARY OF TERMS 

Attribute: A dimension of data used for classification.  In this thesis, this can be a 

feature (which can be Boolean, nominal, or continuous) or a symbol (which is strictly 

Boolean). 

Common Ground: Mutual knowledge, beliefs, and assumptions (Clark and Brennan, 

1991) providing a foundation for knowledge exchange and communication.  In humans, 

common ground is constantly updated through discourse (Clark and Brennan, 1991), and 

estimation of it can be done via social cues, experience, etc. (Kiesler, 2005). 

Concept:  A combination of regions in a set of domains, along with salience weights and 

correlations between its properties.  

Confusion Matrix: A matrix representing co-occurrence of items in rows and columns, 

usually for gauging accuracy of a classifier.  In our case, we use it to map properties and 

concepts in two different robots based on their co-occurrence given data for the same 

property or concept from each. 

Context:  

• General Definition:  The interrelated conditions in which something exists or 

occurs (Merriam-Webster.com, 2008a) 

• Working Definition: We use the notion of context in a few ways, and separate 

them into local context (of which physical context is a specialization) and global 

context.  In general, context defines specific constraints on a situation, whether it 

be perceptual (e.g. the distance to a target object) or symbolic (e.g. task 

constraints or robot state). See also Locally-Shared Context and Globally-

Shared Context. 
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Context Function: A context function is a function that takes in perceptual data and 

returns 1 if all of the constraints on the data defined by the context are met. 

Context Method: A method that can return sensory data with all of the constraints of a 

context function satisfied, either by physically moving to an appropriate location in the 

environment or obtaining suitable sensory readings from memory.  

Difference Models: Models of shared domains, properties, and concepts that measure 

similarity between corresponding pairs from each robot.  (This is synonymously used 

with “Similarity Models”, as the model can be used to ascertain what is different as well). 

Dimension: A dimension or axis in a domain, representing a physical characteristic (e.g. 

pitch for sound). 

Domain: A geometric space consisting of a set of integral dimension. 

Domain Similarity Model: Model of similarity between domains (usually of two 

different robots), describing whether they measure similar aspects of the world.  In our 

case, we infer this based on similarities in higher-level properties. 

Expert Robot:  In our knowledge transfer experiments, the expert robot is the one that 

learns, using its own instances and sensors, representations for a set of concepts.  This 

robot then sends its representations to the non-expert or receiving robot. 

Feature: See perceptual feature. 

Feature Value: Specific value of a perceptual feature at an instance in time. 

Globally Shared Context: A context that places constraints on perceptual features or 

symbols that may or may not be grounded in perception (examples of ungrounded 

symbols include task or state symbols).  A globally shared context is where two robots 

share this context, i.e. both produce data that meet the same (or related) constraints. 

Gaussian Mixture Model (GMM): A probabilistic model of a density that consists of a 

weighted combination of multiple Gaussians. 

Heterogeneity: See Perceptual Heterogeneity.  Other types of heterogeneity, such as 

motor heterogeneity, are not dealt with in this thesis. 
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Integral Dimension: Dimensions in a conceptual space that cannot be separated, usually 

representing similar physical properties. 

Learning Curve: A learning curve is a curve plotting a performance metric on the y-axis 

(e.g. recall) as the number of training instances increase (along the x-axis). 

Locally Shared Context: A context that places constraints on only perceptual features or 

symbols that are directly grounded in immediate perception.  A locally shared context is 

where two robots share this context, i.e. both produce data that meet the same (or related) 

constraints. 

Object: A specific physical entity that can be represented, in our case, using a knoxel in a 

conceptual space. 

Object Category: An object category defines higher-level characteristics of objects that 

share important properties, but may vary in specifics such as location, size, color, etc.  

This distinction is difficult to learn in general, and in this work utilizes supervised 

learning to map different instances of an object category to the same label, while also 

providing specific labels for object category instances as well.   

Observation (Vector): A vector of data obtained at an instant of time from a sensor. 

Ontology:  A hierarchical description of concepts, in our cases mostly physical objects or 

object categories.  The specific representation we use are conceptual spaces, which define 

concepts based on a set of regions in a set of domains.  It is hierarchical (or structured) in 

the sense that they can be nested or combined in various ways, for example the concept 

‘navy blue’ can be a subset of the concept ‘blue’.  Properties can be tied to symbols as 

well. 

Ontology Similarity Model: Model of similarity between symbols (usually of two 

different robots) tied to concepts. 

Peer Robots: Other robots with whom a particular robot will have to communicate or 

exchange knowledge with to perform a task. 
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Perceptual Feature: A set of vector values corresponding to some form of processing 

performed on sensor or other perceptual feature data in salient parts of the sensory 

readings.  Examples include color segments, histograms, or lines obtained from a camera 

sensor. 

Perceptual Heterogeneity: In the English language, Heterogeneity is defined as the 

quality or state of being heterogeneous, which is defined as consisting of dissimilar or 

diverse ingredients or constituents (Merriam-Webster.com, 2008b).  Perceptual 

heterogeneity refers to consisting of differing sensors or perceptual features (which 

process the sensors).  In our work, we describe several categories corresponding to 

different levels at which the robots can differ (namely, at the domain, property, and 

concept levels). 

