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Abstract

Reactive methods of control get caught in lo-
cal minima. Fortunately schema-based reac-
tive control systems have built-in redundancy
that enables multiple configurations with dif-
ferent modes. We describe a model-based
method that exploits this redundancy, and,
under certain conditions, reconfigures schema-
based reactive control systems trapped in be-
havioral cycles due to the presence of local
minima. The qualitative model specifies the
functions and modes of the perceptual and mo-
tor schemas, and represents the reactive archi-
tecture as a structure-behavior-function model.
The model-based method monitors the reactive
processing, detects failures in the form of be-
havioral cycles, analyzes the processing trace,
identifies potential modifications, and reconfig-
ures the reactive architecture. We report on
experiments with a simulated robot navigating
a complex space.

1 Introduction

Reactive methods for control are characterized by a di-
rect mapping of perceptions of the world to actions on
it. A major advantage of these methods is that they
result in rapid response. A major problem is that they
get caught in local minima [Arkin, 1989]. Fortunately
many reactive control designs contain redundancies. For
example, schema-based designs [Arbib, 1992] have built-
in redundancy that allows multiple configurations with
different modes. For schema-based reactive agents, we
view failure recovery as redesign task. That is, instead of
finding ways of somehow escaping a local minima, by in-
troducing noise for example, we view failure as an oppor-
tunity to reason about the current modes of perceptual
and motor schemas, and to configure a set of modes that
is immune to the world conditions that led the current
mode to be stuck in a local minima.

We describe a hybrid agent architecture called Reflecs
in which a deliberative reasoner detects and recovers
from failures due to the presence of local minima within

the context of autonomous reactive agents. The delib-
erative reasoner in Reflecs uses a model-based method
derived from a theory of self-redesign in adaptive agents
described in [Stroulia and Goel, 1994; 1996). The general
theory is instantiated in a “shell” called Autognostic.
Autognostic provides both a language for representing
information-processing in an autonomous agent as a SBF
model, and a library of model-based methods for mon-
itoring the information-processing, analyzing behaviors
and detecting failures, assigning blame, and adapting the
information-processing architecture. In Reflecs, the SBF
model of a reactive control system enables monitoring of
its processing, detection and analysis of its failures, and,
under certain conditions, reconfiguration of its architec-
ture through mode switching. In this paper, we describe
the Reflecs architecture and its model-based method for
reconfiguring schema-based reactive control systems. We
also report on experiments with a simulated robot nav-
igating a complex navigation space. The main result is
a model-based technique that enhances the autonomy of
schema-based reactive agents.

2 Schema-Based Reactive Control

AuRA [Arkin, 1990] exemplifies schema-based reactive
control for mobile robots. Its reactive control system
consists of perceptual and motor schemas, and mappings
from the former to the latter. Each perceptual schema
is responsible for one sensory modality, and each motor
schema is responsible for one type of action. The percep-
tual schemas directly feed into the motor schemas. Each
motor schema outputs a vector in response to feeds from
specific perceptual schemas. The direction and magni-
tude of the vector are determined by the nature and
gain of the schema. Figure 1 illustrates the relations
of the two basic motor schemas in AuRA: move-to-goal
and avoid-obstacle. The move-to-goal schema pulls the
robot towards the goal and the avoid-obstacle schema
pushes the robot away from an obstacle. The force vec-
tors generated by the motor schemas are summed and
normalized to decide the direction and the speed of the
robot. The normalized vector is given to the robot for
execution.

Schema-based reactive control architectures typically
have built-in redundancy. For example, the avoid-



sensors perceptual motor motion

schemas schemas vector

avoid
obstacle

\

read
O > lasers <

read
O — shaft

encoders

\ synthesize

move
to goal

vectors ]

Figure 1: The perception-action cycle

obstacle schema in Figure 1 really stands for a family of
motor schemas, which includes avoid-static-obstacle and
avoid-barcode-obstacle as two core members. The latter
schema is useful in visually-engineered navigation worlds
in which specific objects are marked by barcodes read-
able by a rotating laser sensor. The reactive controller
operates in a specific configuration characterized by the
modes of the various schemas: any schema can be either
in an on mode or an off mode.

