
  

  

Abstract—By increasing the use of autonomous rescue robots 
in search and rescue (SAR), the chance of interaction between 
rescue robots and human victims also grows. More specifically, 
when autonomous rescue robots are considered in SAR, it is 
important for robots to handle sensitively human victims’ 
emotions. Deception can potentially be used effectively by 
robots to control human victims’ fear and shock as used by 
human rescuers.  In this paper, we introduce robotic deception 
in SAR contexts and present a novel computational approach 
for an autonomous rescue robot’s deceptive action selection 
mechanism.  
 

I. INTRODUCTION 

The use of robots in SAR is rapidly growing and a large body 
of research has been conducted for developing rescue robots 
[1]. Several robots were previously used in SAR situations 
such as unmanned marine vehicles (UMV), unmanned 
ground vehicles (UGV), and unmanned aerial vehicles 
(UAV) in the Tohoku earthquake disaster [2], the World 
Trade Center disaster [3], and others. Most previous rescue 
robots focus on assisting human rescuers by supporting tasks 
such as structural inspection, searching, reconnaissance, and 
delivering supplies.  

During the past few years, various novel robot systems 
and software were also proposed and developed for the 
DARPA robotics challenges [4]. They were expected to 
effectively support and work in natural and man-made 
disasters or emergency-response scenarios by focusing on 
specific rescue tasks, but not the interactions or relationships 
with human victims.  

We argue that as increases in the use of autonomous 
robots in SAR occur, the chance of interaction between 
human victims and robots will increase as well. Thus, it is 
increasingly important for a rescue robot to interact with 
human victims naturally and effectively.  

Human victims in SAR form a special population that 
needs to be handled differently from the everyday people 
typifying general human-robot interaction (HRI) studies. 
Accordingly, it is important for rescue robots to be capable of 
interacting with emotionally-sensitive humans in SAR 
contexts. One important capability for a rescue robot in this 
specific context is deception, specifically deception for the 
benefit of human victims. 
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In a crisis, victims’ emotional state can seriously affect 
their safety [5]. When victims’ cooperation is required during 
the SAR tasks, managing their emotions is important. For this 
reason, rescuers sometimes hide the truth of the situation and 
act deceptively such as not describing the severity of injuries 
or the situation to victims accurately [6]. 

We also argue that a rescue robot can establish a better 
bond with human victims by having the capabilities of 
deception. As a goal, we aim for a rescue robot to perform a 
deceptive behavior only for the purpose of helping the 
deceived human victim. In our previous research [7], we 
defined this type of deception as other-oriented robot 
deception. Briefly, according to DePaulo [8], deception can 
be defined based on motivation, such as self-oriented and 
other-oriented deception. Self-oriented deception is used for 
the deceiver’s own advantages. Conversely, other-oriented 
deception is motivated by the benefits that accrue to the 
person who is being deceived. We similarly classify a robot’s 
deception capabilities into these two categories. Finally, we 
can formulate our research hypothesis as “A rescue robot can 
perform other-oriented deception to benefit the deceived 
human victims in SAR situations.” 

To achieve a rescue robot's other-oriented deception, we 
first develop a computational model for the robot to 
determine when and how to perform those deceptive 
behaviors in SAR. For inspiration, we reviewed deception 
research in criminology [9]. According to the criminological 
approach, deception can be analyzed by three criteria, which 
are methods, motives, and opportunities (Figure 1). Methods 
indicate the way to perform deception, where a novel 
algorithm for generating deceptive actions is developed. 
Motives indicate whether the current situation warrants the 
use of other-oriented deception. If so, the robot should 
determine specifically when the deceptive actions should be 
performed given an Opportunity. Inspired by this approach, a 
computational model of robot deception was developed for 
use in SAR. 

We presented the deceptive action generation model in 
our previous research for the method part [10]. Briefly, we 
developed a novel algorithm for a robot to generate deceptive 
actions from the default true action based on two different 
deception mechanisms in psychology: deception by omission 
and deception by commission.  

