
 

 

 

  

Abstract—Social robots can benefit by adding deceptive 
capabilities. In particular, robotic deception should benefit the 
deceived human partners when used in the context of 
human-robot interaction (HRI). We define this kind of robotic 
deception as a robot’s other-oriented deception and aimed to 
add these capabilities to the robotic systems. Toward that end, 
we develop a computational model inspired by criminological 
definition of deception. In this paper, we establish a definition 
of other-oriented robotic deception in HRI and present a novel 
model that can enable a humanoid robot to autonomously 
generate other-oriented deceptive actions during the 
interaction. 

I. INTRODUCTION 
 ECEPTION is an essential and common behavior in 
animals and humans. Animals use various forms of 

misinformation, and these deceptive behaviors enable 
animals to enhance their chances of survival by protecting 
themselves and their groups from predators [1].  

People frequently perform deceptive behaviors in various 
situations ranging from warfare to everyday life. Compared 
to animal deception, human deception generally requires 
extensive planning and second-guessing. More importantly, 
humans sometimes perform deceptive actions to benefit the 
deceived person. In a previous psychological study [2], this 
kind of deception is called “other-oriented deception.” 
Deception in general can be defined based on its motivation, 
such as self-oriented and other-oriented deception [2]. 
Self-oriented deception is deception that is used for the 
deceiver’s own advantages. Conversely, other-oriented 
deception is motivated by the benefits that accrue to the 
person who is being deceived (the mark).  

Similar to humans and animals, we assume that a robot 
can use deception to produce benefits. Most, if not all, of the 
previous research addressing robot deception has focused on 
the robot’s self-oriented deception. For example, robotic 
deception has been studied for use in military domains [3, 
4], and such uses can be categorized as self-oriented 
deception. However, given the increasing use of social 
robots, we strongly believe that a robot should have 
deceptive capabilities to benefit its deceived human partners 
in situations involving human-robot interaction (HRI). 

To yield these benefits for its mark in HRI, a robot should 
first be able to generate alternative deceptive behavior(s) in 
addition to true action and perform these actions at the 
correct time. A computational model is thus required to 
develop a robot’s other-oriented deception in HRI.  

We reviewed deception research in criminology [5] for 
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inspiration and found a useful approach. In this field, 
deception is analyzed by three criteria, which are motives, 
methods, and opportunity. Similar to this approach, we also 
develop an algorithm of robot deception based on criminal 
analyses. In a high-level view, we first have to determine 
whether the current HRI context includes any motives for a 
robot to perform the deceptive behaviors. If so, then a robot 
should generate the method to perform deception, which are 
alternative deceptive behaviors beyond the normal true 
action(s). Finally, by selecting among different 
true/deceptive behaviors, it should be possible to determine 
which one is the most appropriate in a certain situation, thus 
providing opportunity. In the following subsections, we 
explain how each element of a robot’s other-oriented 
deception is modeled.   

Among these three dimensions, we start from the method 
model. To perform the other-oriented deception, the robot 
should generate the method, defining the way in which the 
deception is to be performed. Therefore, the main 
contribution of this paper is a new model that illustrates how 
these deceptive actions can be generated. Using the model, 
we intend to create a robot that can autonomously determine 
the set of true/deceptive actions to use during interaction. 
We illustrate this novel Method algorithm inspired by Bell 
and Whaley’s deception definition [7]. 

In this paper, we first review the related work in Section 
II. In prior work, we reviewed different robot deception 
research and proposed a taxonomy of robot deception. We 
also briefly introduce our taxonomy of robot deception in 
Section II. The main goal of this paper is to propose the new 
methods model for a robot’s deceptive action generation. 
Our novel algorithm for the methods model is illustrated in 
Section III. Finally, in Section IV, we conclude the paper by 
presenting the initial ideas of a computational approach to 
find motive and opportunity for a robot’s other-oriented 
deception is considered as future work.!

 

II. RELATED WORK 
Defining the meaning and organizing the taxonomy of 

robot deception are the required prerequisites for our 
research. Previously, we reviewed several ways to define 
and categorize deception in different fields and presented a 
taxonomy of deception from a robotic perspective [6]. We 
first defined three dimensions to categorize robot deception 
based on “interactions” as shown in Table I. As a result, 
eight robot deception types are defined as H-S-P, N-S-P, 
H-O-P, N-O-P, H-S-B, N-S-B, H-O-B, and N-O-B, from one 
instance for each category per dimension. 

