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Abstract.

Specifying a reactive behavioral configuration for use by a multiagent team requires both a careful
choice of the behavior set and the creation of a temporal chain of behaviors which executes the mission.
This difficult task is simplified by applying an object-oriented approach to the design of the mission using
a construction called an assemblage and a methodology called temporal sequencing. The assemblage
construct allows building high level primitives which provide abstractions for the designer. Assemblages
consist of groups of basic behaviors and coordination mechanisms that allow the group to be treated as a
new coherent behavior. Upon instantiation, the assemblage is parameterized based on the specific mission
requirements. Assemblages can be re-parameterized and used in other states within a mission or archived
as high level primitives for use in subsequent projects. Temporal sequencing partitions the mission
into discrete operating states with perceptual triggers causing transitions between those states. Several
smaller independent configurations (assemblages) can then be created which each implement one state.
The Societal Agent theory is presented as a basis for constructions of this form. The Configuration
Description Language (CDL) is developed to capture the recursive composition of configurations in an
architecture- and robot-independent fashion. The MissionLab system, an implementation based on CDL,
supports the graphical construction of configurations using a visual editor. Various multiagent missions
are demonstrated in simulation and on our Denning robots using these tools.
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1. Introduction ers skilled in low-level control issues. Subsequent

developers using these components need only be

Reactive behavior-based architectures[3], [8] de- concerned with their specified functionality. Fur-

compose a robot’s control program into a collec-
tion of behaviors and coordination mechanisms
with the overt, visible behavior of the robot arising
from the emergent interactions of these behaviors.
The decomposition process supports the construc-
tion of a library of reusable behaviors by design-

*  This research is funded under ONR/ARPA Grant #
NO0001494-1-0215. The Mobile Robot Laboratory is sup-
ported by additional grants from the U.S. Army and NSF.
Tucker Balch and Khaled Ali have contributed to the Mis-
stonLab system, and provided assistance with the robot
experiments. The SAUSAGES simulation system was pro-
vided by Jay Gowdy and Carnegie Mellon University.

ther abstraction can be achieved by permitting
construction of assemblages from these low-level
behaviors which embody the abilities required to
exhibit a complex skill.

Creating a multiagent robot configuration in-
volves three steps: determining an appropriate set
of skills for each of the vehicles; translating those
mission-oriented skills into sets of suitable behav-
iors (assemblages); and the construction/selection
of suitable coordination mechanisms to ensure
that the correct skill assemblages are deployed
over the duration of the mission. The construction
and functionality of the Georgia Tech Mission-
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Lab software environment, based upon this pro-
cedure, is documented in this article. Support for
users in the various stages of mission development
(e.g., behavior implementation, assemblage con-
struction, and mission specification) is provided.
The primitive behavior implementor must be fa-
miliar with the particular robot architecture in
use and a suitable programming language such
as C++. The assemblage constructor uses a li-
brary of behaviors to build skill assemblages using
the graphical configuration editor. This allows vi-
sual placement and connection of behaviors with-
out requiring programming language knowledge.
However, the construction of useful assemblages
still requires knowledge of behavior-based robot
control. Specifying a configuration for the robot
team consists of selecting which of the available
skills are useful for the targeted environments and
missions.

The next section (Section 2) presents the So-
cietal Agent theory which forms the theoreti-
cal basis for this work. Section 3 presents the
Configuration Description Language, the language
used to represent configurations by the Mission-
Lab toolset. Section 4 overviews the Mission-
Lab toolset. A single robot mission is used to
demonstrate binding configurations to different
runtime architectures. Section 5 presents a four
robot scouting mission developed in simulation to
demonstrate the multiagent capabilities of the sys-
tem, while Section 6 shows a two robot experiment
to highlight the retargetability of configurations
developed using the system. Section 7 reviews the
related work and the summary and conclusions in
Section 8 complete the article.

2. The Societal Agent

Thinking of societal agents conjures up images
of herds of buffalo roaming the plains, flocks of
geese flying south for the winter, and ant colonies
with each ant seemingly performing exactly the
task that will provide the maximum utility to the
colony as a whole. Human examples tend more to-
wards hierarchies, with the prime examples being
large corporations and military organizations. In
each of these example societies, the components
are physical objects such as animals or humans.

Each buffalo, goose, ant and human can be
thought of as possessing a behavior-based con-
troller consisting of a society of agents (cf. [35]).
This leads to the view of a flock of geese as a huge
society with thousands of interacting agents. Rec-
ognizing each individual primitive behavior as an
autonomous agent is generally intuitive. However,
it is sometimes a struggle to accept the description
of coordinated societies of these agents as cohesive
agents in their own right. These higher-level, more
complex agents are as real as their component be-
havioral agents.

This abstraction is equally apparent in military
organizations. When commanders refer to their
command, they don’t speak of individuals, but
of the unit abstractions. A company commander
might ask for “the strength of platoon Bravo” or
“the location of Alpha platoon”, but rarely refers
to a particular soldier in one of those platoons.
The hierarchical structure of military units is in-
tentional. A squad consists of specific members
who live and train together as a group until they
form the cohesive unit called a squad. The squad
has specific commands that it can respond to such
as “deploy at location Zulu” or “attack objective
Victor”. Squads are intended to be as interchange-
able as possible in that they present the same re-
sponses to a command as any other would. All of
this serves to abstract the group of soldiers into
a “squad”, a high-level agent which is as unified
and concrete as an individual soldier.

As a second example of complex agents con-
sider the well-documented sexual behavior of the
three-spined stickleback[48] shown in Figure 1. As
the schematic shows, the sexual behavior involves
a complex temporal chain of behaviors which tran-
scends the individual male and female fish. The
arrival of a female showing the “ready to spawn”
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Fig. 2. Schematic of three-spined stickleback mating be-
havior showing three levels of abstraction. Level a repre-
sents the mating behavior as a single agent, Level b shows
the two individual fish, and Level ¢ shows the various op-
erating states required to create the mating behavior.

display signs triggers the male to do a zig-zag
dance, which triggers the female to swim towards
the male, which triggers the male to lead her to
the nest, and so on. The individual behaviors such
as the zig-zag dance, follow, and show-nest are in
fact represented as individual agents within the
Societal Agent theory. A coordination operator
transcending the individual fish uses these primi-
tive agents to create the sexual behavior apparent
in this example.

Now consider how one would specify a multi-
agent robotic society capable of exhibiting this
mating behavior. A design can be implemented
and tested to determine its validity, as opposed to
explanations of biological systems which are dif-
ficult to validate. Figure 2 shows a schematic of
the behaviors and coordination operators active
during the stickleback mating behavior. Level
a shows the representation of the reproductive
agent. While this behavior is dominant, the two
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fish are functioning as a single coherent agent,
much as one would speak of a herd of buffalo
or a marching band as a cohesive unit, having
substance, direction, and purpose. This is de-
composed in Level b to show the two individuals.
Level ¢ shows the various operating states present
in each of the two fish to support the mating rit-
ual.

The linear chain of behaviors shown in Figure 1
can be represented as a Finite State Automaton
(FSA) using the methods of Temporal Sequenc-
ing [4].
ods for partitioning a mission into discrete operat-
ing states and describing the transitions between
states. The FSA is partitioned into the relevant
male and female portions and distributed within
the respective robots (fish). However, the abstrac-
tion remains valid that a linear chain of behaviors
transcending an individual fish is sequenced us-

Temporal sequencing formalizes meth-

ing perceptual triggers. In robotic systems, sepa-
rate processes may implement the FSA, perhaps
even executing on a computer(s) physically remote
from the robots; or it may be distributed similarly
to the biological solution. In either case, the im-
plementation choice does not impact the abstract
description of the configuration.