2.1 Local Minima and Behavioral Cycles

Local minima present a major problem for reactive con-
trol including schema-based designs. Imagine that the
goal and the obstacle in a navigation space create a po-
tential field around them. In reactive control, the robot
slides down the potential hill to reach the minimum (the
goal) and move away from the potential maximum (the
obstacles). Now consider a navigation space in which an
obstacle is located very close to the goal. In this case,
the attractive force of the goal may be cancelled by the
repulsive force of the obstacle. This results in behavioral
cycles in which the agent finds itself at the same spatial
location at different time instances, without accomplish-
ment of any goal in intervening time period.

The following scenario based on the 1993 AAAI Robot
Competition illustrates the problem. The robot task
is to navigate a world to reach a box containing some
pucks, collect the pucks, carry them to a home loca-
tion, and deposit them. The navigation world contains
many static obstacles in addition to the box containing
the pucks. It is also visually engineered by placing laser
readable barcodes on all obstacles. The robot’s schema-
based reactive controller is configured to use the move-
to-goal and avoid-static-obstacle schemas. Although the
avoid-barcode-obstacle is available in the control architec-
ture, the avoid-static-obstacle is used because it provides
more reliable detection of static obstacles. This configu-
ration works well until the robot comes close to the box
containing the pucks. At this stage, the robot views the
box as another obstacle (because the box is not marked
by any barcode), and starts to back off. Caught be-
tween the-box-as-a-goal and the-box-as-an-obstacle, the
robot’s behavior becomes cyclic. Eventually it gets stuck
at a location close to the box, but never reaches it, and,
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Figure 2: Functional specification of reactive schemas

thus, fails in its mission. In the following, we use this
realistic scenario as a running example.

3 Combining Reaction and Deliberation

To address the problem of local minima and behavioral
cycles in reactive control, Reflecs introduces a deliber-
ative reasoner in the agent architecture. The reactive
controller works autonomously as outlined above. But
after each perception-action cycle, it communicates state
information to the deliberative reasoner. This includes
information about the current position about the robot,
the inputs to the reactive controller in the form of sen-
sor readings, the behavior outputs of the the individual
schemas, and the synthesized output of the reactive con-
troller as a whole. The state information is used by the
deliberative reasoner to continuously monitor the behav-
ior and detect failures. If no failure is detected, then it
does nothing. But if a failure is detected, then it ana-
lyzes the failure, and determines a reconfiguration for the
reactive controller. It then sends the configuration infor-
mation to the reactive controller. The information iden-
tifies specific schemas and their desired modes (on/off).

4 A Functional Model

The deliberative reasoner uses a Structure-Behavior-
Function (SBF) model of the reactive control system.
The SBF model specifies three kinds of knowledge. First,
it specifies the functions and modes of each perceptual
and motor schema in the reactive system. A schema
function is specified by the types of information it takes
as input and the types of information as output. Fig-
ure 2 illustrates the specification of the schemas in Fig-
ure 1. When the model-based reasoner detects a fail-
ure, knowledge about the schema functions and modes
enables identification about the schemas and modes re-
sponsible for the behavior.

Second, the SBF model specifies the task structure of
reactive processing in terms of tasks (Function in SBF),
methods (Behaviors in SBF), and the leaf tasks which
are performed by the hardware-encoded perceptual and
motor schemas (Structure in SBF). The task structure
explains the leaf tasks performed by the perceptual and
motor schemas get composed into the robot’s task. Fig-
ure 3 illustrates the SBF representation of the methods
that compose the tasks of the schemas in Figure 1 into
the robot task in our running example. This organi-



name: box-cycle-behavior

applied to: step-in-box-cycle

subtasks: (read-sensors step-in-execute-cycle
read-shaft-encoder)

control: (¢‘serial-op’’ read-sensors
step-in-execute-cycle
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name: cycle-behavior

applied to: step-in-execute-cycle
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Figure 3: Method specification in the SBF language

zation of the SBF model enables localization of model-
based reasoning.

Third, the SBF model specifies redundancies in the
design of the reactive system through prototype tasks,
which can have more than one specific instance. Each
instance of a prototype task corresponds to a redundant
element in the system design. This knowledge enables
mode switching.

Figure 4 illustrates the SBF model of the reactive
processing for the task in our running example. The
main task is get-to-box, which is performed by the get-
to-box-method. The get-to-box-method spawns the box-
cycle task, which is performed iteratively until the goal
is reached. box-cycle is a prototype task. The reactive
system uses a specific instance step-in-box-cycle of the
box-cycle prototype. step-in-box-cycle is performed by
the box-cycle-behavior method. This method decomposes
the task into read-sensors, step-in-execute-cycle, and read-
shaft-encoder tasks. The step-in-execute-cycle task is per-
formed by the cycle-behavior method, which decomposes
it into move-to-goal, avoid-static-obstacle, and synthesize
sub-tasks. avoid-static-obstacle is a specific instance of
the prototype task avoid-obstacle. avoid-barcode-obstacle
is another instance of the avoid-obstacle prototype task
available in the reactive architecture.