In this paper, as a next step, we present the computational 
models for the motive and opportunity parts. Importantly, this 
action selection mechanism should be adaptable since 
modeling deceptive action selection varies significantly by 
domains and users.  
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II. BACKGROUND 

A. Human-robot interaction in SAR 
As stated above, most SAR robotics research has focused on 
supporting human rescuers’ specific tasks, and only a few 
studies have been done within the context of the victim. 
Nowadays, however, interests in HRI are growing rapidly 
within SAR contexts [1].  

Several case studies were performed to establish a 
theoretical background for discussions of HRI in SAR 
contexts. Casper et al. [3] performed a practical evaluation by 
observing human operators’ uses of SAR robots during the 
World Trade Center disaster. From the data collected during 
the robot-assisted response, they identified and analyzed 
interesting HRI events and finally made eleven 
recommendations meant to improve HRI in SAR contexts. 
Murphy [11] reviewed different practical cases and discussed 
HRI issues in SAR to formulate a theoretical background.  

Most HRI studies in SAR are focused on interaction 
between human rescuers/operators and robots. For example, 
Drury et al. [12] developed a human-robot interface and 
evaluated its ability to support operators performing SAR 
missions. Yanco et al. [13] also performed usability tests for 
the two different interfaces and proposed recommendations 
for a new interface to be used in urban SAR. Another 
HRI-based study proposed and evaluated an architecture for 
assisting human-robot teaming in SAR [14]. A recent study 
analyzed the interfaces and interaction methods used in 
DARPA robotics challenges [4]. As evidenced here, previous 
research has generally evaluated the quality of interactions 
between operators and rescue robots. In contrast to those 
studies, our research aims to improve relationships between 
rescue robots and human victims.  

B. Deception in Robotics 
We intend to add deceptive capabilities to the rescue robots 
with a goal of providing better outcomes for human victims. 
Limited research related to robotic deception has been done 
not only in the SAR context but in other domains in general. 

Deceptive behaviors are commonly observed in animals, 
and several of these deceptive behaviors are applied to 
robotic systems. For example, inspired by animals, a 
camouflage soft robot was developed at Harvard University 
[15]. Carey et al. [16] developed an optimal control 
mechanism based on motion camouflage of dragonflies. 
Many animals also use deceptive behaviors to mislead 
predators or competitors. Squirrel’s food protection behavior 
includes an interesting deception mechanism that was applied 
to a robotic system [17]. Another study explores the role of 

deception according to Grafen’s dishonesty model in the 
context of birds’ mobbing behavior and was applied to a 
robotic system successfully [18].  

Several robot deception projects have been conducted in 
HRI contexts. In many cases, deception is used for engaging 
a user’s attention. For example, a deceptive robot referee in a 
multi-player robotic game shows an increase in users’ 
engagement and enjoyment [19]. A cheating robot in the 
context of a rock-paper-scissors game also illustrates 
increased engagement [20]. According to recent work [21], a 
deceptive robot assistant can also improve the learning 
efficiency of children.  

Deception has been successfully used in a robotic 
physical therapy system [22]. By giving deceptive visual 
feedback on the amount of force patients currently exert, 
patients can perceive the amount of force to be lower than the 
actual amount. As a result, patients add additional force and 
gain the benefits during the rehabilitation.  

C. Case-based Reasoning in Robotics 
This paper describes how we are embodying a computational 
model that enables a robot to choose a beneficial behavior 
from either the true or deceptive action set based on 
other-oriented deception. Since modeling deceptive action 
selection varies significantly by situation and users, the 
computational model should be able to adapt the action 
selection mechanism, and consequently, it uses a 
learning-based computational approach.  

Learning methods can be classified in two ways: 
eager-learning and lazy-learning models [23]. Eager-learning 
methods find generalization during training (e.g., 
reinforcement learning), and therefore, they require more 
training experiences to converge to an optimal solution. 
However, this long training time is impractical in a SAR 
situation. Instead, a lazy-learning method is performed at the 
instance-query time. In the initial stage, preloaded or 
previously acquired cases can be used to solve the new 
problem, and the cases can be adapted or updated through 
experience. Therefore, even though it may include some 
initial generality issues, it is more feasible when applied to 
our computational model and domains. For this reason, we 
build our computational model based on one of the 
well-known lazy-learning mechanisms, the case-based 
reasoning (CBR) mechanism [24], which has already been 
applied in several robotic systems successfully [25, 26, 27].  