2.1. The Atomic Agent

The specification of the components, connections,
and structure of the control system for a group of
robots will be called the configuration. A con-
figuration consists of a collection of active com-
ponents (agents), inter-agent communication links
(channels), and a data-flow graph describing the
structure of the configuration created from the
agents and channels. Configurations can be either
free or bound to a specific behavioral architec-
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ture and/or robot. The agent is the basic unit
of computation in the configuration with agents
asynchronously responding to stimuli (arrival of
input values) by generating a response (transmis-
sion of an output value). There are two types
of agents: atomic and assemblages. The atomic
agents are parameterized instances of primitive
behaviors while assemblages are coordinated so-
cieties of agents which function as a new cohe-
sive agent. Agent assemblages are defined in Sec-
tion 2.3 below.

The term agent has been overused in the litera-
ture but seems to most closely convey the essence
of what is intended here. Agent will be used to
denote a distinct entity capable of exhibiting a
behavioral response to stimulus. This definition
is intentionally broad to allow application to a
spectrum of objects ranging from simple feature-
extracting perceptual modules, perceptual-motor
behaviors, complex motor skill assemblages; indi-
vidual robots, and coordinated societies of multi-
ple robots.

Primitive behaviors are computable functions
implemented in some convenient programming
language, and serve as the configuration build-
ing blocks. An example of a primitive behav-
ior is a move-to-goal function which, given the
goal location, computes a desired movement to
bring the robot closer to the goal. Figure 3
shows a schematic of a simple atomic agent pa-
rameterized with the configuration parameters
parmy, parmsy, . .., parm,, .

To construct a formal definition of primitive
behaviors let f be a function of n variables,
(v1,va,...,v,), computing a single output value,
y. Define V1, V5, ..., V, as the set of achievable in-
put variables (either discrete or continuous). For
f to be a suitable function for a primitive behavior
it is required to be computable, meaning that it
is defined on all n-tuples created from the Carte-
sian product Vi x Vo x ... x V,,. Otherwise, there
will exist input sets which cause f to generate in-
determinate operation of the agent. Equation 1
formalizes this requirement of computable behav-
iors.

,Um) | f is defined
V(v1 X 02 X ... X Upy)

yzf('017'02,~~~

(1)

Equation 2 specifies that any entity capable of
stimulus-response behavior can be treated as a dis-
tinct agent.

Agent = Behavior (Stimulus) (2)

This leads to the question of whether a com-
putable function exhibits such behavior. In an-
swer, one can easily view the inputs to the function
as the stimulus and the computed output from this
stimulus as the response. Therefore we expand the
definition of an agent presented in Minsky’s “So-
ciety of Mind” [35] to encompass all situated com-
putable functions. For the function to be situated
requires that the inputs are not simple constants
but, in fact, dynamic dataflows providing tempo-
rally varying stimuli over the lifetime of the agent
in response to environmental changes.

2.2.  Primitive Behavior Classes

To support the construction of atomic agents from
primitive behaviors, a function definition is pro-
vided for each module class. Primitive behaviors
have been partitioned into four classes based on
the actions they perform: sensor, actuator, per-
ceptual, and motor.

Sensors are hardware dependent and are not
present in a free configuration. Instead, in-
put binding points are used as place holders to
mark where the sensor device drivers will be con-
nected during the hardware binding process. In-
put binding points are a source for the configura-
tion dataflows.

Similar to sensors, actuators are not present
in a free configuration. Instead, output binding
points are used to mark where the actuator will
be connected during binding. The output binding
point is a dataflow sink in the configuration.

Perceptual modules function as virtual
sensors[18], [19] which extract semantically mean-
ingful features from one or more sensation streams
and generate as output a stream of features (indi-
vidual percepts). Viewing perceptual modules as
virtual sensors facilitates hardware-independent
perception and task-oriented perceptual process-
ing relevant to the current needs of the configura-
tion.
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Motor modules consume one or more feature
streams (perceptual inputs) to generate an ac-
tion stream (a sequence of actions for the robot
to perform). Formally, a motor module M uses
information from one or more feature streams
P, Ps, ..., P, to generate an action a; at time ¢.

2.3. The Assemblage Agent

An assemblage is actually a coordinated society of
agents which are treated as a new coherent agent.
For example, an agent can be constructed from a
society of other agents using a suitable coordina-
tion operator, C' as follows.

Agent = C (Agent,, Agent,, ..., Agent;)

When an assemblage agent is constructed,
subordination occurs with one or more agents
placed subordinate to the coordination operator.
The construction creates a new assemblage agent
which encapsulates the subordinates, thereby con-
cealing them from other agents and forcing all in-
teractions with the subordinates to be initiated
via the coordination operator. Figure 4 shows
a schematic diagram for a simple configuration.
Each box represents an agent, with nested boxes
denoting agents subordinate to the surrounding
agent. In the example, the agents are labeled with
either A; for atomic and assemblage agents and C;
for coordination operators.

The assemblage construction can be denoted
functionally. For example, in Figure 4, the case of
As created by making A4 subordinate to the co-
ordinator Cy is denoted Cq (A4). Equation 3 pro-
vides a complete expansion of the recursive con-
struction of Figure 4.

C5 (C2 (C1 (A1, A2)),Ca (C3 (A6, A7), As))  (3)
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2.4. Classes of Coordination Modules

A coordination module modifies the activities of
the group of agents it is connected to, exploiting
the strengths of each to execute a specific task.
This intervention may range from none (the null
case) to explicit coordination of each and every ac-
tion of its members. Figure 5 shows a taxonomy
of the coordination mechanisms presented in this
section. Notice that coordination is partitioned
at the top level into state-based and continuous
classes.

State-based coordination mechanisms partition
the agents they are managing into distinct groups,
allowing only a subset of the total agents to be ac-
tive at any one time. This behavior allows the op-
erating system to suspend execution and perhaps
de-instantiate all but the active group of agents to
conserve resources.

Continuous coordination mechanisms utilize re-
sults from all the agents they are managing to gen-
erate the desired output. This behavior requires
that all the agents remain instantiated and execut-
ing. Cooperative coordination which merges the
outputs from each individual agent into a single
value is perhaps the best example of continuous
coordination.

Competitive The competitive style of coordi-
nation selects a distinguished subset of the so-
ciety to activate based upon some metric. The
process of determining this collection of active
members (arbitration) can use a variety of tech-
niques including spreading activation, assigning
fixed priorities, or using relevancy metrics. Ar-
chitectures using competition mechanisms include
spreading activation nets[31], and the subsump-
tion architecture[8].

Figure 6 shows a Colony Architecture network
[12] with three behaviors and two suppression
nodes (labeled S). The design is that if behavior
3 has something to contribute, then it overwrites
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any outputs generated by behaviors 1 and 2. Oth-
erwise, behavior 2 is given a chance to control the
robot if it determines it is applicable and finally
behavior 1 will output commands as a default be-
havior.

Consider how Figure 6 would be represented
in the Societal Agent architecture. First, de-
fine the functions computing the three behavior
policies as behavl, behav?, behav3 which trans-
form input values to outputs. Next, define the
three boolean applicability predicates as the func-
tions valid1, valid2, and valid3 which determine if
the corresponding policies are relevant and likely
to generate useful values or not. These six func-
tions would need to be implemented by the user
to actually compute the expected algorithms; in
this construction they are simply referenced by
name. Equation 4 defines a suitable suppression
function, suppress for use in implementing the net-
work, where hi is the value of the function when
the boolean flag hi_valid signals that the high pri-
ority input is valid and low is the default value of
the function.

hi if hi_valid

suppress(hi, hi_valid, low) = { low otherwise (4)

Using Equation 4 twice allows specification of Fig-
ure 6 functionally as shown in Equation 5.

suppress(behav3, valid3, 5

suppress(behav2, valid2, behavl)) (5)
Notice that, based on the definition of suppress in
Equation 4, behav3 correctly dominates when it is
valid, otherwise behav2 dominates behavi when it
has valid data and behav! is only allowed to gen-
erate an output when both of the other behaviors
are not generating useful data.