Previous research related to robot deception can be 
categorized using this taxonomy. One interesting application 
of robot deception is the camouflage robot, which was 

Other-Oriented Robot Deception: A Computational Approach for 
Deceptive Action Generation to Benefit the Mark 

Jaeeun Shim and Ronald C. Arkin 

D 



 

 

 

developed at Harvard University [8]. Inspired by the 
real-world uses of animal/military camouflage, the 
researchers developed a soft robot that could automatically 
change the color of its body to match its environment. Since 
it used physical representations, we classified it as an H-S-P 
type of robot deception.  

Several N-S-B types of robot deception have been studied 
and reported and appear below. For example, Wagner and 
Arkin [9] used interdependence theory and game theory to 
develop algorithms that allow a robot to determine both 
when and how it should deceive others.  

Floreano’s research group [10] demonstrated robots 
evolving deceptive strategies in an evolutionary manner, 
learning to protect energy sources. Their work illustrates the 
ties between biology, evolution, and signal communication 
and does so on a robotic platform. They showed that 
cooperative communication evolves when robot colonies 
consist of genetically similar individuals. In contrast, when 
the robot colonies were dissimilar, some of the robots 
evolved deceptive communication signals. 

More recent work at Georgia Tech is exploring the role of 
deception according to Grafen’s dishonesty model [11] in 
the context of birds’ mobbing behavior [12]. Another study 
applies squirrel’s food protection behavior to robotic 
systems and shows how a robot successfully uses this 
deception algorithm for resource protection [3]. 

There also have been several research projects conducted 
on robot deception in the HRI contexts. Terada and Ito [13] 
demonstrated that a robot was able to deceive a human by 
producing a deceptive behavior contrary to the human 
subject’s expectations. These results illustrated that an 
unexpected change of the robot’s behavior gave rise to the 
human’s impression of being deceived by the robot. This 
research indicated that the goal of a robot was to develop its 
focus based on human behavior, thereby accruing 
capabilities to the robot’s benefits. Therefore, this research 
can be assigned to the H-S-B type. 

 Other research in HRI shows that robot deceptive 
behavior can increase users’ engagement in robotic game 
domains. Work at Yale University [14] illustrated in- 
creased engagement with a cheating robot in the context of a 
rock-paper-scissors game. Research at Carnegie Mellon 
University [15] showed an increase of users’ engagement 
and enjoyment in a multi-player robotic game in the 
presence of a deceptive robot referee.   

Recent work in the University of Tsukuba [16] showed 
that a deceptive robot assistant can improve the learning 
efficiency of children. These examples show a robot’s 
deceptive behaviors using specific behaviors in HRI 
contexts. Here, the goal of the robots’ deception is providing 
advantages to the deceived human partners.  

Brewer et al. shows that deception can be used in a 
robotic physical therapy system [17]. By giving deceptive 
visual feedback on the amount of force patients currently 
exert, patients can perceive the amount of force lower than 
the actual amount. As a result, patients can add additional 

force and gain benefit during the rehabilitation. Therefore, 
this research can be placed in the H-O-B category.  

A robot sheepdog [18], can be categorized in N-O-B robot 
deception, since the robot aims to deceive sheep so that it 
can control the sheep flock automatically.  

III. DECEPTIVE ACTION GENERATION MODEL 
Methods (means) define the way in which the deception is 

performed. It is necessary to build a model that illustrates 
how deceptive actions can be generated, where we aim to 
determine the set of true/deceptive actions that a robot 
performs during the interaction.  

In HRI contexts, a human’s behavior is manipulated by 
verbal and non-verbal actions. When a robot delivers 
information to humans and interacts with them, the robot 
uses several cues for representing the action. For verbal 
delivery a robot uses verbal cues, including speech 
expressions and vocal tones [19]. Non-verbal 
communication actions involve the robot’s bodily cues, 
which include gesture, facial expression, and proximity [20]. 
A robot’s action of this sort can be formulated as A = <av, 
an>, which indicates the combination of verbal action av and 
nonverbal action an. 