5 Model-Based Reconfiguration

Following Autognostic, Reflecs contains knowledge of
types of failure (e.g., behavioral cycles due to local min-
ima), a library of model-based failure analysis methods,
and a library of redesign methods (e.g., replacing one
instance of a prototype task in a task structure with an-
other instance). Below we describe only those methods
that are relevant to the problem in our running example.

5.1

Figure 5 illustrates the model-based method for moni-
toring reactive processing and detecting failures. The
method keeps a trace of the reactive processing and
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Figure 4: Task structure of reactive processing

MONITOR (taskg, (i, v(i))*
Input:

the task to be accomplished, taskg, and

the information context, i.e. a set of pairs, (¢, v(?)),
where 7 is an information type, and v(¢) is its value in
the current context

Output:

a trace of the tasks performed, the methods

applicable, and the method chosen, the updated
information context, with the information

produced while problem solving, and potentially,

a failure description and modification suggestion.

~—

) info_context = (i,v(7))*

) trace =0

) Vi (i,v(9)) € info_context assimilate-value(v(i)?)

) If tasky is a subtask of itself in trace

V there is an exact same sibling subtask in a loop
then EXIT (failure-symptom:=recurrent-
task(tasky, trace, info_context),
possible-modification:=recurrent-task-mod)

(1
(2
(3
(4

Figure 5: Method for recurrent-task detection



ANALYZE(fatlure-symptom, possible-modi fication)
Input:

failure-symptom, including the trace of the failed
problem-solving episode, the information context

of the episode, and the failed task.

suggested modification method.

Output:

modification method, task to be modified

If possible-modification = recurrent-task-mod
then EXIT (modification:=recurrent-task-mod,
task(fatlure-symptom))

Figure 6: Method for recurrent-task analysis

uses this trace to detect behavioral cycles, where the
trace is expressed in the SBF language. In particular,
the method compares the inputs to each invocation of
each task with its earlier invocations. If a task is in-
voked repeatedly with exactly the same information as
input, then the method determines that a failure of type
recurrent-task has occurred. In our running example,
while executing the box-cycle task, reactive processing
repeats the step-in-box-cycle until the goal is reached.
The model-based method for failure detection compares
the inputs to the box-cycle task in the current invoca-
tion of the task with the inputs to earlier invocations of
the task available in the trace. When the same inputs
appear in the trace, the recurrent-task failure is flagged.
In addition, recurrent-task-mod is suggested as a possi-
ble method for modifying the task structure of reactive
processing.

5.2 Causal Analysis

Figure 6 illustrates Reflecs’ method for analyzing the
recurrent-task failure. Since the step-in-box-cycle is not
preceded by another task in the reactive processing
(there is no subtask of get-box scheduled before it -
Figure 4), the method simply confirms the recurrent-
task-mod as the modification method. If the step-in-
box-cycle has been preceded by other tasks in the reac-
tive processing, then the causal analysis method would
have inspected them for potential modification and may
have suggested additional modification methods ([Strou-

lia and Goel, 1994; 1996] provide details).
5.3 Redesign

The redesign process invokes the modification method
of recurrent-task-mod on the recurrent-task of step-in-
box-cycle. Figure 7 illustrates the recurrent-task-mod
method. The method instructs attempts to find change-
able tasks under the recurrent-task of step-in-box-cycle.
A changeable task refers to a task instance that can be
replaced by another instance. The SBF model of reac-
tive processing specifies that the task structure (Figure
4) contains only one changeable task instance, avoid-
static-obstacle. Thus it is replaced by the alternative
task instance avoid-barcode-obstacle. This information is
communicated to the reactive controller in the form of

REDESIGN (modification)

Input:

modification method, task to be modified
Output:

modified task structure

If method(modification) = recurrent-task-mod
then tasks = changeable-tasks(task(modification))
If tasks

then try-next-combination(tasks)

Figure 7: Method for recurrent-task modification
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Figure 8: Robot simulation

switching the mode of avoid-static-obstacle to off and the
mode of avoid-barcode-obstacle to on. This leads to a
reconfigured reactive architecture that is immune to the
conditions that led the earlier architecture to get stuck
in a local minima.