Temporal Sequencing Temporal sequenc-
ing [4] is a state-based coordination mecha-
nism which uses a Finite State Automaton
(FSA)[20], [1] to select one of several possible
operating states based on the current state, the
transition function, and perceptual triggers. Each
state in the FSA denotes a particular member
agent which is dominant when that state is ac-
tive. This type of coordination allows the group
to use the most relevant agents based on current
processing needs and environmental conditions.
Equation 6 provides a formal definition of tem-
poral sequencing using the coordination function
fseq- This function uses the FSA o containing
the set of perceptual triggers along with the set of
agents [a1,as, ..., a;,] to select the specific agent
to activate based on the current state in the FSA.

., @m, @) = a; | state ¢ is active in «

(6)

fseq ((11, ag, ..

Without loss of generality, assume that there is a

one-to-one mapping of states in the FSA to the

list of members [a1,as, ..., ay], with agent a; ac-
tive when the FSA is operating in state i. The

Finite State Automaton (FSA) « is specified by

the quadruple[20] (@, d, go, F') with

o () the set of states, {qo0, 491, .., ¢m} Where each
¢; is mapped to a;.

e § the transition function mapping the current
state (¢;) to the next state ¢;41 using inputs
from the perceptual triggers is generally repre-
sented in tabular form.

® go € () is the start state.

o F C (@ is the set of accepting states which sig-
nal the completion of the sensorimotor task.
Consider specification of a configuration imple-

menting a janitorial task for a team of robots (e.g.,
1994 AAAT mobile robot competition[5]). Specif-
ically, each robot should wander around looking
for empty soda cans, pick them up, wander around
looking for a recycling basket, and then place the
can into the basket. Figure 7 is a graphical rep-
resentation of an FSA for such a robotic trash
collector. The circles represent the possible op-
erating states with the label indicating the assem-
blage agent active during that state. The arcs are
labeled with the perceptual triggers causing the
transitions, where relevant.
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The FSA in Figure 7 would be represented by
the quadruple

({Start, Look_for_can, Pick_up_can,
Look_for_basket, Put_can},d, Start, ()

Notice that in this case there are no accepting
states since during the competition the robots ran
until they were manually turned off. The tran-
sition function ¢ for the trash collecting FSA is
specified in Table 1.

Powering up in the start state, the robot begins
to wander looking for a suitable soda can, oper-
ating in the Look_for_can state. When a can is
perceived, the Pick_up_can state is activated and
if the can is successfully acquired, a transition to
the Look_for_basket state occurs. Loss of the can
in either of these states causes the FSA to fall back
to the previous state and attempt recovery. When
a recycling basket is located, the Put_can state be-
comes active and the can is placed in the basket.
A transition back to the Look_for_can state repeats
the process.

Cooperation The cooperative class of coordi-
nation manages the actions of members of the so-
ciety to present the appearance and utility of a
single coherent agent. Vector summation in the
AuRA[3], [2] architecture is such a mechanism.
The AuRA gain-based cooperation operator can
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be represented functionally as a weighted vector
summation, as shown in Equation 7. In this case,
the coordination function f scales each of the in-
put vectors v; by its corresponding weight (gain)
w; before computing the vector sum of these scaled
inputs as the output for the group.

—

F (01, T,y Uy wr, W, wn) = Y (T, % w)

(7)

Figure 8 shows a schematic example of gain-
based cooperation in AuRA. All of the behaviors
Avoid_obstacles, Move_to_goal, Noise, and Probe
are active and generate a vector denoting the di-
rection and speed they would like the robot to
move. This representation allows a simple vector
summation process to compute a composite vec-
tor which represents the group’s behavioral con-
sensus.

3. The Configuration Description Lan-
guage

The Configuration Description Language (CDL)
captures the critical uniform representation of re-
cursively defined agents developed in the Societal
Agent theory. CDL supports the specification of

Table 1. Tabular representation of § function for Figure 7 FSA

State normal terminal error

Start Look for_can Look _for_can 0

Look _for_can Look for_can Pick_up_can 0
Pick_up_can Pick_up_can Look for_basket  Look_for_can
Look for_basket Look_for_basket Put_can Pick_up_can
Put_can Put_can Look _for_can 0
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architecturally independent configurations which
are not couched in the terms of some particular
robot architecture. It is an agent-based language
which encourages the construction of new agents
from coordinated collections of existing agents.
These new agents are treated as atomic objects
with the same stature as all other agents avail-
able to the system designer. The recursively con-
structed configurations created using this process
faithfully follow the Societal Agent theory.

To support the construction of generic configu-
rations and thereby the ability to target disparate
robot run-time architectures, hardware bindings
are separately and explicitly represented only
when a CDL configuration is deployed on par-
ticular devices. This lifting of generic configu-
rations above run-time constraints ensures maxi-
mum code reuse opportunities by minimizing ma-
chine dependencies.

Mechanisms for implementing the individual
software primitives which ground the recursive
constructions are architecture dependent and re-
side below the scope of a CDL representation. For
our purposes it is sufficient to be assured that a
suitable collection of primitives is available and
that each supported robot run-time architecture
can utilize some subset of this collection. CDL
supports mechanisms for describing the interfaces
to such primitives so they are available for use.
The task for the configuration designer is to take
these building blocks and describe how they are to
be combined and deployed to perform a particular
mission.

3.1. OQverview of CDL

CDL is used to specify the instantiation and coor-
dination of primitives and not their implementa-
tion. Therefore, each of the primitives must have
a CDL definition which specifies its programming
interface. For example, a primitive which adds
two numbers and returns their result might have
a CDL definition such as

defPrimitive integer Add (integer A, integer B);

This defines the primitive Add which takes two
integer inputs A and B and outputs an integer.

An agent can be instantiated from the Add
primitive just by referencing it, as in

Add (A = {3},B= {5));

This statement creates an instance of the Add
primitive and assigns the constant initializer 3 to
the input A and 5 to the input B. Although the
implementation of Add is not specified, we expect
that the output of the agent will be 8. Notice
from this example that parameters are specified
by name and passed by value in CDL. These fea-
tures support tight syntax checking and eliminate
side effects. All constant initializer strings are sur-
rounded in { } brackets to simplify parsing.

The previous statement created an anonymous
(unnamed) agent. CDL uses a functional nota-
tion to specify recursive construction of objects
and the only mechanism for extracting the out-
put value from such an agent is to embed the in-
vocation on the right-hand side of an assignment
statement using standard functional notation. For
example, this statement creates two nested anony-
mous agents where the input parameter A for the
outermost one gets the output value 8 from the
innermost one and then adds 1 to it.

Add (A = Add (A = {3},B={5}),B={1}); (8)

Although powerful, this nesting can become
cumbersome when carried to great depths. It
also prevents the output value from an agent to
be shared by multiple consumers. However, if an
agent is given a name the output value can be ref-
erenced using that name. This partitions the spec-
ification of the agent from its usage and allows the
output value to be used in multiple places. Cre-
ating a named agent is accomplished using the
instAgent keyword.

instAgent myAgent from Add (A = {3},B = {5})

Now other agents can reference the output of
myAgent by name.