We develop a robot’s deceptive action in this research 
focusing entirely on non-verbal communication display 
behaviors an. By generating the information using bodily 
cues, humanoid robots can reap certain advantages [21]. 
First, nonverbal actions often have benefits that transcend 
cultural norms. In HRI contexts, a robot is limited in its 
verbal interactions due to language differences. However, 
humans can interpret nonverbal expressions somewhat more 
generally.  In addition, people may expect a humanoid robot 
to demonstrate nonverbal actions due to its embodiment. 
These bodily expressions can lead to more natural 
interactions between humans and robots. Finally, nonverbal 
actions potentially increase the probability of forming bonds 
of trust and affect between humans and robots [21, 22].  

Due to these advantages of nonverbal actions, we develop 
a set of a robot’s true/deceptive actions using nonverbal 
cues. In a high-level view, to generate a robot’s deceptive 
actions, a robot should first have a default action, which is a 

 
 
 
 

 
TABLE I 

Three Dimensions for Robot Deception Taxonomy 
Dimensions Categories Specifications 

Interaction 
Object 

Robot-human 
deception (H) Robot deceives human partners 

Robot-nonhuman 
deception (N) 

Robot deceives nonhuman objects 
such as other robots, animals, etc. 

Interaction 
Goal 

(reason) 

Self-oriented 
deception (S) Deception for robot’s own benefit 

Other-oriented 
deception (O) 

Deception for the deceived other’s 
benefit 

Interaction 
Type 

Physical 
deception (P) 

Deception through the robot’s 
embodiments, low 
cognitive/behavioral complexity 

Behavioral 
deception (B) 

Deception through robot’s mental 
representations and behaviors, higher 
cognitive complexity 

 



 

 

 

true action at.  Then, according to the deception generation 
mechanism described below, the robot can generate a set of 
deceptive actions by transforming the selected default true 
action. A robot can also have multiple true actions that can 
be applicable to the current situation. Therefore, we define 
the set of true actions such as At = {at1, at2, … atn}. 

 

A. Deception Generation 
According to Bell and Whaley [7], deception can be 

categorized into two main types - hiding and showing. Type 
1 deception is hiding, which means masking characteristics 
of the truth to represent deception. Type 2 deception is 
showing; it aims to deceive the mark by representing false 
information. Based on these two types of deception, we can 
formulate a set of possible robot deceptive actions. Our 
deception generation is modeled based on this 
categorization: a robot generates deceptive behaviors by 
transforming the default true action consistent with these 
two deception mechanisms.  

 
TABLE III 

Deception Types 
 Mechanism Explanation 

Type 1 
Deception by 

Omission 
(DbO) 

Hiding information; the true action will be 
transformed by deleting key-information. 

Type 2 
Deception by 
Commission 

(DbC) 

Showing false information; if changeable 
key information exist, the action will be 
transformed by changing the value(s) of 
these key-information. 

 

B. Generating Deceptive Action 
As stated above, we intend to generate a robot’s deceptive 

action using nonverbal behaviors. This nonverbal action is 
represented by several bodily cues, including body gestures 
(g), facial expression (f) and proximity (p). Therefore, we 
can formulate a robot’s action as a = <g, f, p>. As shown in 
this formulation, the nonverbal action a is generated by 
combining these three different cues, but not all cues need to 
be included every time. These bodily cues are manipulated 
differently to generate the deceptive actions in each cue. The 
means by which these transformations occur are described 
below.   

After the default true action is selected for a robot system, 
the deceptive actions are then generated. The true action is a 
combination of bodily cues (g,f,p). Each cue is transformed 
to its deceptive action form(s) separately during action 
generation. As shown in Figure 1, each action cue inputs to 
the deception generation layers, and when the deceptive 
action cues are generated, these cues are combined together 
to construct the deceptive actions ad1, ad2, … adn. The way to 
generate deceptive action cues in each layer is varied, and 
the mechanisms for each bodily cue are explained below. 

 
1) Body Gestures (g) 

Previous research in nonverbal behavior has divided a 
robot’s body gestures into four categories [23]: 

 
Fig 1. Overview of the Action Generation Mechanism via deception 

transformation layers for nonverbal action cues 
 

• Iconic gesture (giconic): meaningful motions associated 
with the semantic content of speech. 

• Deictic gesture (gdeictic): motions to guide attention 
toward specific objects in the environment. This type 
of gesture is generally prototyped by pointing actions. 