In the CBR process, the instances of a situation-solution 
pair are stored in the memory as a “case,” and the CBR cycle 
can be illustrated in terms of four process stages [28]: 

• Case retrieval: when a problem arises, the best 
matching case is searched to retrieve an approximate 
solution. 

• Case adaptation: the approximate solution from the 
case retrieval is adapted to the new problem. 

• Solution evaluation: either before or after the solution is 
applied, the adapted solution can be evaluated. 

• Casebase updating: based on the verification of the 
solution, the case may be updated or a new case may be 
added to the casebase. 

Figure 1. Criminology-inspired computational architecture for a robot’s 
other-oriented deception  

 
 



  

III. COMPUTATIONAL MODEL 

 In our model, a rescue robot should be able to select an 
appropriate action from a set of true/deceptive actions for a 
given situation. The model should store the information of 
situation-action pairs that increases/decreases the human 
victim’s benefits. For this purpose, we develop a 
computational model for a robot to select and learn the most 
appropriate true/deceptive action via CBR.  

A.  Case C 
A previously experienced situation-action pair is stored as a 
case in the memory. In addition, how much the action can 
benefit a human victim is also contained in the case. 
Therefore, a situation (s) – action (a) – benefits (r) trio is 
required to define a case as follows:  

C = { [s, a, r ] | s ∈ S, a ∈ A, r ∈ R} 

State S 

A robot should observe the current SAR situation as an 
input and then should select and perform an appropriate 
true/deceptive action as an output. The situational state 
should express the current state of the human victim during 
the interaction and also the environment. Therefore, state s 
is defined as the combination of features, which can 
represent victim’s internal (fm1,…, fmj) and environmental 
(fe1, … fek) conditions. Finally, we can define the set of 
situational state for our CBR mechanism as shown below: 

S = {< fm1,…, fmj, fe1, … fek> | fi = feature to perceive 
victim’s internal or environmental conditions } 

Features can be valued as ‘don’t care’ if the system 
determines that they do not play a key role in state 
discrimination.   

Action A 

In previous work [10], we developed a novel algorithm to 
generate a robot’s action set that includes the available true 
and alternative deceptive actions. Briefly, a robot can find 
and generate the action set based on general/emotional action 
primitives. A robot action is defined as the combination of 
different action cues; a = <g, f, p>, where g is the bodily 
gesture cue, f is the facial expression cue, and p is the 
proximity cue. The primitives of each action cue are 
illustrated in our previous research [10].  When a robot’s true 
action at is determined, it can generate the alternate deceptive 
actions based on the characteristics of each primitive. This 
deceptive action generation is possible according to two 
mechanisms, namely deception by commission and deception 
by omission. Finally, from the n default/true actions and 
alternative m deceptive actions generated, the set of actions 
can be defined as A = {at1, …, atn, ad1, …, adm}. 

Benefit R 

The goal is to find the rescue robot’s action that maximizes 
the benefit for the human victim. Therefore, how much 
benefit a human victim can obtain from a robot’s 
true/deception action is an essential element in the case. To 
express those human benefits, we define a measure R such as:  

R = {r | r ∈   Z   ∧  Rw ≤  r  ≤  Rb}. 

Here, ℤ  is the set of integers. Rw is the minimum limit for 
negative benefits and Rb is the maximum limit for positive 
benefits.  

B. Case-based Reasoning Process 
Overall, our deceptive action-selection model via CBR can 
be presented in Figure 2. Details for each step will be 
explained in this section.  

 

Step 1. Case Retrieval 

In the case retrieval step, the system should find which 
case(s) has the most similar situational state to the current 
perceived state. The case retrieval algorithm scores how 
similar the current situational state is to other cases in the 
casebase. By calculating this similarity score, the algorithm 
can select the best-matched case or cases in this step.  

