
Learning Momentum: On-line Performance Enhancement

for Reactive Systems

Russell J. Clark, Ronald C. Arkin, and Ashwin Ram

Technical Report GIT-CC-91/37

College of Computing

Georgia Institute of Technology

Atlanta, GA 30332-0280

Abstract

We describe a reactive robotic control system which incorporates aspects of

machine learning to improve the system's ability to successfully navigate in un-

familiar environments. This system overcomes limitations of completely reactive

systems by exercising on-line performance enhancement without the need for

high level planning. The results of extensive simulation studies using the learn-

ing enhanced reactive controller are presented.

1. Introduction

Reactive robotic control systems [1,5,11] have produced signi�cant results in gen-

erating intelligent robotic action when compared to previous e�orts. These systems

typically decompose actions into behaviors in order to produce rapid real-time sensory

response. How these systems can adapt ongoing behaviors to the environment is an

important �rst step in addressing learning in reactive control. The particular approach

described in this paper enables a reactive control system to adapt its behavior based on

recent experience. When there are relatively few abrupt environmental discontinuities

we have demonstrated that a reactive robot can adapt in a manner which leads to

enhanced performance.

A key problem for these systems is not merely the selection of the appropriate

behavior set but also determining values for behavioral characteristics that are well

suited for a particular environment. Although in general these values are not overly

sensitive and do not require extensive tuning to produce good results, it would still be

desirable to allow a reactive robotic system to respond to its environment by allowing

these settings to be altered in response to both the robot's performance and changes in

the world. Further, the robot may be required to navigate in unfamiliar environments

1



where the appropriate values for the behaviors cannot be known in advance. Our

research has concentrated on extending reactive controllers to include the ability to

learn these values.

The underlying strategy in our work is that if something is working well then con-

tinue doing it and try doing it a bit harder and conversely, if things are not proceeding

well then try something di�erent. In this way a learning system buildsmomentum since

success due to parametric adjustment leads to better performance. A simple example

is that if you have been in an open area for a good while and have not encountered any

obstacles, pick up your speed a bit. If, on the other hand, you are in a highly cluttered

area and you are having a signi�cant number of close calls, you would want to adjust

your velocity downward or treat obstacles more seriously. For behavior-based reactive

systems, this readily translates into altering the schema gains and parameters contin-

uously. Our system uses a rule-based methodology to alter the gain and parameter

values incrementally based on current environmental conditions and past successes.

In this paper, we describe a reactive robotic controller with the ability to adapt

and improve a mobile robot's performance. This research builds on the schema control

system based on our previous work[1] which is summarized in section 3. Section 4

outlines a rule-based adaptive system capable of adjusting schema control parameters

and gain values and improving the reactive system's ability to successfully navigate in

complex environments. Of special note is the system's ability to successfully navigate

out of \box canyons" or dead end paths where a non-adaptive reactive controller would

stall.

2. Related Work in Robotic Learning

This work takes inspiration from other recent work combining the ideas of ma-

chine learning with robotic control. Much of this work is not based on reactive control

systems but is aimed at systems which improve navigational ability by learning envi-

ronmental features[12] or developing models of actions in the environment[7].

Bennett described a robotic arm controller based on an Explanation Based Learn-

ing (EBL) system which uses approximations to deal with inconsistencies between

reactive rules and real-world experience[4]. Mitchell's Theo-Agent architecture is an

EBL system which learns to be more reactive by generating rules from explanations

of failure[10]. The Minimal Deliberation approach proposed by Chien[6] combines

reaction-based control with a classical planning system to create plans for dealing with

situations where reaction rules fail. Both of these systems require extensive domain

2



knowledge in the non-reactive planning systems in order to deal with limitations in

reactive control. Unlike these systems, our approach does not fall back on slow non-

reactive techniques for improving reactive control.

The behavior based learning system proposed by Maes is a distributed algorithm in

which the behaviors learn when to become active based on feedback during execution[9].

One di�erence between this and our work is that our system learns varying levels of

behavior (schema) activation rather than merely active versus inactive.