6 Evaluation

We have extensively evaluated Reflecs on a simulated
robot for running example based on the 1993 AAAI
Robot Competition. The reactive controller in Reflecs
is based on AuRA and is written in C. The model-based
reasoner is based on Autognostic and is written in Lisp.
The two communicate through a shared data structure.

The simulation program generates random navigation
worlds containing goals and obstacles. Each navigation
world contains twenty obstacles. The x and y coordi-
nates of the obstacles are uniformly distributed random
numbers between 0 and 64. The radius of the obstacles
too are uniformly distributed random numbers between
1 and 5. The start and goal locations in each world are
well-defined - an obstacle is deleted if it overlaps with
the start or goal locations. Figure § illustrates the robot
task in progress in such a world.

We conducted experiments with more than twenty
such randomly generated simulated navigation worlds.
Since the reactive controller views the goal itself as an ob-



Table 1: Time and steps taken for the experiments

Exp. Steps Time with | Time with
Number | Taken | Deliberative Reactive

Monitoring | Monitoring

1 93 8 366

2 71 5 231

3 84 6 318

4 65 6 206

5 60 5 184

stacle, each of these navigation worlds presented a local
minima as a result of which the robot’s behavior became
cyclic. In each case, Reflecs’ model-based method de-
tected the spatial-temporal cycle in the robot’s behavior
after no more than two repetitions. And in each case, the
model-based reasoner successfully identified the modes
in the reactive control architecture responsible for the
robot’s failure, and, successfully reconfigured the modes
in the reactive control architecture.

6.1 Reactive versus Deliberative
Monitoring

The Reflecs architecture raises the issue of trade-offs be-
tween deliberative and reactive monitoring. In the for-
mer mode, monitoring and failure detection is done in
the deliberative reasoner, and the monitoring process
and the reactive controller run in series. In the latter,
the monitoring process is in the reactive controller it-
self, with the monitoring and reactive processes running
in parallel. The model-based deliberative reasoner is in-
voked only when a failure is detected. In either case,
Reflecs’ uses the same model-based methods for recon-
figuration. We conducted five additional experiments to
compare the efficiency of reactive and deliberative mon-
itoring enabled by Reflecs’ model-based method. Table
1 summarizes the results. Steps in the table refers to
the total number perception-action cycles in completing
the robot task; time refers to the time taken to complete
the task (and is registered using time() function in the
simulation program).

As expected, reactive monitoring leads to much better
performance. Deliberative monitoring may be useful in
the reactive system design, development and debugging
phases.

6.2 Limitations

Local minima are a formidable problem for many Al
methods including reactive control methods. We know of
no general solution to the problem, and expect all can-
didate solutions to be restricted to specific situations.
Reflecs” current method for reconfiguration can become
costly if several schemas in the reactive architecture are
potential candidates for mode switching. One solution
might be to complement the model-based method with
other methods. We have augmented the model-based
method with a memory of past failures and correspond-
ing reconfigurations. Also, Reflec’s current method is

limited in the kinds of modifications it can make to
the schema-based reactive controller. At present, the
method can only reconfigure the reactive architecture
by mode switching which results in the replacement of
one motor schema for realizing an action in a class of
actions by another motor schema for realizing an action
in the same action class. The model-based method can-
not modify the mappings between the perceptual and
the motor schemas.

7 Related Research

Recovery from failures has been an important topic in Al
research on planning and design. Here we will compare
our work only with related research on reconfiguration
of reactive control architectures, and, in particular, with
model-based approaches to reactive architectural recon-
figuration. In the context of reactive agents, Howe and
Cohen [Howe and Cohen, 1991] describe a method for
recovery from failure. Their method not only monitors
agent performance and detects failures, but also keeps
statistics of failures. It uses heuristic knowledge to re-
cover from recurrent failures and to modify the reactive
controller. The domain-specific heuristics directly map
specific kinds of recurrent failures to specific kinds of
modifications to the reactive controller. In contrast, Re-
flecs maintains a model of the reactive controller, and,
when a failure occurs, it uses the model to analyze the
failure and recover from it by reconfiguring the reactive
architecture.