Similarity metric 

To determine the initial matched cases, a similarity score 
is calculated that measures how much the state in the case is 
similar to the current situation. For this, we use a syntactic 
similarity assessment, which provides a global similarity 
metric based on surface match. For computing this score, a 
Manhattan distance calculation is used, similar to [27], by 
calculating the L-1 norm between the two feature vectors of 
the situational states. Since not all features in the state are 
equally important, each feature is weighted to indicate its 
relative importance. Φ(sp, sc) is defined as the similarity 
metric between states sp and sc as shown in equation (1) when 
the state vectors are illustrated as sp = <f1,p, f2,p, …., fn,p> and 
sc = <f1,c, f2,c, …, fn,c>. 

                       Φ(sp, sc) = 
!!∙!!!∈!
!!!∈!

                        (1) 

Here, ki is a similarity score for each feature fi and wi is a 
weight for each feature fi. Here, the feature valued ‘don’t 
care’ in sp indicates that it can be matched with any feature 
value in state sc. Therefore, the similarity score for this 
feature can be the maximum value. Weight wi should be 
empirically set by a human expert’s domain knowledge. 
Similarity score ki is defined as 𝑘! = 𝑥     𝑥 ∈   ℝ   ∧   0   ≤ 𝑥   ≤ 1} 
and it can be calculated differently based on the 
characteristics of each feature fi as shown in Algorithm 1. 

 

Figure 2. Computational architecture for the motives/opportunities model 

 



  

Algorithm 1. Calculating similarity score ki for feature fi  
 IF feature fi  is ‘don’t care’ 
      𝒌𝒊 =       𝟏 
  

 ELSE IF feature fi is a numeric datum 
   𝒌𝒊 =       𝟏 − 𝒇𝒊,𝒄!𝒇𝒊,,𝒑

𝒗𝒊
        where 𝑣!   is the range for feature fi 

   

 ELSE IF feature fi is a categorical datum AND  
                 Cardinality of set Fi ≤ 2  where  fi  ∈ Fi 

   𝒌𝒊 =
      

        𝟏                                    𝒊𝒇    𝒇𝒊,𝒑 = 𝒇𝒊,𝒄
      𝟎                               𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 
 

 ELSE IF feature fi is a categorical datum AND  
                 Cardinality of set Fi ≥ 3  where  fi  ∈ Fi 
      𝒌𝒊 = Mi (fi,p, fi,c)    where Mi is the fi-specified similarity table 
 

 

As described in Algorithm 1, when feature fi is a 
categorical datum, categorical matching can be used. 
However, if there are more than two categories, there may be 
shades of similarity; one category might be more like the one 
of the other categories than another. To specify those shades 
of similarity we define the feature-specified lookup table Mi 
based on the characteristics of each feature, and similarity 
scores for feature fi can be determined by the corresponding 
entry in Mi. 

After calculating Φ(sp, sc) for each case in the casebase, 
the cases are sorted from the highest scored case to the lowest 
one, and the top n cases are selected as the initial matched 
cases and transferred to the case adaptation step. 

 

 Step 2. Case Adaptation and Reuse 

Once the initial matched cases are selected, the final selection 
process is required to find the best-case cb = [s, a, r] to use. 
Even though a robot finds the best-case, there is no reason to 
reuse this case’s action if the benefits of the action are poor.  
Therefore, as a final selection step, a robot should assess the 
previous benefit and determine whether it should be selected 
for execution. After selection, the corresponding action 
should be adapted and passed to the robot to perform the 
robot behavior. This final action selection process can briefly 
be explained as follows: 

[Step 1]  Select the top n cases from the sorted casebase as the 
initial matched cases 

[Step 2]  From the n cases, discriminate the cases that have a 
positive benefit (r > 0) 

[Step 3-1] If several cases have a positive benefit, choose one 
case using the weighted roulette wheel algorithm (the 
likelihood of a case being chosen are determined based on the 
relative benefit of that case) and set it as the best matched case 
cb = [s, a, r] 

[Step 3-2]   If none have a positive benefit, retrieve next n 
cases and repeat the case selection process from step 2 

[Step 4]   From the selected case cb = [s, a, r], adapt action a to 
the adapted action an (see algorithm 3 below)  

[Step 5]   If no case can be found after repeating to the last case, 
assign the default action (which is the true action at) to the 
adapted action an 

 

More specifically, we can illustrate this final action 
selection process as shown in Algorithm 2. After the 
best-case is determined (cb = [s, a, r]), it may need to be 
adapted to the current situation. If the current state is exactly 
matched to the situational state in the best-case, we can 
directly use action a in the case without adaptation. However, 
if those two states are slightly different but the case is 
selected since it has the most similar situational state, then the 
action may be adapted before application.  