Add (A = myAgent, B = {1});

is equivalent to the earlier nested agents decla-
ration. Notice the uniformity with usage of the
in-line anonymous agents.



Fig. 9. Three trash collecting robots from AAAI94[5]

It is important to be aware that each agent in-
stantiated from a particular primitive is a unique
entity, disjoint from all other instantiations of the
primitive. When data values must be distributed
to multiple consumers the named agent mecha-
nism must be used to ensure that the same process
is providing the data to all consumers.

An important feature of CDL is the support
for recursive construction of assemblages. An as-
semblage is a coordinated society of agents which
can be treated exactly the same as a primitive be-
havior. A common situation is for a designer to
spend time building and debugging a configura-
tion which completes a single high-level task such
as traveling down a hallway or chasing a moving
target. Once completed, this configuration should
be archived to a library as a new high-level as-
semblage for later reuse. CDL provides a simple
mechanism for converting a complex agent instan-
tiation to an assemblage which can later be instan-
tiated.

In CDL assemblages are created using the
defAgent keyword. Consider, for example, State-
ment 8 which demonstrated the nesting process.
We can turn that agent into an assemblage as fol-
lows:

defAgent Add8 from Add(A =
Add (A = {3},B = {5}) ,B = {A Val}),

Notice the use of the {~ Val} deferral operator
to push up a parameter to the level of the new
assemblage definition. This mechanism allows the
designer to provide values for those parameters
which are truly internal to the new construction
while making relevant parameters visible to the
user. In this case the value of input B is deferred
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and also renamed to Val. This creates an assem-
blage which has an interface equivalent to the fol-
lowing primitive definition. Agents can be instan-
tiated from this assemblage in exactly the same
manner as from a true primitive.

defPrimitive integer Add8 (integer Val);

When an agent is instantiated from the assem-
blage the value assigned to Val will replace the
deferral operator, and is the value assigned to in-
put B.

This completes our cursory overview of the
usage of CDL. There are many syntactic con-
structions related to defining the operators,
binding points, and data types which have
yet to be explained. Some of these will be
presented in the next section during develop-
ment of the example configuration. The com-
plete definition of CDL can be retrieved from
WwW.cc.gatech.edu/ai/robot-lab/research/MissionLab

as part of the MissionLab documentation.

3.2.  Ezample Janitor Configuration

The use of CDL will now be further demonstrated
by constructing an example robot configuration
for the cleanup the office (or janitor) task us-
ing three robots. This task is similar to the
1994 AA AT mobile robot competition[5] where the
robots retrieved soda cans and placed them near
wastebaskets.

Reconsider the trash collecting state-transition
diagram Figure 7 from Section 2. Let’s call this
the cleanup agent. During the actual AAAT com-
petition a similar cleanup agent was deployed on
each of the three vehicles shown in Figure 9 to re-
trieve soda cans and place them in wastebaskets?.
We will use this cleanup agent to construct a
janitor configuration similar to the one used in
the AAAI competition.

The CDL description for the top level of the
generic janitor configuration shown in Figure 10
represents the three cleanup robots as a single jan-
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/* Define cleanup behavior as a prototype */
1. defProto movement cleanup();

/* Instantiate three cleanup agents */
2. instAgent Io from cleanup();
3. instAgent Ganymede from cleanup();
4. instAgent Callisto from cleanup();

/* Create an uncoordinated janitor society */
5. instAgent janitor from IndependentSociety(
Agent[A]=Io,
Agent[B]=Ganymede,
Agent[C]=Callisto);

/* janitor agent is basis of configuration */
6. janitor;

Fig. 10. Partial CDL description of multiagent janitor
configuration. Note that comments are bounded by /* */
and that line numbers were added to allow reference to
particular statements and are not part of CDL.

itor entity. We will now examine each statement
of the janitor configuration.

Statement 1 defines a prototype cleanup be-
havior. The prototype creates a placeholder which
allows building a particular level in the configura-
tion before moving down to define the implemen-
tation of the cleanup behavior as either an assem-
blage or a primitive. This is an important feature
when building configurations in a top-down man-
ner. The defProto keyword is not yet supported
in MissionLab and only a single built-in proto-
type behavior is available. Conversion to support
the defProto syntax will expand the ability of
designers to work in a top-down fashion using the
toolset.

The prototype cleanup agent in Statement 1
generates an output of type movement. The
movement data type is used to send motion com-
mands to control motion of the robot and contains
the desired change in heading and speed.

Statements 2, 3 and 4 instantiate three agents
based on the cleanup behavior. Since this con-
figuration is being constructed from the top down
and it is known a prior: that it will control three
robots, an early commitment to a three agent so-
ciety is taken in these statements.

Statement 5 creates a society of three of the
cleanup agents and gives it the name janitor. It
also introduces new notation which requires ex-
planation. CDL partitions the primitive behav-
iors from the operators used to coordinate them.
This helps to keep both the behaviors and oper-

ators independent and understandable. In State-
ment 5, IndependentSociety is a coordination op-
erator which can be defined as follows:

defOperator movement IndependentSociety

CONTINUOUSstyle (list integer Agent) ;

This defines the IndependentSociety opera-
tor as coordinating a list of agents. The
CONTINUQUSstyle keyword means that the opera-
tor is not state-based and that the output will be
a function of the instantaneous inputs. This in-
formation provides information to the CDL com-
piler allowing it to generate more efficient code.
The list keyword defines the input parameter
as a list of movement entries. Assignments to
lists use the [ ] brackets to denote the index, in
this case A, B, and C are used for the indices.
These only matter when the list consists of two
or more inputs which must be kept in correspon-
dence. The IndependentSociety operator is im-
plemented to have no coordinative effect on the
individual robots in Figure 9, allowing them to
operate independently.

Statement 6 specifies that the janitor society
is the top level in the configuration. This extra
step is necessary since some or all of the preced-
ing statements could be placed in libraries and
this reference would cause their linkage. One of
the design requirements for this configuration was
to utilize the three available robots as an indepen-
dent homogeneous group. Figure 10 demonstrates
satisfaction of that design goal.

The next step is to define the implementation
of the cleanup prototype. This behavior is im-
plemented as a state-based coordination operator.
The FSA presented in Figure 7 was programmed
graphically using the configuration editor which
will be presented in Section 4. The code generated
by the editor isn’t particularly interesting and will
be left out for the sake of brevity. A screen snap-
shot showing the FSA in the editor appears as
Figure 17.

The FSA is implemented with agents for each
operating state and perceptual trigger. The FSA
coordination operator has input connections from
each of the state agents and each of the trigger
agents. The output of the agent implementing
the current state is passed through as the output
of the FSA. The FSA ¢ transition function is used
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/*Define weighted combination coordination operator*/
1. defOperator movement WeightedCombination
CONTINUOUSstyle(list movement inputs,
list float weights);

/* Create explore agent from coordination operator */
2. instAgent LookForCan from WeightedCombination(
/* Define the agents active when explore is active */
2a. inputs[A] = Wander(persistence = {10}),
2b.  inputs[B] = Probe(objects = {" }),
2c.  inputs[C] = AvoidObstacles(objects = {" }),
2d. inputs[D] = AvoidRobots(objects = {" }),

/* Define each agent’s contribution */

2e. weights[A] = {0.5},
2f.  weights[B] = {1.0},
2g. weights[C] = {1.0},
2h.  weights[D] = {0.8},

/* Push up specification of parameter to parent */
2.  objects = {" });

Fig. 11. Partial CDL description of LookForCan agent

along with the perceptual trigger inputs to deter-
mine the new (possibly the same) state.