3. Schema-Based Navigation

Schema-based robotic control is one form of reactive control system. It forms the

reactive basis of AuRA, The Autonomous Robot Architecture[2], a framework for pro-

viding reactive control for an autonomous mobile system. Each motor schema repre-

sents one fundamental motor behavior currently available to the robot. The action to

be performed is the result of collectively summing the contributions of all currently

active schemas rather than arbitrating between them. The motor schemas are closely

linked to perceptual schemas which provide the environmental stimuli for activation.

Once a given motor schema is activated, its impact on the overall motion is depen-

dent on that schema's gain value. If a schema currently has a very high gain value, that

schema's behavior will likely dominate the command passed to the robot drive system.

If a single schema gain value remains consistently high, that schema will dominate the

overall system behavior[1].

While many possible schemas have been de�ned, the motor schemas used in this

particular research are:

� Move-to-goal: Attract to goal with variable gain. Set high when heading for a

particular goal.

Vmagnitude = adjustable gain value

Vdirection = in direction towards perceived goal

3



� Avoid-Obstacle: Repel from object with variable gain and sphere of inuence.

Used for collision avoidance.

Omagnitude = 0 for d > S
S�d

S�R
�G for R < d � S

1 for d � R

where:

S = Adjustable Sphere of Inuence (radial extent of force from

the center of the obstacle)

R = Radius of obstacle

G = Adjustable Gain

d = Distance of robot to center of obstacle

Odirection = along a line from robot to center of obstacle

moving away from obstacle

� Noise: Random wander with variable gain and persistence. Used to overcome

local maxima, minima, cycles, and for exploration.

Nmagnitude = Adjustable gain value

Ndirection = Random direction that persists for Npersistence steps

(Npersistence is adjustable)

To optimize system performance it is necessary to to determine what gain values

should be used to best accomplish a speci�c task in a given environment. For instance,

an exploration behavior can be observed by providing a relatively high gain and per-

sistence to the noise schema with an accompanying avoid-obstacle schema[1]. The

task of determining appropriate a priori gain values is non-trivial in highly cluttered

environments.

For a given environment, this gain determination process involves empirical evalu-

ation of the system's performance. The process is repeated until further changes result

in no visible improvement. When structural environmental knowledge is available, this

task becomes simpler[2], but for purely reactive systems with no knowledge of the

world, highly complex environments can produce di�culty in reaching near optimal

solutions.

In any case, it is important to note that once this \best set" of gain values is

established for a given world, it will likely be less e�cient for navigation in a di�erent

environment. Figures 1 and 2 illustrate a scenario where this is true. Figure 1 shows a

4



Figure 1: Box Canyon Sample Runs

a) With sphere of inuence = 10 b) With sphere of inuence = 35

box canyon where a high avoid-obstacle sphere of inuence is necessary to produce

a successful path. Figure 2 shows a slightly di�erent picture where a high sphere of

inuence results in a less than optimal path. High levels of noise were used in these

sample runs producing the relatively jagged paths when the robot is located in free

space. This noise is necessary to free the robot from local minima that are produced

by obstacle formations in highly cluttered environments. Later in this paper, it can be

seen that our on-line learning system smooths out this noise when it is not required.

The result of this research e�ort in adaptive reactive control is a system that au-

tomatically adjusts the appropriate schema gain values to match the current task and

environment.

4. Control Strategy for On-Line Performance Enhancement

This section outlines a reactive robot control system incorporating machine learning

techniques to improve goal �nding performance. We utilize an adaptive real-time

learning system that does not require pre-training but continuously learns by doing. A

critical aspect of a learning system for robotic control is that the learning process must

not interfere with the system's reactive response. A robot operating in a potentially

hostile environment cannot stop to update a model when new information is found.

This aspect of robotic systems is a central motivation for the current work.

5



Figure 2: No Box Canyon Sample Runs

a) With sphere of inuence = 10 b) With sphere of inuence = 35

Figure 3 shows a conceptual model of the control regime. As in our previous work[1],

the basic control system is a collection of motor schemas that cooperate/compete to

control the robot's behavior. In addition, we have added a component termed the

ADJUSTER which provides the learning aspect of the system. The ADJUSTER cal-

culates status values in order to track current progress and then adjusts the active

schema gain values based on the newly determined status. The schema adjustments

are made according to a set of rules which match current progress status values to

plausible adjustment operations. The values currently adjusted are noise persistence

(Npersistence ), avoid-obstacle sphere of inuence (S), and the three motor schema gain

values (Nmagnitude ,Vmagnitude ,G). An example of the use of these adjustment rules is to

allow the robot to increase speed by increasing themove-to-goal gain when no obsta-

cles are near and reasonable progress is being made. The rules then reverse this trend

and increase the noise and avoid-obstacle gains when obstacles are encountered.