According to Kolodner [28], adaptation involves two 
major steps: 1) figuring out what needs to be adapted and 2) 
performing the adaptation. Similar to this approach, the 
algorithm first observes whether there are differences 
between best case’s state s and current state sn, and if the two 
states are different each other, an appropriate adaptation 
should be applied. Differences between states can be 
discriminated by finding features that specifically have 
different values (figuring out what needs to be adapted). 
When the features having different values are determined, the 
adaptation rules associated with those features are applied 
(performing the adaptation). In addition, adaptation can be 
varied for any particular domains or tasks, and a set of 
adaptation strategies or heuristics can be used for a CBR 
working system [28]. Therefore, the adaptation process is 
designed based on predefined adaptation rules. For this, we 
define the data structures of the rules that encode the 
adaptation procedures (from experts or literature) that instruct 

Algorithm 2. Final Action Selection Process 
Input:     Sorted casebase C 
               Current situation sn 
Output:  Final adapted solution action an 
startIndex = 0   
// starting index of casebase when picking top n cases 
LOOP: 
    nCases = {}            // reset nCases, which stores the top n cases 
    FOR i in startIndex to startIndex+n             //top n ranked cases 
  IF c[i].r ≥ 0               // find the cases w/ positive benefit 
      nCases.add(c[i]);                   // if positive, add to set nCases 
    IF |nCases| > 0   
         Find the best case from nCases  
         using the weighted roulette wheel algorithm 
         cb = selected best-case 
         an = adaptingAction(cb, sn)    // adapting the action (Algo. 3)  
         return an; 
    ELSE                       // If none have a positive benefit 
         startIndex += n;               // set startIndex to the next n cases 
         goto LOOP;                                       // retrieve n more cases 
an = at;                          /* return the default action as a solution 
return an;                                          if no cases can be selected */  
 

Table 1. Data structure for the rule 
Field Description 

FeatureIndex Indicates which feature should be observed for 
the current adaptation rule 

Origin The origin of the adaptation rule (reference) 
Activity Indicates if the rule is currently active 
Description Short, concise description of the rule 

AdaptationCondition 
Condition for determining whether the 
adaptation rule should be applied to the current 
action 

AdaptationRule Formal expression defining the way to adapt 
the current action 

 



  

the robot how to adapt the selected action to the current 
situation. The data structure of the rules is shown in Table 1.  

 The adaptation process using the rules is summarized in 
Algorithm 3. Again, when the state in the selected best-case 
is exactly same as the current situation, action a in the case 
can be directly used as a solution. However, when the two 
situations are different, the adaptation process is called. As 
shown in Algorithm 3, the system first compares all feature 
values between the case state and the current state and if the 
two values are different, those feature indices are compared 
to the element in the set of rules RS. In other words, if the 
discriminated feature index is matched with the element of 
FeatureIndex in certain rule rs ∈ RS, this rule’s 
AdaptationRule applies based on AdaptationCondition, and 
an adapted action an will be generated. 

 

Case application 

From the retrieval and adaptation steps, a robot can 
determine an appropriate adapted action an. Then, this 
adapted action an should be performed by the robot. This step 
is known as the case application step. When the adapted case 
is applied (action an is determined and performed), we should 
perceive the changes of human victim’s status for the next 
evaluation/updating steps. 

 

Step 3. Solution Evaluation and Casebase Updating  

Cases are initially created by experts or experienced users. 
Even then, the pair of situational state and action in each case 
may not always be the best solution. During the 
evaluation/updating phase, the cases should be revised and 
updated to the most effective solution. In other words, it 
should be observed whether a human victim truly receives 
benefit from a rescue robot’s behavior, and the casebase 
should be updated with the case that can generate the highest 
payoff for the human victims.  