Figure 11 provides a definition of LookForCan
as a representative example of the motor agents
implementing the states in the cleanup FSA.
Statement 1 defines the WeightedCombination
coordination operator which computes a weighted
combination of its inputs.

Statement 2 defines the LookForCan agent
as the coordinated combination of the Wander,
Probe, AvoidObstacles, and AvoidRobots
agents. The objects input parameter has been
deferred and will be determined at the FSA level.
The WeightedCombination coordination operator
uses the list of matching weights in the combina-
tion process to control the relative contributions
of the three agents to the groups output.

The AvoidObstacles agent is shown in Fig-
ure 12. Statement 1 defines a new class of in-
put binding points and gives them the name
sense_objects. The input binding points serve
as connection points for input sensor device
drivers when configurations are bound to spe-
cific robots. The definition declares that sen-
sors of this type generate streams of ObjectList
readings and require a configuration parameter
max_sensor _range denoting the distance beyond
which sensor readings are ignored. Note the uni-
form representation of input binding points com-

/* Define a new class of input binding points */
1. defIBP ObjectList sense_objects(

number ma.x_sensor_range) ;

/* Create the AvoidRobots agent */
2. instAgent AvoidRobots from AvoidObjects(
2a. horizon = {2.0},
2b. safety_margin = {0.5},

/* Defer specification of the objects parameter */
2c.  objlist = FilterObjectsByColor(
color = {Green}, objects = {" }),

/* Push up objects parameter to our parent */

2d. objects = {" });

Fig. 12. Partial CDL description of AvoidRobots agent

pared to the other primitives. CDL attempts to
keep the syntax similar for all objects.

Statement 2 creates the AvoidRobots agent
as an instance of the primitive AvoidObjects.
This primitive motor module uses a horizon and
safety margin to determine the strength of its re-
action to objects. Statement 2c specifies the list of
objects that AvoidRobots will respond to is con-
structed by FilterObjectsByColor. This per-
ceptual filter module removes those objects from
its input list whose color doesn’t match the spec-
ified value. In this example, the robots are green.

AvoidObjects is a primitive and CDL does not
include a facility for directly specifying the im-
plementation of primitive behaviors. Instead, for
each supported robot run-time architecture a par-
ticular primitive is to be available in, an agent
prototype definition describing the interface to the
module is used to make the primitive available for
use by the designer.

The CDL syntax has been overviewed and an
example configuration developed in detail. The
uniform treatment of objects in CDL provides a
clean syntax for the user. The recursive support
for the construction of assemblages allows build-
ing high-level primitives and archiving them for
later reuse.

3.3.  Binding

One of the strengths of CDL is its support for
retargeting of configurations through the use of
generic configurations and explicit hardware bind-
ing. The binding process maps an abstract config-



12 MacKenzie, Arkin, and Cameron

/* Define new blizzard class of robots */

1. defRobotModel AuRA blizzard(

movement wheel Actuator; objlist objectSensor);

/* Specify there are three blizzard robots */
2. defRobot Io isA blizzard;
3. defRobot Ganymede isA blizzard;
4. defRobot Callisto isA blizzard;

/* Bind the robots to copies of cleanup agent */

5. bindRobot Io(wheelActuator =
cleanup(objects=objectSensor));

6. bindRobot Ganymede(wheelActuator =
cleanup(objects=objectSensor));

7. bindRobot Callisto(wheel Actuator =
cleanup(objects=objectSensor));

/* Create uncoordinated society of the agents */
8. instAgent janitor from IndependentSociety (
Agent[A]=Io,
Agent[B]=Ganymede,
Agent[C]=Callisto);

/* Specify janitor agent as basis of configuration */
9. janitor;

Fig. 13. CDL description of janitor configuration bound
to the three robots

uration onto a specific collection of robots linking
the executable procedures and attaching the bind-
ing points to physical hardware devices. At this
point the user commits to specific hardware bind-
ings. The hardware binding process must ensure
that required sensing and actuator capabilities are
available with user interaction guiding selection
when multiple choices are available. The first step
during binding is to define which portions of the
configuration will be resident on each of the target
robots. This partitioning can occur either bottom
up or top down.

Working from the bottom up, the input and
output binding points can be matched with the
capabilities of the pool of available robots to cre-
ate a minimal mapping. For example, a surveil-
lance configuration might specify use of both vi-
sion and sound detectors. Such a configuration
might be deployed on one robot which has both
sensors available or two robots, each with a single
class of sensor. A second use of the list of required
sensor and actuator capabilities is to use it as a de-
sign specification for the robotic hardware. In this
scenario, the configuration is constructed based on
the mission requirements. The actual hardware is

later tailored to the requirements originating from
this design.

An alternate method of completing the bind-
ing process is to work from the top down. In this
case, the configuration may be partitioned along
the lines of the behavioral capabilities required
on each vehicle or based on the desired number
of vehicles. For example, mission requirements
may specify four scouting robots and one support
robot. These requirements may be driven by de-
sired coverage, protocol, redundancy, and budget
constraints.

Binding a portion of a configuration to a spe-
cific robot will also bind that portion to a specific
architecture since robots are modeled as support-
ing a single architecture to simplify the configu-
rations. If a particular robot happens to support
multiple architectures, multiple robot definitions
can be created with different names, one for each
architecture. Therefore, we can restrict a single
robot definition to supporting a single run-time
architecture with no loss of generality. During
binding to a particular architecture, the system
must verify that all components and coordination
techniques used within the configuration are real-
izable within the target architecture since certain
behaviors may not have been coded for that archi-
tecture and some styles of coordination operators
can be architecture specific.

Figure 13 shows the relevant CDL code for the
janitor after it has been bound to the three
robots shown in Figure 9. Statement 1 defines
a class of robots called blizzard. This defini-
tion also specifies the set of sensors and actuators
available on robots of this class. The actuator
driving the vehicle is called wheelActuator and
has a data type of movement. The only sensor on
the robots, objectSensor, returns a list of per-
ceived objects.

Statements 2-4 define three particular blizzard
robots, Io, Ganymede, and Callisto. Statements
5-7 bind an instance of the cleanup agent to each
of the robots. Statement 8 creates a society of
the three robots and gives it the name janitor.
Statement 9 specifies that the janitor society is
the top level in the configuration.

This binding process completes construction of
the configuration bound to the three available bliz-
zard robots. The configuration is now ready for
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the code generators to create executables for each
of the three robots. Once the executables are com-
plete, the configuration can be deployed on the
vehicles and executed.

The graphical configuration editor built into
the MissionLab toolset (presented in the next sec-
tion) supports automatic binding of configurations
to robots. When the user clicks on the bind but-
ton, the system analyzes the configuration, match-
ing output and input binding points to robot ca-
pabilities. It attempts to minimize the number
of robots required to deploy a configuration and
prompts for user input when choices are required.
This vastly simplifies the binding process and pro-
motes the creation of generic configurations.

4. MisstonLab: An Implementation

The MissionLab toolset has been developed based
on the Configuration Description Language. It
includes a graphical configuration editor, a mul-
tiagent simulation system, and two different ar-
chitectural code generators. The graphical Con-
figuration Editor (CfgEdit) is used to create and
maintain configurations and supports the recur-
sive construction of reusable components at all
levels, from primitive motor behaviors to soci-
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eties of cooperating robots. CfgEdit supports this
recursive nature by allowing creation of coordi-
nated assemblages of components which are then
treated as atomic higher-level components avail-
able for later reuse. The Configuration Editor al-
lows deferring commitment (binding) to a partic-
ular robot architecture or specific vehicles until
the configuration has been developed. This ex-
plicit binding step simplifies developing a config-
uration which may be deployed on one of several
vehicles which may each require use of a specific
architecture. The process of retargeting a con-
figuration to a different vehicle when the avail-
able vehicles or the system requirements change is
similarly eased. The capability exists to generate
either code for the ARPA Unmanned Ground Ve-
hicle (UGV) architecture or instead for the AuRA
architecture and executable within the Mission-
Lab system. The AuRA executables drive both
simulated robots and several types of Denning ve-
hicles (DRV-1, MRV-2, MRV-3). The architecture
binding process determines which compiler will be
used to generate the final executable code, as well
as which libraries of behavior primitives will be
available for placement within the editor.