4.1 Status Monitoring

A central aspect of the ADJUSTER system involves how the system monitors the

robot's performance and determines when to apply the speci�c rules. The schema-based

control system does not contain a world model with which to compare the currently

perceived environment in order to determine the status of the current mission. Instead,

the ADJUSTER relies on recent experience and a set of heuristics for identifying when

6



Figure 3: Control Strategy

good progress is being made.

We use the term step to indicate the action taken during a single perception-action

cycle. The number of steps taken to complete a task is used as a measure of elapsed

time. The robot's step size refers to the distance traveled in one step. This is a

normalized value calculated from the relative contributions of all active schemas. A

combined schema value greater than or equal to the maximum step size results in a

maximum step. On a real system this is constrained by the maximum velocity of the

robot. (In our simulation environment described in section 5 we use a maximum step

size of 1.) The system keeps a history of the last Hsteps steps which it uses to determine

mission status. Progress is measured using the motion value M which is obtained from

the average step size over this history. If M drops below a given threshold, Tmotion , we

consider the robot to be stationary for all practical purposes. This is usually the result

of a local minima which can be overcome by increasing the noise gain and persistence.

Closely related to the average step size value is P, the measure of the average

progress toward the goal. This is determined by the ratio of distance traveled over the

change in distance to the goal. A low value here indicates that the robot is moving

but not heading toward the goal. It is important to note that, at times, this may be

a necessary situation in order to navigate around an obstacle. The challenging aspect

is to correctly interpret a low or negative value as either a necessary detour or as an

indication that the robot is on a completely ine�ective path.

In order to determine the likely meaning of the average motion toward goal value,

the ADJUSTER uses Ocount , the average number of obstacles sensed. If there is a low

7



progress toward the goal and Ocount is high the ADJUSTER assumes this is a cluttered

environment.

These status measures are evaluated over a variable size history of steps, Hsteps.

The history size controls the reactivity of the ADJUSTER to changes in the mission

status. In general, a shorter step history leads to more abrupt changes in the rules

applied by the ADJUSTER. For most of our simulation work we used a history size of

10 steps.

4.2 Adjustment Rules

The ADJUSTER works by periodically applying slight adjustments to the control

values based on the current status of the robot. These adjustments are made after

Hsteps steps based on the status values M, P, and Ocount . We have identi�ed four basic

situations that require di�erent adjustment parameters. These situations are:

1. No-Movement: The robot's average step size has dropped below a certain

threshold.

M < Tmovement

where:

M = Average Step Size over Hsteps

Tmovement = Movement Threshold

2. Movement-Toward-Goal: The robot's step size and rate of approach to the

goal are both above a threshold.

M > Tmovement

P = Hdistance

Hgoal
> Tprogress

where:

Hdistance = Distance Traveled over Hsteps

Hgoal = Decrease in Distance To Goal over Hsteps

Tprogress = Progress Threshold

8



3. No-Progress-With-Obstacles: The robot is moving but not toward the goal

and there are several obstacles within a sensible distance.

M > Tmovement

P = Hdistance

Hgoal
< Tprogress

Ocount > Tobstacles

where:

Ocount = Average Number of Sensible Obstacles over Hsteps

Tobstacles = Obstacle Count Threshold

4. No-Progress-No-Obstacles: The robot is moving but not toward the goal and

there are no obstacles within a sensible distance.

M > Tmovement

P = Hdistance

Hgoal
< Tprogress

Ocount < Tobstacles

The actual de�nitions of these situations have evolved over the span of this work. In

the initial ruleset the Movement-Toward-Goal rule was divided into separate rules

for situations with and without obstacles. In most cases these rules were redundant

and they were collapsed into one. Also, there was initially no distinction made between

movement and movement toward the goal. This lack of distinction led to situations

where the robot could get stuck in local minima behind obstacles.

Associated with each rule is an adjustment value specifying the amount and direc-

tion which each of the �ve control values should be adjusted when the rule is invoked.