• Metaphoric gesture (gmetaphoric): motions to represent 
abstract concepts; behavioral fragments that convey 
implicit information without being tied to dialog 

• Beat gesture (gbeat): simple up-and-down movement to 
emphasize certain words or phases 

 
Among these four gestures, we find semantically 

meaningful actions without speech in iconic, deictic, and 
metaphoric gestures. Therefore, we exclude beat gesture in 
our deceptive action generation model. In other words, a 
robot’s gesture cue g is defined by one of three action types 
(iconic, deictic, or metaphoric gestures), and we generate 
deceptive gestures with semantics by the manipulation of 
these three categories as described below.  

Iconic gestures are gestural representations of the 
semantics of spoken language in general. Therefore, the 
transformation of iconic gestures depends on the information 
that a robot wants to deliver to the human via speech. To 
represent meaningful information, humans generally use 
hand gestures. For example, a specific number can be shown 
using fingers. We can also define a robot’s iconic gestures 
based on meaningful hand and arm gestures. When the robot 
has a true default hand gesture, deceptive gestures can be 
created according to the two deception types (Table 2). First, 
it can hide the information by simply not displaying it 
(omission). In deception by commission, a robot can change 
the information displayed in the true gesture by giving 
variations. For example, assume that a robot’s true action is 
showing the number three with its fingers. In this case, this 
finger representation illustrates a semantically meaningful 
number, so it is an iconic gesture. Here, for type 1 deception 
(omission), a robot can just not show any hand gestures to 
the human. In type 2 deception (commission), a robot’s 
finger signaling gesture can be varied to other numbers such 
as one or two. 

Deictic gestures also include important information that is 
useful to transfer to users. Archetypal deictic gestures 
include pointing actions; therefore, a transformed deceptive  
action can be determined by changing the direction of 
pointing (Type 2 - commission) or not pointing at all (Type 
1 - omission).  A rotation of the head and torso is often 
associated with the arm pointing gesture. For example, the 
default deictic action is to point in the direction of a specific 



 

 

 

object, whereas the deceptive deictic gesture can be 
generated by shifting the direction of pointing toward other 
objects or other spaces. 

Metaphoric gestures represent abstract concepts without 
dialog. Humans can express and deliver their emotional 
status via gesture. These emotional expressions are 
categorized as metaphoric gestures in general. Therefore, we 
also add emotional gestures to our robot system as the 
metaphoric category. Human emotion can be classified into 
six categories, which contain happiness, anger, fear, 
surprise, disgust, and sadness [24]. In addition, we can 
include neutral emotion, where the robot has no metaphoric 
expression. We can have a set of default expressions for 
each of these seven categories. When a robot selects the true 
emotional gesture, it can determine deceptive metaphoric 
gestures by selecting an opposing emotional expression 
(Type 2 - commission) or by not showing any emotion using 
a neutral gesture (Type 1 - omission). Details on the 
implementation to determine the opposite emotion are 
explained below. 

The robot’s default (true) gesture can be generated from 
one or more of these four gesture main categories. In our 
robot system and without loss of generality, robot gestures 
are generated by selecting/combining gesture primitives – 
we define eight general gesture primitives and seven 
emotional gesture primitives, as shown in Table IV. 
Gestures giconic and gdeictic are produced by combining the 
general gesture primitives, and the metaphoric gesture 
gmetaphoric is determined by selecting one of the seven 
emotional gesture primitives. 

Now, we have to define the deception generation function 
F for each gesture primitive. As stated above, deceptive 
gestures are generated by two types of deception – deception 
by omission (F_DbO) and deception by commission (F_DbC).  

First, according to the deception by omission mechanism, 
a robot can perform a deceptive gesture by simply not 
showing the current gesture. In other words, as shown in 
Function 1, when the robot has a true gesture primitive in 
any category, the robot can perform the deception by 
omission by changing it to the Idle (ggp1) / Neutral (egp7) 
gesture primitive to realize the omission deceptive gesture 
set. 

 
 

 

Function 1: Deception by Omission 
 

F_DbO (ggp2 | ggp3 | ggp4 | ggp5 | ggp6 | ggp7 | ggp8) = ggp1 
F_ DbO (egp1 | egp2 | egp3 | egp4 | egp5 | egp6) = egp7 

 
To generate a deceptive gesture according to deception by 

commission, the model needs a way to produce false 
information for each gesture primitive. Two means of 
generating false information are used in our system.   