4.1.  Designing Configurations with MissionLab

To demonstrate use of the toolset we will rede-
velop the janitor configuration just described. Re-
call that the design requirements for the configu-
ration called for the creation of a janitorial robot
which would wander around looking for empty
soda cans, pick them up, wander around looking
for a recycling basket, and then place the can into
the basket. We will refer to the configuration ful-
filling these design requirements as the trashbot
configuration. Figure 7 and Table 1 presented the
operating states and specified the FSA required
to implement the task. Recall that the five oper-
ating states are: Start, Look_for_can, Pick_up_can,
Look_for_basket, and Put_can.

Powering up in the start state, the robot begins
to wander looking for a suitable soda can, oper-
ating in the Look_for_can state. When a can is
perceived, the Pick_up_can state is activated and
if the can is successfully acquired, a transition to
the Look_for_basket state occurs. Loss of the can
in either of these states causes the FSA to fall back
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to the previous state and attempt recovery. When
a recycling basket is located, the Put_can state be-
comes active and the can is placed in the basket.
A transition back to the Look_for_can state repeats

the process.
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To start construction an output binding point
is placed in the workspace where the actuator to
drive the wheels of the robot around will later be
attached. Figure 14 shows the Configuration Ed-
itor after the “OBP” button was pressed to bring
up the list of possible output binding points. In
this case, the movement binding point was se-
lected. Figure 15 shows the workspace with the
binding point in place.

During the design process it was determined
that the recycle_cans skill required at the top level
of the trashbot configuration is temporally separa-
ble and best implemented using state-based coor-
dination. Therefore an FSA coordination opera-
tor will be used as the top level agent within the
robot. The FSA operator is selected and placed in
the workspace and then connected by clicking the
left mouse button on the output and input arrows
for the connection. Figure 16 shows the workspace
after this connection is made.
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The Configuration Editor supports the graphi-
cal construction of FSAs. In Figure 17, the opera-
tor has moved into the FSA workspace and defined
its state diagram. The figure shows the state ma-
chine implementing the recycle cans skill for the
trash collecting robot. Compare Figure 17 with
the state diagram shown in Figure 7. The circles
represent the various operating states within the
FSA with the rectangle in the center of each circle
listing the behavior which will be active when the
robot is in that operating state. The arcs repre-
sent transitions between operating states, with the
arrow heads denoting the direction of the transi-
tion. The icon near the center of the arc names the
perceptual trigger activating the transition. Click-
ing on the states or transitions with the right but-
ton brings up the list of assemblages or perceptual
triggers to choose from. Clicking the middle but-
ton on an icon brings up the list of parameters
for that particular assemblage or trigger, allowing
parameterization.

If the available assemblage or trigger choices
are not sufficient, the designer can specify new
constructions. These may in turn be state-based
assemblages, but generally are cooperative con-
structions. In this case, we will examine the wan-
der assemblage. Notice that it is used to both look
for cans and home base. The only difference be-
tween the two states is the object being searched
for, and detection of the target object is encapsu-
lated in the termination perceptual trigger.

Figure 18 shows the Wander skill assemblage
used in the trashbot configuration. This page is
reached by shift middle clicking on either Wander
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state in the FSA. The large glyph on the right is
an instance of the Cooperative coordination oper-
ator. This operator is responsible for creating a
single output value for the group which merges
contributions of the constituent behaviors. In
the AuRA architecture, this operator calculates
a weighted vector sum of its inputs. The three
glyphs on the left of the figure are the iconic views
of the three behaviors active within the wander as-
semblage, noise, probe, and avoid_static_obstacles.
Noise induces randomness into the assemblage
to increase coverage, Probe is a free-space seek-
ing behavior which keeps the robot from wast-
ing large amounts of time in cluttered areas, and
Avoid_static_obstacles attempts to keep the robot
a safe distance from objects in the environment.
The outputs from these behaviors are weighted
by the factors specified in the Cooperative glyph.
In this case, noise has a weight of 0.8 while the
weights for probe and avoid_static_obstacles are
deferred by pushing them up to the next higher
level. This allows these values to be specified at
the FSA level.

Each of these behaviors are library functions
that require no further expansion, however, they
consume perceptual inputs that must be speci-
fied. In Figure 19 the operator has moved into the
avoid_obstacles behavior to parameterize the mo-
tor behavior and connect the object detector in-
put binding point. The sphere and safety_margin
parameters set the maximum distance where ob-
stacles still have an effect on the robot and the
minimum separation allowed allowed between the
robot and obstacles, respectively. Passing closer
than the safety_margin to an obstacle may cause
the robot to convert to a “cautious” mode where
it slowly moves away from the offending obstacle.

Returning to the top level of the configuration
we now have defined the behavior of the recy-
cle_cans assemblage. At this point it is a good
time to bind the configuration to a specific robot,
in this case one of our Blizzards. Clicking on the
“Bind” button starts this process. First, a popup
menu allows selecting to which architecture the
configuration will be bound. This determines the
code generator and runtime system that will be
used. In this case we will choose the AuRA ar-
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chitecture (the other current choice is the UGV
architecture).

Next, the system prompts for selection of a
robot to be bound to the assemblage (Figure 20).
In this case we will choose to bind this configu-
ration to an MRV-2 Denning robot. This inserts
the robot record above the displayed page, creat-
ing our recycling robot. If multiple robots are re-
quired, this robot can be replicated using the copy
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Fig. 23. Generic configuration suitable for binding to ei-
ther architecture
facilities in cfgedit. Figure 21 shows the resulting
configuration with three robots specified.

Although we have not shown every component
of the trashbot configuration, construction of this
representative subset has given an overview of the
design techniques propounded and served to high-
light usage of the Configuration Editor. The next
step in the development process is to generate a
robot executable and begin evaluation of the con-
figuration.

When the configuration is bound to the AuRA
architecture the CDL compiler generates a Con-
figuration Network Language (CNL) specification
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Fig. 25. Snapshot of operator console after executing the
mission shown in Figure 23 on a real MRV-2 Denning robot.
The dark circles mark obstacle readings during the run in
the Mobile Robot Lab. The same map overlay was used as

of the configuration as its output. CNL is a hy- in the simulated mission. in Figure 24.

brl.d dataflow language.[25] using large grain paral- where it is teleoperated and then it returns to the
lelism where the atomic units are arbitrary C++
functions. CNL adds dataflow extensions to C++
which eliminate the need for users to include com- tion is bound to the AuRA architecture and de-

munication code.'Th'e outpu‘? of the CNL compiler ployed on the MRV-2 robots. Figure 24 shows the
is a C++ file which is compiled into a robot exe-

cutable. configuration executing in the MissionLab simula-

MissionLab includes an operator console used tion system. Figure 25 shows the same executable
to execute missions in the AuRA architecture by

simulation or with real robots. The operator dis-
play shows the simulation environment, the loca- Note that the same operator console is used to
tions of all simulated robots, and the reported po-
sitions of any real robots. Figure 22 shows the