Williams and Nayak [Williams and Nayak, 1996] de-
scribe a different model-based technique for reconfigur-
ing reactive systems and its implementation in a system
called Livingstone. The goal of their work is the same
as ours: model-based agent autonomy. But our work
differs from theirs in the dimensions of domain, task,
knowledge, and method. Livingstone works in the do-
main of “immobile robots.” In contrast, Reflecs operates
in the domain of reactive controllers on mobile robots.
In this domain, local minima present a formidable prob-
lem. Livingstone performs a form of state-based diag-
nosis, while Reflecs performs function-based analysis. In
Livingstone, the states pertain to the physical system,
but in Reflecs, the system states are “information states”
of the reactive controller. In addition, while Living-
stone’s model of the physical system is “flat,” Reflecs’
knowledge of the information system is organized hier-
archically in a SBF model. Livingstone uses the method
of conflict-directed best-first search to identify compo-
nents whose modes need to switched on/off. Reflecs uses
function-directed top-down search for mode identifica-
tion and system reconfiguration. The search is localized
by the organization of the SBF model.

As mentioned earlier, Reflecs’ model-based method for
reactive control reconfiguration derives from Autognos-
tic’s general theory of self-redesign in adaptive systems.
Reactive controllers aboard mobile robots are hardware-
embedded software systems. Autognostic’s theory of
modeling hardware-embedded software systems arises



from an earlier theory of model-based failure analysis
and redesign of hardware systems [Goel and Stroulia,

1996].

8 Conclusions

Local minima present a major problem for methods of re-
active control. Since schema-based reactive systems con-
tain built-in redundancy that enables multiple configu-
rations with different modes, Reflecs casts recovery from
failure due to local minima as a redesign problem. Re-
flecs uses a model-based method for monitoring reactive
processing, detecting and analyzing failures, and recon-
figuring the reactive architecture. The method works by
switching the schema modes, provided that the number
of participating schemas is small. The Reflecs architec-
ture enables both deliberative and reactive monitoring.

Reflec’s model-based method suggests that four kinds
of qualitative knowledge about reactive systems enable
architectural reconfiguration through mode switching.
First, when a reactive agent gets caught in a local min-
ima, its behavior initially becomes cyclic. This knowl-
edge enables detection of failures due to local minima.
Second, Reflec’s model of the reactive architecture spec-
ifies the functions and modes of the perceptual and mo-
tor schemas. This knowledge enables mode identifica-
tion. Third, the model represents the task structure
of reactive processing in the structure-behavior-function
(SBF) language. This knowledge localizes the reasoning.
Fourth, in each perception-action cycle, the deliberative
reasoner uses knowledge of the trace of reactive process-
ing that leads to a specific behavior. Together with the
SBF model, this knowledge enables continuous monitor-
ing, failure detection and analysis.

References

[Arbib, 1992] M. Arbib. Schema theory. In S. Shapiro,
editor, Encyclopedia of Artificial Intelligence, pages
1427-1443. Wiley, 2nd edition, 1992.

[Arkin, 1989] Ronald Arkin. Motor schema-based mo-
bile robot navigation.  International Journal of

Robotics Research, 8(4):92-112, August 1989.
[Arkin, 1990] Ronald Arkin. Integrating behavioral,

perceptual, and world knowledge in reactive naviga-
tion. Robotics and Autonomous Systems, 6:105-122,
1990.

[Goel and Stroulia, 1996] Ashok Goel and Eleni Strou-
lia. Functional device models and model-based diagno-
sis in adaptive design. Artificial Intelligence for Engi-

neering Design, Analysis and Manufacturing, 10:355—
370, 1996.

[Howe and Cohen, 1991] Adele E. Howe and Paul R. Co-
hen. Failure recovery: A model and experiments. In
Proceedings of the Ninth National Conference on Ar-
tificial Intelligence, pages 801-808, 1991.

[Stroulia and Goel, 1996] Eleni Stroulia and Ashok K.

Goel. A model-based approach to blame assignment:

Revising the reasoning steps of problem solvers. In
Proc. Thirteenth National Conference on Artificial In-
telligence, pages 959-964, 1996.

[Stroulia and Goel, 1994] Eleni Stroulia and Ashok K.
Goel. Learning problem-solving concepts by reflecting
on problem solving. In Proc. 199 European Confer-
ence on Machine Learning, pages 287-306, 1994.

[Williams and Nayak, 1996] Brian C. Williams and
P. Pandurang Nayak. A model-based approach to re-
active self-configuring systems. In Proc. Thirteenth
National Conference on Artificial Intelligence, pages
971-978, 1996.