First, according to the characteristics of the gesture 
primitives, we predefine primitive pairs that contain gestures 
of opposite meanings, whereby the deceptive gesture can be 
determined by finding the opposite of each primitive gesture. 
For the general primitives, we define opposite pairs that are 

recognized by people in general. In addition, for the 
emotional primitives, we discriminated these opposite 
emotion pairs according to Plutchik’s wheel of emotions 
[25]. As a result, we obtain the set of opposite gesture 
primitive pairs as shown in Function 2, which represents the 
mathematical formulation of the deception by commission 
mechanism. As shown here, the set of gesture primitive pairs 
is defined, and the robot can determine the opposite gestures 
based on this pair set P.  
 

Function 2: Deception by Commission 
 

Set of Gesture Primitive Pairs (P) ={[ggp2, ggp3],  
[ggp7, ggp8], [egp1, egp6], [egp1, egp5], [epg2, epg3] } 

 

If [g1, g2] ∈ P, then F_DbC (g1) = g2 or F_DbC (g2) = g1 
 

Figure 2 shows exemplar pairs of gesture primitives. All 
gesture primitives were implemented using the 
Choregraphe1 and Webots simulator2.  We chose the NAO 
robot as we have previously used this for emotional 
expression [26, 27] implemented these new general 
emotional primitives. Figure 2(a) is a screen capture of the 
“showing hand” and the “hiding hand” gesture primitives. 
Since these two gestures are in the set of gesture primitives 
pairs P, when one of two gestures is selected as a true set, 
the alternate gesture is used as a deceptive gesture according 
to Function 2. Figure 2(b) illustrates the emotional gesture 
pairs such as [Anger, Fear]. As shown in the final example, 
Figure 2(c), when “happy” gesture primitive is selected, “sad” 
or “disgust” gestures are selected as deceptive actions as 
shown in Figure 2(c).  

 
1 http://www.aldebaran.com/ 
2 http://www.cyberbotics.com/ 

TABLE IV 
Gesture Primitives with necessary parameters and  

body parts in a humanoid robot 
General Gesture (notation) 

[parameter] Body Part 

Idle (ggp1) Head, Left and Right Arms, Legs 
Raising/Showing Hand (ggp2)  
[# of fingers] Right Arm 

Hiding Hand (ggp3) Right Arm 
Grasping (ggp4)  
[object Location] Head, Right Arm, Legs 

Pointing (ggp5)  
[object Location] Head, Right Arm, Legs 

Waving (ggp6) Right Arm 
Okay/Yes (ggp7) Head, Right Arm 
No (ggp8) Head, Right Arm 
  
Emotional Gesture (notation) Body Part 

Happiness (egp1) Head, Left and Right Arms, Legs 
Anger (egp2) Head, Left and Right Arms, Legs 
Fear (egp3) Head, Left and Right Arms, Legs 
Surprise (egp4) Head, Left and Right Arms, Legs 
Disgust (egp5) Head, Left and Right Arms, Legs 
Sadness (egp6) Head, Left and Right Arms, Legs 
Neutral (egp7) Head, Left and Right Arms, Legs 
 



 

 

 

 

         
(a) left: ggp2 (Showing hand) vs. right: ggp3 (hiding hand) 

 
 

                
(b) left: epg2 (Anger) vs. right: epg3 (Fear) 

 
 

       

       

       
 

(c) left: egp1 (Happy) vs.  
right-top: egp5 (Sad) and right-bottom: egp6 (Disgust)  

 

Fig 2. Gesture Primitive Pairs in Function 23 
 
Second, when the primitive gesture has a parameter that 

represents key information for that action, the deceptive 
gesture can be generated by changing this key value. Thus, if 
the value of the parameters are changed to different values, 
false information can be delivered to the mark, and, as a 
result, a deceptive gesture can be generated.  

As shown in Table IV, ggp2, ggp4, and ggp5 require a 
parameter to express their gesture, and each primitive can be 
defined as ggp2(n), ggp4(x), and ggp5(x), where n and x 

 
3 Video is available at:  
http://www.cc.gatech.edu/ai/robot-lab/hunt/movies/robio14_Shim.mov 

specify the value of the parameter. Here, n represents the 
number of robot fingers and x is the directional vector of the 
intended object’s location. For these three gesture primitives, 
the robot should generate the deceptive action by changing 
the parameter value to a false one as shown in Function 3. 
 