Fig. 24. The configuration from Figure 23 executing in
the MissionLab simulator. The two circles are landmarks
in the map overlay which were not used during this mission.

starting area before halting. First the configura-

controlling one of our Denning MRV-2 robots.

control simulated and real robots, so Figure 25

Janitor configuration executing in simulation us- appears very similar to Figure 24 even though the

ing the AuRA runtime architecture. Within the first reflects a real robot run and the second shows
main display area robots, obstacles, and other fea-
tures are visible. The solid round black circles are
obstacles. The three robots are moving actively robot during the mission.
gathering trash and the paths they have taken are
shown as trails. For more details on MissionLab,
see [11]. unbound and then rebound to the UGV archi-

Configurations properly constrained to use only

the available behaviors can be bound to the UGV ]
architecture. In this case the SAUSAGES code based SAUSAGES code suitable for use by the

a simulated execution. Figures 26 and 27 show the

As a final demonstration, the configuration is

tecture. The code generator now emits LISP-

generator is used. There are currently three avail- SAUSAGES simulator developed at Carnegie-
able behaviors; move to goal, follow road, and

teleoperate. SAUSAGES is a Lisp-based script
language tailored for specifying sequences of be- of the SAUSAGES simulator after execution of the

Mellon University. Figure 29 is a screen snapshot

haviors for large autonomous vehicles.

Figure 23 shows the state transition diagram
for a mission constructed within these limits. The
robot moves through two waypoints to an area by straight lines to show the projected route.

mission. The robot does not leave trails in this

simulator, although the waypoints are connected
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Fig. 26. Photo of robot executing the Figure 23 mission at
start/finish location near the doorway landmark.

5. Simulated Robot Scouting Mission

A four robot scouting mission has been con-
structed and evaluated in simulation. A
MoveInFormation behavior was created which
causes the robot to move to a specified map lo-
cation while maintaining formation with other
robots [6]. The robots each have an assigned spot
in the formation and know the relative locations
of the other robots. Each robot computes where it
should be located relative to the other robots, and
the Maintain_Formation behavior tries to keep it
in position as the formation moves. The choice
of formation can be selected from Line, Wedge,
Column, and Diamond. The separation between
robots in the formation is also selectable at the
FSA state level.

Figure 30 shows the state transition diagram
used in the mission. In this case, explicit coor-
dinates are used as destinations. Notice that the
robots begin moving in line formation. They then
switch to column formation to traverse the gap
in the forward lines (passage point). The robots
travel along the axis of advance in wedge forma-
tion and finally occupy the objective in a diamond
formation.

Figure 31 shows the robots during execution
of the scout mission in the MissionLab simulator.
The robots started in the bottom left corner mov-
ing up in line formation, then moved right in col-
umn formation, and are now moving to the right
in a wedge formation. Figure 32 shows the com-

Fig. 27. Photo of robot executing the Figure 23 mission at
Teleop location near the middle landmark.

pleted mission with the robots occupying the ob-
jective in a diamond formation.

6. Indoor Navigation with Two Robots

Figure 33 shows MissionLab with the overlay rep-
resenting the Georgia Tech Mobile Robot Lab
loaded. The gap in the upper right represents the
door to the laboratory. The goal circles were po-
sitioned arbitrarily to use as targets for the move-
to-goal behavior in the mission. The pair of robots
are shown in their final positions, after completion
of the mission. The mission starts the robots on
the left edge of the room and sends them to point
dest! in line formation. Upon reaching this way-
point, they convert to column formation and move
to point dest2 on the right side of the room. The
trails taken by the robots are shown, as are their
final positions. Figure 28 shows a sequence of pho-
tographs of the robots executing this mission.

7. Related Work

There are many robot programming languages
with which CDL must compete, but several are
rather loosely defined extensions to standard pro-
gramming languages. The Robot Independent
Programming Language (RIPL) from Sandia[34]
is built on top of C+4. The SmartyCat Agent
Language (SAL) developed at Grumman[27], the
Behavior Language (BL)[10] from MIT targeting
the Subsumption architecture[8], and Kaelbling’s
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3. Robots at location dest1 4. Moving towards dest2

5. Robots nearing location dest2 6. Completed mission

Fig. 28. Pictures of the robot executing the two agent mission
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Fig. 29. Snapshot of SAUSAGES simulation display after
executing the mission shown in Figure 23. Notice the same
general route was taken by the robot.
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Fig. 80. The state transition diagram for the scouting mis-
sion

REX][22], [43] language all are based on Lispl[7].
These languages suffer from a co-mingling of the
configuration with the specification of the primi-
tives. They also bury hardware specific binding in-
formation within the implementations of individ-
ual primitives. This greatly increases the amount
of effort necessary to change the configuration or
to re-deploy it on other robots. REX does sup-
port semantic analysis to formally prove run-time
properties[43] if a detailed environmental model is
available.

Another class of existing languages are logic
based. Gapps[23], [24] is a declarative language
providing goals for an off-line planner which gen-
erates REX programs for execution. Multivalued
logic is used to control the robot Flakey, where
the control program takes the form of a fuzzy
logic rule-based system. Multivalued logic also has
been used to analyze how behaviors combine[44].
Given that each behavior has an explicit applica-

Fig. 81. The mission executing in the MissionLab simula-
tor. The robots started in the bottom left corner moving up
in line formation, then moved right in column formation,
and are now moving to the right in a wedge formation.

bility context, multivalued logic can be used to
determine the context of the resulting behavioral
assemblage.

The Robot Schemas (RS) architecture[29] is
based on the port automata model of computa-
tion. Primitive sensorimotor behaviors are called
basic schemas and a group of schemas can be
interconnected to form an assemblage, which is
treated as a schema in subsequent constructions.
The assemblage mechanism facilitates information
hiding, modularity, and incremental development.
The computational model that the RS language
embodies is rigorously defined, facilitating formal
descriptions of complex robotic systems. CDL ex-
pands on the concept of recursive composition of
sensorimotor behaviors, apparent here in the as-
semblage construct.

The successor to RS is called RS-L3[28] and
combines RS with ideas from the Discrete Event
Systems(DES)[41], [40] community. DES mod-
els systems as finite state automaton where the
perception-action cycle is broken into discrete
events to simplify modeling. RS-L3 is able to cap-
ture the specification of a robot control program
and the situational expectations, allowing analysis
of the system as a whole.

CDL is a generic specification language which is
robot and runtime architecture independent. We
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Fig. 32. The completed scout mission with the robots oc-
cupying the objective in a diamond formation.

now survey the important robot architectures with
an eye towards their suitability as targets for CDL.

The  Autonomous  Robot  Architecture
(AuRA)[3], [2] is the platform in common use
in the Georgia Tech mobile robot lab and is the
system from which the MissionLab toolset grew.
AuRA is a hybrid system spanning the range from
deliberative to reactive modes of execution. In
configurations generated by MissionLab, the hu-
man replaces the deliberative system by crafting
a suitable behavioral assemblage which completes
the desired task.

The Subsumption Architecture[8] is probably
the most widely known behavior-based mobile
robot architecture. It uses a layering construc-
tion where layers embody individual competencies
and new skills are added by adding new layers on
top of the existing network. The layers can take
control when appropriate by overriding layers be-
low them. The subsumption architecture has been
used to construct complicated mobile robots[9] as
well as societies of robots[32], [33]. All coordina-
tion in subsumption occurs via prioritized compe-
tition, precluding any cooperative interaction be-
tween behaviors. Due to the lack of support for
cooperative coordination in Subsumption, only a
subset of the possible CDL configurations can be
targeted to this architecture.