Perceptual Shared Context: See Locally Shared Context. 

Physically Shared Context: A context that places constraints on only perceptual features 

or symbols that are directly grounded in immediate perception, and more specifically on 

sensors and perceptual features corresponding to physical location in an environment.  A 

physically shared context is where two robots share this context, i.e. both produce data 

that meet the same (or related) constraints. 

Precision:  The precision of a binary classifier is the number of true positives divided by 

the sum of true positives and false positives. 

Property: A region in one domain, in our case represented by a Gaussian Mixture Model 

clustering.  For example, ‘blue’ can be a region in an HSV color space. 

Property Mapping Model: Model of similarity between properties (usually of two 

different robots), describing whether they measure similar aspects of the world.  The 

model in this work is in the form of a confusion matrix, and the actual mapping can be 

obtained by taking maximal values for each row, optionally thresholded.  This results in 

properties on robot A that map to properties on robot B. 
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Property Similarity Model: Model of similarity between properties (usually of two 

different robots), describing whether they measure similar aspects of the world.  The 

model in this work is in the form of a confusion matrix as well as calculated values for 

loss of information when going from a property in one robot to a property in a different 

robot (see Variation of Information). 

Recall:  The recall of a binary classifier is the number of true positives divided by the 

sum of true positives and false negatives. 

Receiving Robot:  In our knowledge transfer experiments, the receiving (or non-expert) 

robot is the one receives learned representations from the expert robot. 

ROC Area:  Area under the ROC Curve. 

ROC Curve:  Receiver operating characteristic (ROC) curve, which plots the true 

positive ratio against the false positive ratio.  The true positive ratio, or sensitivity, of a 

binary classifier is the number of true positives divided by the total number of positives 

in the test set.  The false positive ratio is the number of false positives divided by the total 

number of negatives in the test set. 

Sensor: A device that responds to a physical stimulus (as heat, light, sound, pressure, 

magnetism, or a particular motion) and transmits a resulting impulse (as for measurement 

or operating a control) (Merriam-Webster.com, 2008c). 

Sensory Data: Data from either 1) sensors or 2) perceptual features that process data 

from sensors.   

Shared Context: A context that is shared between two robots, i.e. both produce data that 

meet the same (or related) constraints. We specialize this in the form of a globally 

shared context, locally shared context, and physically shared context. 

Similarity Models: Models of shared domains, properties, and concepts that measure 

similarity between corresponding pairs from each robot. (This is synonymously used with 

“Difference Models”, as the model can be used to ascertain what is different as well)  
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Structured Knowledge Sharing: Knowledge sharing that results in the sharing of the 

representational structure corresponding to a symbol.  An example is the concept sharing 

algorithm in Section 5.2, given that it is successful. 

Support Vector Machines: A discriminative classification method.  We used the svm
light

 

library that implements the algorithm (Joachims, 1999).  

Symbol: A label corresponding to a specific representation or grounding, in our case a 

concept in a conceptual space, representing multiple regions in a set of domains.  The 

label is the referent and the representation is the form in the semiotic triangle (Vogt, 

2007). 

Symbolic Shared Context: See Globally Shared Context 

Variation of Information (VI): An information-theoretic metric that measures how 

much information is lost when using one clustering over another.  Since a property is a 

region in a domain, and we represent these regions as a clustering, this metric can be used 

to quantify information loss when describing a property in one robot versus another. 
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APPENDIX B 

SUMMARY OF NOTATION 

Sensors 

Set of sensors: },...,,{ 21 msssS =  

Number of sensors: |S| 

Set of observations at time t: },...,,{ ||,2,1, Stttt oooO =  

Sensor i of robot A: A

is  

Features 

Set of perceptual features: },...,,{ 21 pfffF =  where )(
ifif OΦ=  

where OO ⊆
if

denotes the set of input observations used by the feature detector 

Feature set of robot A: 
A

F  

Specific values of a set of features at time t: tF  

Specific value of a feature i: it,f  

Conceptual Space Representations 

Domain: },...,,{ 21 ndddD =  

Knoxel in conceptual space: >=< nkkkk ,...,, 21   

Symbol Set: Χ  

Representation of symbol Χ∈x , knoxel k : ]1,0[),(: →xkR  

Property set: Χ⊆P  

Prototype for property Pp ∈ : pk  

Weight between property i and j  in connection matrix C  of a concept: ),( jiC  
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Concept vector: c  

Similarity between concept c and c’: )',( ccs   

 Similarity between concept c and instance i: ),( ics  

Domains in conceptual space for concept c: cD  

Set of all properties involved in concept c: cP  

 (i.e. }0or  0 s.t. :{ >>∃∈= jppjc CCjPpP ) 

Instance matrix for concept c: ),(, jicI  

Set of knoxels from perceptual feature detectors: K  

Knoxel for instance i: ik  

Gaussian Mixture Model for property j: jG   

Property confusion matrix: ),( kjPC  

Concept confusion matrix: ),( kjCC  

Mutual Information (VI) for two clusterings G and G’: ),( B

j

A

i GGI  

Variation of Information (VI) for two clusterings G and G’: ),( B

j

A

i GGVI  

Other 

List of peer robots: AP  
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