For each schema value there is also a range specifying the minimum and maximum al-

lowable values. These ranges prevent the ADJUSTER from continuing to make changes

to a value beyond a reasonable limit. The adjustment values to be used for a mission

are speci�ed in a case[8] and stored in a data�le. When a particular mission is initiated,

the appropriate case is retrieved and the rule adjustment values are established. Our

experiments with the ADJUSTER involved changing these rule adjustment values and

comparing the results.

9



Noise Goal Obstacle

Rule Npersistence Nmagnitude Vmagnitude G S

No-Movement +1:00 +0:10 �0:10 �0:10 �0:50

Movement-To-Goal �1:00 �0:05 +0:05 �0:01 �0:50
No-Progress-With-Obstacles +1:00 +0:05 �0:05 +0:01 +0:50

No-Progress-No-Obstacles �1:00 �0:05 +0:05 +0:01 +0:50

Table 1 - Sample ADJUSTER Case

Table 1 shows the adjustment values found in a sample case. Each value indicates

the amount of change for the given control parameter when the associated rule is

triggered. The �rst rule in this case is the No-Movement rule which is invoked when

the robot stops moving. In order to recover from this situation the system increases the

importance of the noise schema. This is done by increasing Npersistence and Nmagnitude ,

decreasing Vmagnitude , and decreasing obstacle inuence by lowering G, gain, and S,

sphere of inuence.

The tendency toward building momentum is indicated in theMovement-Toward-

Goal rule. This rule enhances the importance of the move-to-goal schema by a

decrease in Npersistence and Nmagnitude , an increase in Vmagnitude , and a decrease in obstacle

inuence by lowering G and S. When the system is making progress toward the goal

in an uncluttered area, applying these adjustments will improve that progress.

If the robot moves into a more cluttered environment resulting in a decrease in

progress toward the goal, the ADJUSTER begins to consider the other three adjust-

ment rules. The �rst rule it will likely use is the No-Progress-With-Obstacles rule.

In this particular case the adjustment values applied are the exact opposite of the

adjustments applied by the Movement-Toward-Goal rule. This increases both the

importance of obstacles and the application of noise. The assumption made in applying

this rule is that the best way to navigate a cluttered environment is to steer as far away

from obstacles as possible. In many sample cases this proved to be the most e�ective

choice. Later we will discuss some alternatives to this approach.

After the ADJUSTER applies the above No-Progress-With-Obstacles rule the

robot will usually move around a large collection of obstacles. If several applications

of this adjustment rule were required before successfully circumventing an obstacle it

is possible the Vmagnitude will have been decreased to a point where no progress will be

made even though there are no obstacles sensed. In this situation the noise schema

begins to dominate the control system. Applying the No-Progress-No-Obstacles

rule will allow the system to recover from this situation.

10



5. Simulation Environment

In order to facilitate our work in adaptive control systems for autonomous navi-

gation, we have developed a simulation environment that includes both a graphical

interface and batch mode. This simulation system allows the investigator to visually

evaluate the progress of a simulated robot while it runs through a prede�ned world.

It also displays a history of values as they are adjusted by the system to facilitate the

identi�cation of successful adjustment rules.

The graphical interface was developed using the X window system on a Sun work-

station. The simulation window displays the current obstacles as circles, each with

varying radius. As the robot navigates this world, a line is drawn indicating the robot's

progress from start to goal. At the top of the window is a set of numbers displaying the

current control values. These values are updated each time the ADJUSTER is called.

This display also indicates the number of steps, total distance traveled, distance to

goal, and number of obstacle contacts. Below the numerical display is a set of �ve line

graphs that provide a history of the control values as they are adjusted throughout the

run. This window format is used in Figures 4-7.

Within each obstacle is displayed a number representing the current impact of that

obstacle on the robot's move calculation. These values are changed after every step as

the robot's distance from the obstacle and the obstacle G and S values change. As a

simulation runs, the mouse can be used to pause and run in single step mode. This

allows the user to check the impact of speci�c obstacles for each step and determine

which adjustment rules are being used in a given situation.

The obstacle world and initial parameters are input to the simulator from a text �le.

This �le allows the user to specify obstacle courses and set the initial control values and

adjustment rule parameters. There is a random world generator that creates a random

start and destination goal and �lls in the path between with a random distribution

of obstacles. By specifying a percentage of clutter, worlds of varying di�culty can be

created.