There are a number of architectures which
have grown out of subsumption and share simi-
lar constraints on targeting from CDL. Connell’s
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Fig. 38. MissionLab showing the operator console after ex-
ecution of a simple two robot mission. The robots start on
the left edge of the lab and proceed to the dest1 point in
line formation. They then continue to location dest2 using
column formation. They are shown in there final positions,
with the trails marking the path they each traversed.

colony architecture[12] and Parker’s ALLIANCE
architecture[36], [37], [38], [39] are two examples.
Connell’s efforts with the can collecting robot
demonstrated that a collection of behaviors can
perform complex tasks.
step further to show that cooperation can also oc-
cur between robots without explicit coordination
strategies.

Other researchers have evaluated certain types
of coordination strategies. Maes has used spread-
ing activation[31], [30] to arbitrate which behav-
iors are allowed to control the system and to in-
terject goals into reactive systems. Behaviors are
connected via activation and inhibition links with
activation flowing into the system from both sen-
sors and system goals, tending to activate agents
which are both currently applicable and useful in
achieving the system goals. The behavioral coor-
dinator for the ARPA UGYV robots is called the
Distributed Architecture for Mobile Navigation
(DAMN) arbiter and uses a fuzzy logic approach
to cooperative coordination. Each behavior has a
number of votes available and is able to allocate

Parker’s work went a

them to the available actions. The action with
the most votes is undertaken. DAMN grew out
of a fine-grained alternative to the subsumption
architecture [42].

The System for AUtonomous Specification, Ac-
quisition, Generation, and Execution of Schemata

(SAUSAGES)[17], [16] provides a specification
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language as well as run-time execution and mon-
itoring support. A variant of SAUSAGES called
MRPL is used in the ARPA Unmanned Ground
Vehicles (UGV’s). In a SAUSAGES program be-
haviors are operations which move along a link
in the plan. SAUSAGES is supported as a
target architecture from CDL, allowing testing
configurations constructed with this system on
the SAUSAGES simulation system available from
CMU.

The UM-PRS system[26], [21], [14] is a general
purpose reasoning system able to exploit oppor-
tunism as the robot moves through the environ-
ment. UM-PRS is important since it has been con-
sidered for inclusion as the behavioral controller in
the UGV architecture.

Reactive Action Packages[13] (RAPs) are in-
tended to be used as a set of primitive actions by a
deliberative planner. Several different methods for
accomplishing an action will exist within a given
RAP and at execution time, one of the methods is
chosen as most applicable based on precondition
tests. Each RAP coordinates itself until failure or
success when the planner regains control.

Supervenience[46] is a theory of abstraction
defining a hierarchy where higher levels are more
abstract with respect to their “distance from the
world”. Lower levels represent the world in greater
detail and perhaps more correctly while higher
levels represent the world more abstractly, pos-
sibly allowing erroneous beliefs to exist. The
supervenience architecture is targeted for use in
dynamic-world planners. Supervenience is the for-
malization of the process of partitioning a control
structure into abstraction levels.

The inspiration for the graphical construc-
tion of configurations in MissionLab was the
Khoros[49] image processing workbench. Khoros
is a powerful system for graphically constructing
and running image processing tasks from a collec-
tion of primitive operators. The user selects items
from a library of procedures and places them on
the work area as icons (called glyphs). Connect-
ing dataflows between the glyphs completes con-
struction of the “program”. The program can be
executed and the results be displayed within the
system.

The Onika system[47], [15] from CMU is opti-
mized for the rapid graphical construction of con-

trol programs for robot arms. It is tightly inte-
grated with the Chimera real-time operating sys-
tem, also from CMU. Programs are constructed
at two levels: The Engineering level uses an elec-
tronic schematic style of presentation to build
high level primitives which appear as puzzle pieces
when iconified. At the user level, programs are
constructed by placing a linear sequence of puz-
zle piece icons in the workspace. Compatibilities
between primitives are represented on the input
and output side via different shapes and colors.
This physically delimits which tasks can follow
each other and is a very good metaphor, especially
for casual users. Once programs are constructed,
they can be saved to a library for later retrieval
and deployment, or executed immediately. Onika
includes a simulation system for evaluating con-
trol programs targeted for robot arms, but it does
not include support for simulating or commanding
mobile robots.

ControlShell[45] is a commercial graphical pro-
gramming toolset from Real-Time Innovations
used to construct real-time control programs. It
is very similar in presentation to the Engineering
level of Onika, having a similar schematic-like look
and feel. A dataflow editor is used to graphically
select and place components into the workspace
and connect them into control systems. The state
programming editor supports graphical specifica-
tion of state transition diagrams. ControlShell
supports a single layer of primitive components,
a second layer of so called transition modules
constructed from the primitives, and finally the
state diagram denoting the sequencing of operat-
ing states. The lack of support for arbitrary re-
cursive construction limits reuse and information
hiding in complicated designs.

8. Conclusions and future work

The “Society of Mind”[35] develops a particu-
larly appealing behavior-based model of intelli-
gence where the overt behavior of the system
emerges from the complex interactions of a mul-
titude of simple agents. This model fits naturally
with the work in behavior-based robotics where
the controller is clearly separable from the vehi-
cle. This representation shows that societies of
robot vehicles should simply comprise a new level



in the hierarchical description of the societies of
agents comprising each robot.

The Societal Agent theory has been pre-
sented which formalizes this view-point. Two
types of agents are defined: instantiations of prim-
itive behaviors, and coordinated assemblages of
other agents. This recursive construction captures
the specification of configurations ranging in com-
plexity from simple motor behaviors to complex
interacting societies of autonomous robots. Co-
ordination processes which serve to group agents
into societies are partitioned into state-based and
continuous classes. State-based coordination im-
plies that only the agents which are members of
the active state are actually instantiated. Contin-
uous coordination mechanisms attempt to merge
the outputs from all agents into some meaningful
policy for the group.

The Configuration Description Language was
developed to capture the important recursive na-
ture of the Societal Agent theory in an architec-
ture and robot independent language. The uni-
form representation of components at all levels of
abstraction simplifies exchanging portions of con-
figurations and facilitates reuse of existing designs.
The ability to describe complicated structures in a
compact language eliminates unexpected interac-
tions, increases reliability, and reduces the design
time required to construct mission specifications.

CDL strictly partitions specification of a config-
uration from the implementation of the underlying
primitives. This separation in structure supports
the separation of presentation required to em-
power non-programmers with the ability to spec-
ify complex robot missions. Further, the ability of
CDL to rise above particular robot run-time archi-
tectures vastly increases its utility. It is now possi-
ble, using CDL, to specify configurations indepen-
dent of constraints imposed by particular robots
and architectures. Only after the mission has been
developed do hardware binding issues need to be
addressed. These contributions of generic config-
urations and explicit hardware bindings allow the
construction of toolsets based on this architecture
which provide the correct depths of presentation
to various classes of users.

The MissionLab toolset was presented as an im-
plementation based on CDL. The graphical-based
configuration editor allows the visual construc-
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tion of configurations by users not familiar with
standard programming languages. The compilers
then translate these descriptions into executable
programs targeted for either the ARPA UGV or
AuRA architectures.

To validate the usefulness of the concepts and
implementations presented in this paper, simu-
lated and real runs of configurations were pre-
sented. The MissionLab system was demonstrated
as part of ARPA UGV Demo C. This tech demo
involved creating a configuration specifying the
behavior set and mission sequence for a pair of
automated off-road vehicles conducting several
scouting tasks.

Notes

1. MissionLab is available in source and bi-
nary form at Attp://www.cc.gatech.edu/ai/robot-
lab/research/MissionLab

2. Due to hardware limitations the robots in Figure 9 only
placed the cans near the wastebaskets
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