Function 3: Deception by Commission 
 

F_DbC (ggp2(nk)) = {ggp2(ni) | ni ∈ {n1, … , nk-1, nk+1, …, nl} 
, where parameter n is number of fingers 0 ≤ n ≤ nl and 

nl is the max number of  a robot finger. 
 

F_DbC (ggp4(xk)) = {ggp4(xi) | xi ∈ {x1, … , xk-1, xk+1, …, xn} } 
F_DbC (ggp5(xk)) = {ggp5(xi) | xi ∈ {x1, … , xk-1, xk+1, …, xn} } 

, where object location set defined as {x1, x2, …, xn} and 
xi is the vector of location (x,y,z) 

 
Figure 4 illustrates deception generation example via the 

deception by commission mechanism. The gesture primitive 
in this simulation is “pointing” gesture. In this simulation 
context, a robot detects two object locations {apple, 
orange}. When ggp5(apple)  is selected as a true pointing 
action as shown in Figure 3(a), a robot can generate the 
deceptive pointing action ggp5(orange) based on function 3 
as shown in Figure 3(b).  

 

  
            (a) True pointing action                   (b) Deceptive pointing action 
                     ggp5(apple)                                            ggp5(orange) 

  

Fig 3. Simulations of deceptive “pointing” gesture generation  
via Function 3 

 
In sum, by applying the deception by omission and 

deception by commission gesture generation functions, a 
robot can find alternative gestures that can be used to 
deceive the human. These principles can be generalized even 
further as needed. 
 
2) Facial Expression (f) 

A facial expression (human or robot) is usually used to 
display emotional states. As stated earlier, according to 
Ekman [24], emotion can be divided into six basic 
categories, which are happiness, anger, disgust, fear, 
sadness, and surprise. Neutral status is commonly added to 
the emotion categorization. In a higher-level perspective, 
these facial expressions can fall into three sets – positive (fp), 
negative (fn), and neutral (fnt). Positive facial expressions are 
a representation of happiness. Negative facial expressions 
include all expressions of anger, disgust, fear and sadness. 
Neutral facial expressions (fnt) are shown when a robot 
doesn’t express any emotion. In our case, when a robot 
generates deceptive facial expressions, these three sets are 



 

 

 

used to determine the correct one to provide. It is first 
determined whether the true default expression is in the 
positive, negative, or neutral set. The robot can then 
transform the true facial cue by applying deception by 
commission. In other words, to show the false interaction, a 
robot selects from the other two orthogonal sets for an 
emotional display choice. For example, if the default true 
facial expression ft is positive (ft  ∈ {fp}), then the deceptive 
facial expression fd will be transformed by selection from the 
negative and neutral facial expressions (fd ∈ {fn, fnt}).   

Omission deception for facial expression is 
straightforward. If the true action is to display the robot’s 
emotional state requiring such a display it will either not 
display any emotion whatsoever, or if it is already displaying 
an emotional facial expression that should be changed 
according to the new true action, it will instead continue to 
display its previous facial expression without change. 
 
3) Proximity (p) 

Spatial proximity is indirectly used to give an impression 
of intimacy to humans during the interactions. Hall [28] 
divided interpersonal space into four categories: intimate 
(within 2 feet of the person), personal (2-4 feet), social (4-12 
feet), and public (12-25 feet) spaces. Our previous robotics 
research [21] has studied how these interpersonal spaces can 
be applied in HRI contexts by quantizing these four spaces 
separating human and robot as shown in Table V. Therefore, 
a robot’s proximity cue will be defined as a member of one 
of these four categories. This indicates the degree of 
familiarity with the human partner. For deception 
generation, the algorithm is developed similarly to facial 
expression mechanism. When the default proximity cue lies 
in one of the four space categories, the alternative deceptive 
action set can be created by selecting the other three space 
categories.  

For example for type II (commission), if the default 
proximity is defined as personal space (pt  ∈ {pps}), the 
deceptive proximity set will be pd ∈ {pin, psc, ppb} as shown 
in Figure 4. For type I (omission) the robot will remain in its 
place even if the true action warrants a change in spatial 
separation. 
 