6. Results

The simulation environment was used to run large numbers of simulations both

interactively and in batch mode. This section outlines some of the observations made

after analyzing these runs.

11



6.1 Overall Improvement

One of the �rst goals of our simulation work was to verify the improvement of the

system with the ADJUSTER over the regular schema-based control system in a wide

variety of environments. To do this the simulator's random world generator was used

to create ten di�erent worlds at each of four di�erent obstacle densities. The simulation
results for each of these worlds were recorded both with and without the ADJUSTER
enabled. Table 2 contains the results of the runs without the ADJUSTER averaged

over the ten di�erent worlds of each density level. Table 3 contains the results with

the ADJUSTER enabled. In these tables, the number of steps is an indication of the

average time taken to complete each mission. Total distance indicates the total length

of the paths taken. Average step size is the total distance divided by the number of steps

and is a good comparison to use between worlds with varying initial goal distances. The

contacts value indicates the number of times the robot virtually contacts an obstacle

(as a con�guration space methodology is used and a safety margin attached to the

obstacle, these contacts are indicators that the robot has moved unacceptably close

to the object but has not necessarily physically contacted it). These contacts force

obstacle avoidance to be the primary concern by resulting in immediately high gains

for the obstacle in question thus preventing actual physical collisions.

Course % Complete Steps Total Distance Avg Step Size Contacts

No Obstacles 100 49.30 42.09 0.86 0.00

25% Obstacles 100 192.70 109.74 0.66 1.40
50% Obstacles 90 868.70 431.87 0.54 24.60

75% Obstacles 80 1134.75 545.94 0.61 32.00

Table 2 - Results Without ADJUSTER Over 10 Randomly Generated Worlds

Course % Complete Steps Total Distance Avg Step Size Contacts

No Obstacles 100 44.20 40.07 0.91 0.00
25% Obstacles 100 54.20 45.21 0.81 0.00

50% Obstacles 90 95.67 61.41 0.69 1.33
75% Obstacles 90 210.43 133.06 0.68 21.57

Table 3 - Results With ADJUSTER Over 10 Randomly Generated Worlds

Using Squeezing Strategy

For all four obstacle density levels, the ADJUSTER makes a signi�cant reduction in

the total distance traveled (5%-75% less than non-adjusted values). The average step

size increases correspondingly, in essence allowing the robot to make longer strides. For

the �rst density level there are no obstacles. At this level the only two contributing gain

values are noise and move-to-goal. In the unadjusted case, the Nmagnitude is set to a

constant (0.5) value and makes a small contribution to the run. The resulting robot

12



path is close to optimal but not straight. In the runs with adjustment, the ADJUSTER

applies theMovement-Toward-Goal rule which decreases the Nmagnitude value so that

the robot's path improves toward a straight line. This is reected by the decrease in

total distance traveled as well as the increase in step size.

The second density level is 25% cluttered. This means that 25% of the area between

the start and goal is covered by obstacles. In this case the time and total distance values

improve substantially in the runs with the ADJUSTER enabled. This improvement

is a reection of the robot's improved ability to react to local minima situations and

move out from behind obstacles encountered along the way. These runs also showed

speedups when the robot enters open space and the Nmagnitude value decreases.

The 50% and 75% levels also show substantial improvement in both the number of

steps taken and total distance traveled. They also show improvement by decreasing the

number of contacts as well as increasing the percentage of missions completed. Figures

4 and 5a show this improvement with an example of the 50% clutter. As the worlds

become more cluttered, there is a greater improvement when the ADJUSTER is used.

6.2 Modifying ADJUSTER Parameters

Another goal of our simulations is to determine the most successful adjustment rule

parameters. One of the areas explored was what the robot should do when it is not

making progress with obstacles present. One possibility is to assume that there exists

a path between the obstacles and reduce the avoid-obstacle G and S in order to pass

between them. We refer to this approach as a squeezing strategy. This is the strategy

used on the previous comparison to the case with no adjustment. (Table 3) The other

alternative, which we term a ballooning strategy, is to assume that the current situation

is a box canyon and increase G and S in order to quickly move around the obstacle

collection.

Course % Complete Steps Total Distance Avg Step Size Contacts

25% Obstacles 100 68.10 53.72 0.82 0.20
50% Obstacles 70 112.33 79.54 0.67 1.00

75% Obstacles 70 905.29 677.03 0.72 8.57

Table 4 - Results With ADJUSTER Over 10 Randomly Generated Worlds

Using Ballooning Strategy

Table 4 shows the data from the simulation runs where the ballooning strategy was

used and Figure 5b shows a sample of one of these runs. When we compare these

results to those in Table 3 we see that the robot generally takes more time and travels

a longer path. It also successfully completes fewer paths. This is due to the fact that in

13



Figure 4: 50% Obstacle Run Without ADJUSTER

14



Figure 5: 50% Obstacle Run With ADJUSTER

a) Squeezing Strategy b) Ballooning Strategy

the more cluttered worlds the robot may be surrounded by obstacles so that increasing

S will prevent making any progress at all. One positive result of this adjustment rule is

a decrease in the number of obstacles virtually contacted. Figure 6 shows an example

comparing three di�erent runs in a world with 75% obstacle clutter.

6.3 The Box Canyon

Another goal of this work has been to develop a reactive control system that would

successfully navigate through an environment where box canyons or dead end paths

are present. Table 5 summarizes the results of our experiments with box canyon en-

vironments. Each value is the average of ten runs through the same box canyon envi-

ronment. The system without the ADJUSTER enabled does not successfully navigate

to the goal. (ie, It covers an in�nite distance and takes in�nite number of steps.) In

this situation the robot becomes caught in a local minima within the canyon where

the avoid-obstacle schemas for the surrounding obstacles cause a contribution equal

to the move-to-goal schema. The distance out of the canyon, (the depth of the local

15



Figure 6: 75% Obstacle Runs

a) Without ADJUSTER b) With ADJUSTER - Squeezing Strategy

c) With ADJUSTER - Ballooning Strategy

16



Figure 7: Box Canyon Run With ADJUSTER -

a) Max Noise Persistence 5 b) Max Noise Persistence 8

minima), is farther than a normal noise gain value will overcome.

Course % Complete Steps Total Distance Avg Step Size

No ADJUSTER 0 1 1

Max Npersistence = 5 50 2273.80 1859.69 0.81

Max Npersistence = 8 100 1600.40 1205.16 0.75

Table 5 - Box Canyon Navigation

The �rst successful navigation runs in this environment use the same ADJUSTER

case rules as the ballooning strategy case discussed above. This is appropriate since

there is no opening between the obstacles which would allow the robot to pass through

toward the goal. In these runs, the robot successfully navigated to the goal in 50

percent of the cases. This is a signi�cant improvement over the runs without the

ADJUSTER but still leaves room for further enhancement. Figure 7a shows a sample

run for this situation. Note the top line graph indicating the uctuation in Npersistence

as the robot backs up and then begins to move toward the goal again without actually

moving around the obstacles.

17



After analyzing the paths taken in these runs we determined that the system was

succeeding when the noise schema would generate several successive values in the

direction heading out of the canyon. We hypothesized that increasing the maximum

allowable Npersistence from the current value of 5 to a higher value might improve the

performance. The third result in Table 5 shows the average of 10 runs with a maximum

Npersistence value of 8. Each of these runs were successful and the resulting distance

traveled decrease by just over one third. By allowing Npersistence to increase to a larger

value we allowed the robot to be inuenced by the noise schema long enough to �nd its

way around the end of the canyon wall. Figure 7b shows a sample run of the simulator

through a box canyon with the maximum Npersistence set at 8.

This increased allowable persistence is not used without some cost. As is visible in

Figure 7b, it takes more time for the robot to regain forward momentum after rounding

the wall and entering uncluttered space with a clear path to the goal. The decreasingly

jagged path to the goal is a visible indication of the systems increasing momentum as

it applies the Movement-Toward-Goal rule and decreases the noise contribution.

This situation only occurs in open space navigation. We expect the bene�t of the

higher Npersistence value in cluttered worlds to outweigh the cost of some e�ciency in

uncluttered space.

7. Conclusions and Future Work

We have demonstrated a reactive robotic system that incorporates ideas from ma-

chine learning to address a particular issue in schema-based robotic control systems.