TABLE V 
Humanoid Robot’s Proxemic Spatial Regions 

Space Category Proxemics Zones 
Intimate, pin 0-60cm 
Personal, pps 75-120cm 
Social, psc 150-200cm 
Public, ppb Over 200 cm 

 
 
4) Integration of deceptive non-verbal action cues 
In the previous subsections, we have explained a robot’s 

deceptive action generation for each bodily cue type. Via 
these transformation layers, a robot can produce multiple 
deceptive actions. The final step in generating deception is  

      
         (a) True proximity cue                     (b) Deceptive proximity cues 

 

Fig 4. Example for type II (commission) deceptive proximity generation 
 

 
Fig 5. Detailed Integration step of the Action Generation Mechanism 

(extended from Figure 2) 
 
integrating these discrete cues onto one holistic robot action. 
As shown in Figure 1, this final step is defined as 
integration. The potential deceptive action ad = < gd, fd, pd > 
is generated by combining the 3 elements of deceptive 
nonverbal action cues. 

As shown in Figure 5, the integration module is structured 
in three steps: combining, filtering, and prioritizing. The 
pseudo code for this integration module is described in 
Algorithm 1. 

As illustrated in this algorithm, a robot first generates all 
combinations of possible deceptive bodily, facial, and 
proximity cues and gets the set of possible deceptive actions 
such as Acombine. The robot can easily obtain the set of 
possible deceptive actions by generating all combinations of 
deceptive bodily cues.  

From the set of possible deceptive actions, some of the 
actions should be rejected due to potential contradictions. 
For example, if the facial expression cue shows the positive 
emotion but the gesture cue delivers the sadness motion, it 
will lead to confusion in the human subject. To avoid those 
contradictory actions, a filtering step is added here. In the 
filtering step, a robot checks whether the current action’s 
bodily and facial expression cues are globally coordinated as 
shown in Algorithm 1.  

The contradiction can potentially occur when each action 
cue in one action tuple shows extremely different 
information at the same time. As we stated, robot gestures 
can be categorized in three ways: iconic, deictic, and 
metaphoric. General gesture primitives are used to represent 
iconic and deictic gestures and metaphoric gestures can be 
produced by emotional gesture primitives.  

Facial expression cue is used to show the emotional state 
of the robot; therefore, it is only overlapped with the 
metaphoric dimension in the gesture cue. Therefore, a check 
for potential conflict between emotional gesture cue and 
facial expression cue is made. Since these two cues express 
emotional state concurrently, the contradiction can occur if 
two cues show extremely different motions. Therefore, when  



 

 

 

Algorithm 1: Integration of deceptive action cues 
Inputs: Deceptive non-verbal action cues from three transformation layers 
             Gd ={gd1, gd2, … , gdl}, Fd ={fd1, fd2, … , fdm}, Pd={pd1, pd2, … , pdn} 
Output: Deceptive Action Set Ad = {ad1, ad2, … , adk} 
 
// 1. Combining step 
Acombined = {<gd, fd, pd> | gd ∈ Gd, fd ∈ Fd, pd ∈ Pd} 
 
// 2. Filtering step 
// Set the high-level emotional primitive gesture group 
Epos = {egp1, egp4} 
Eneg = {egp2, egp3, egp5, egp6} 
Enat = {egp7} 
 
// Find contradictory emotional cues and remove them 
Afiltered  = {} 
for  ( each action tuple <gd, fd, pd>  in Acombined) 
       if  ( ! ( gdi ∈ Epos && fdi ∈ fn ) &&  
             ! ( gdi ∈ Eneg && fdi ∈ fp ) ) 
              Afiltered = Afiltered U {<gdi, fdi, pdi>} 
 
// 3. Prioritizing Step 
tstart = time to start deceptive action 
tproximity = time duration to complete the proximity cue 
for ( each action tuple <gd, fd, pd>  in Afiltered ) 
     t1 = tstart + tproximity 
     t2 = t3 = tstart 
    adi = <!!"!!, !!"!!, !!"!!>  
    Ad = Ad U"{adi} 
 

 
a negative emotion gesture and a positive facial expression 
are shown in the same action ai, it should be filtered out. The 
same step occurs in the case of an action with a positive 
emotion gesture and negative facial expression. As a result, 
in our algorithm, the sets of positive, negative, and natural 
emotional primitive gestures are defined first based on 
Plutchik’s definition [25]. Then, it is determined whether the 
facial expression cue is in a contradictory emotional group, 
and, when those two cues are not in the same emotional 
group, it is removed. 