The goal of this learning system is to give the autonomous robot the ability to adjust

the schema control parameters in an unstructured dynamic environment. The results

of a successful implementation that learns to navigate out of a box canyon have been

presented. This system never resorts to a high level planner, but instead, it learns

continuously by adjusting gains based on the progress made so far. The system is suc-

cessful because it is able to improve its performance in reaching a goal in a previously

unfamiliar and dynamic world.

Other related areas we plan on continuing to explore include:

� Rule Persistence - We intend to explore the feasibility of adding a persistence

variable for the application of the various rules. One case where this might be

useful is in combining the two strategies of ballooning or squeezing. The AD-

JUSTER would start out by applying the statistically more successful squeezing

option. If a certain persistence time has passed and the progress has not im-

proved, the ballooning rule could be applied. This could potentially allow the

18



robot to navigate out of a deep box canyon that initially looks like an open tunnel

but actually turns out to be closed.

� Case Learning - We have already begun exploring the issues involved in applying a

meta-level learning aspect to the system where the system learns the ADJUSTER

cases through experience. Information would be given to the system regarding

the mission expectations including: expected environmental clutter, likelihood of

box canyons, and threat of obstacles. These expectations would form the indices

for selecting an appropriate ADJUSTER case. After a mission is completed, the

system would then evaluate the e�ectiveness of the selected case and determine

its value for future missions.

� Implementation on our mobile robot - The ultimate goal of this project is to

develop a model that can be used on a working vehicle. After successfully de-

veloping a learning control architecture through simulation studies, we plan to

test the system on George, our Denning Mobile Robot. This implementation will

provide insight into the practicality of this architecture in terms of dealing with

real-world issues like imperfect sensor information.

8. Acknowledgments

We are grateful for the support of the Georgia Tech Arti�cial Intelligence Group

and the assistance of Robin Murphy.

REFERENCES

[1] Arkin, R.C., \Motor Schema-Based Mobile Robot Navigation", International Journal

of Robotics Research, Vol. 8, No. 4, August 1989, pp. 92-112.

[2] Arkin, R.C., \Integrating behavioral, perceptual, and world knowledge in reactive nav-

igation.", Robotics and Autonomous Systems, 6:105-122, 1990.

[3] Arkin, R.C., \The Impact of Cybernetics on the Design of a Mobile Robot System: A

Case Study", IEEE Transactions on Systems, Man, and Cybernetics, Vol. 20, No. 6,

Nov/Dec 1990, pp. 1245-1257.

[4] Bennett, S.W., \Reducing Real-world Failures of Approximate Explanation-Based Rules",

Proceedings of the Seventh International Conference on Machine Learning, June 1990,

pp. 226-234.

[5] Brooks, R., \A Robust Layered Control System for a Mobile Robot", IEEE Journal of

Robotics and Automation, Vol. RA-2, No. 1, pp. 14-23, 1986.

19



[6] Chien, S.A., M.T. Gervasio and G.F. DeJong, \On Becoming Decreasingly Reactive:

Learning to Deliberate Minimally", Proceedings of the Eighth International Workshop

on Machine Learning, June 1991, pp. 288-292.

[7] Christiansen, A.D., M.T.Mason and T.M.Mitchell, \Learning Reliable Strategies with-

out Initial Physical Models", IEEE Conf. on Robotics and Auto., pp. 1224-1230, 1990.

[8] Kolodner, J.L., An Introduction to Case-Based Reasoning, Technical Report No. GIT-

ICS-90/19. College of Computing. Georgia Institute of Technology. Atlanta, GA.,

1990.

[9] Maes, P., R.A. Brooks \Learning To Coordinate Behaviors", Proceedings of the Eighth

National Conference on Arti�cial Intelligence, Boston, MA, Aug 1990, pp. 796-802.

[10] Mitchell, T.M. \Becoming Increasingly Reactive", Proceedings of the Eighth National

Conference on Arti�cial Intelligence, Boston, MA, Aug 1990, pp. 1051-1058.

[11] Payton, D., \An Architecture for Reexive Autonomous Vehicle Control", IEEE Conf.

on Robotics and Auto., pp. 1838-1845, 1986.

[12] Zelinsky, A., A Mobile Robot Environmental Learning Algorithm, Department of Com-

puting Science, University of Wollongong, April, 1988.

20