Proximity is highly related to the intimacy and it can 
indirectly deliver the emotions to human subjects [28, 29]. 
Therefore, proximity is also aligned with the group of 
metaphoric gestures. However, it is difficult to determine the 
specific type of emotion that the proximity affects. 
Therefore, proximity is excluded in the global coordination 
step for emotion expression.  

When the robot actually performs the generated deceptive 
action ad, it must address possible conflict conflict of a 
robot’s actuators. Many bodily cues use the same joint, and 
it leads to the conflict if some of those cues are intended to 
be performed at the same time. To avoid this conflict, an 
integration step prioritizes among bodily cues that possibly 
use the same joints/motors. Formally, we add time-variation 
t to non-verbal action cues such as <!!! , !!! , !!! >. Time 
variable t represents the time to start the current action cue. 

Therefore, if the potential conflict in actuator usage exits, t 
in each cue should be controlled. Proximity changes possibly 
involve the same joints/motors, as do some body gestures. 
Therefore, when a robot performs the action a, we prioritize 
proximity. Facial expression is obviously performed 
independently from the other cues, gesture and proximity, as 
there is no conflict in actuator usage. Therefore, a robot 
maintains facial expression during the performance of the 
proximity and gesture cues.  Summarizing, as shown in 
Algorithm 1, a robot performs proximity cues first and then, 
if needed, produces the gesture cue while maintaining the 
facial expression cue during the entire action.  

In short, in the integration module, a robot first generates 
the set of all combinations of possible deceptive bodily, 
facial, and proximity cues and filters out the contradictory 
actions to get the deceptive action set. Then, a robot 
determines whether any of these action combinations include 
conflict by observing the overlapping use of body parts and 
prioritizes the proximity cue to avoid those conflicts. 
Finally, the robot can produce the set of deceptive actions 
such as Ad = {ad1, ad2, … adn} needed for the task at hand. 

IV. CONCLUSION AND FUTURE WORK 
Deception is one of the key features that should be 

developed in order to produce more intentional and 
autonomous social robots, if we hope to increase the use of 
social robots in HRI contexts where a robot needs to perform 
other-oriented deception that can benefit its deceived human 
partner. Other-oriented robot deception has previously been 
defined according to a robot taxonomy [4]. To add these 
capabilities to robotic systems, we develop a novel 
computational model inspired by criminology. According to 
the criminological definition of deception, we approach 
robot deception in three dimensions, which are motive, 
methods, and opportunity. Among these three dimensions, 
we present the methods dimension including a specific 
computational approach.  The main contribution this paper is 
a novel algorithm for generating deceptive actions – the 
Methods model in our computational approach. When a 
robot selects the true (default) action based on the current 
HRI situation, deceptive actions are determined based on 
deception by omission and deception by commission 
mechanisms. These computational models are described for 
humanoid robot’s deceptive action generation since 
humanoids are broadly and effectively used in HRI contexts.  

The two main contributions of this paper are 1) proposing 
a novel approach for other-oriented robot deception inspired 
by criminology and 2) developing an action-generation 
mechanism as a method model. For the next step, the motive 
and opportunity model must be defined. A robot needs to 
know whether the current situation warrants the 
other-oriented deception and when these deceptive actions 
should be performed, not just how. These are essential and 
difficult problems since a robot needs to understand the 
current situation and the mark’s status.  

In our previous research, we reviewed different situations 



 

 

 

pertaining to the utility of other-oriented deception in 
human-human interactions and characterized those contexts 
based on two dimensions: 1) the time duration of the 
deception, and 2) the payoff of the mark as shown in Figure 
6. Based on this analysis, we are currently developing the 
Motive model.  

Since we strive for a robot to increase the human’s 
benefits from the deceptive actions, perhaps even at the 
expense of the robot, the Opportunity model needs to predict 
which deceptive behaviors can increase a human’s 
advantage for a particular situation. We are also in the 
process of developing this model.  

To evaluate our research hypothesis and models, we plan 
to conduct HRI studies and verify whether human partners 
can actually gain advantage from a robot’s other-oriented 
deception. It must be noted that robotic deception is a 
controversial research topic from an ethical perspective [30], 
so the implications of this research and related research will 
be thoughtfully and carefully established and discussed. 

 

 
Fig 6. Situations involving human cases of other-oriented deceptions  
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