After performing an action (case application), the benefits 
should be identified to evaluate the action post facto. It can 
be determined by a human expert afterwards or if possible 
assessed autonomously by a robot. In our system, a human 
expert will rate the benefits since it is a more practical and 
accurate way in the real-world situation. When the human 
expert determines the benefits, they should be asked to 
observe the changes of the human victim’s condition after 
performing a rescue robot’s adapted action and rate the 
benefits within the predefined range of benefits R.  

 

Updating casebase 

Based on the new benefit rn, which is provided by a 
human expert, the CBR system should update the cases if 
necessary. According to Kolodner [28], the casebase can be 
updated by 1) generalizing the cases in the casebase, or 2) 
storing the new case. Similar to this approach, when the 
current state sn, the adapted action an, and the new benefit rn 
are perceived, they can be used to generalize existing cases 
in the casebase. Otherwise, it will be stored as the new case 
for future reference.  

First, the system should determine whether 
generalization is possible with sn, an, and rn. In our system, 
states will be generalized when the cases have the same 
action as an and benefit as rn. Since states are represented as 
different features, the system can generalize the state by 
finding/merging the features that may not play key roles 
during the calculation of similarity scores. For the 
generalization process, those unnecessary features will be 
minimized to a ‘don’t care’ value. 

This feature reduction can be solved using the 
minimization algorithm of the algebraic variables. When all 
the features are boolean variables, the ‘don’t care’ feature 
can be determined by the Quine–McCluskey (Q-M) 
algorithm [29]. Let us assume that we have the state 
representation such as s = < f1, f2, f3 > and each feature is 
defined as f1, f2, f3 ∈ {1, 0}. When we have two existing 
states s1 = <1, 1, 1> and s2 = <1, 1, 0> and the new state sn = 
<1, 0, 1>, those three states can be generalized using an 
algebraic minimization algorithm. First, states s1, s2, and sn 
can be represented as 𝑓!𝑓!𝑓!, 𝑓!𝑓!𝑓!, 𝑓!𝑓!𝑓! using a canonical 
form. Via the Q-M algorithm [29], the states can be 
generalized to the canonical sum of products expression by 
summing the minterms such as 𝑓!𝑓!𝑓!+ 𝑓!𝑓!𝑓! + 𝑓!𝑓!𝑓!  = 
𝑓!𝑓! + 𝑓!𝑓!𝑓!.  Since ‘don’t-care’ terms are left out of the 
minterms, we finally get the generalized states such as <1, 1, 
don’t care> and <1, 0, 1> from minterms 𝑓!𝑓! and 𝑓!𝑓!𝑓!.  

Multi-valued features can be handled by the same 
mechanism via the extended Q-M algorithm [30]. Again, let 
us assume the state s = < f1, f2, f3 > and features are defined 
as f1 ∈ {1, 2, 3}, f2 ∈ {a, b, c}, f3 ∈ {x, y}. When we have 
three existing states s1 = <1, a, x>, s2 = <1, b, y>, s3 = <1, a, 
y> and the new state sn = <1, c, y>, the states can be 
generalized by the extended Q-M algorithm. First, the 
canonical forms of states s1, s2, s3, and sn will be 𝑓!!𝑓!!𝑓!!, 
𝑓!!𝑓!!𝑓!

! , 𝑓!!𝑓!!𝑓!
! , 𝑓!!𝑓!!𝑓!

! , and those four states can be 
minimized such as 𝑓!!𝑓!!𝑓!!  + 𝑓!!𝑓!!𝑓!

! + 𝑓!!𝑓!!𝑓!
! + 𝑓!!𝑓!!𝑓!

! 

Algorithm 3. Adaptation Process: adaptingAction(cb, sn) 
Input:     best-case cb = [s, a, r] where s = <f1,s, f2,s, …, fk,s>  
              Current state sn  = <f1,sn, f2,sn, …, fk,sn>  
              Set of rules RS = {rs1, rs2, rs3, … , rsn} 
Output:  Adapted action an            
// determine whether the current state  is same as the case’s state  
IF s == sn                   // if two states are same, 
    an = a                // set the same action a as an adaptation action 
ELSE                   // if two states are different, start adaptation 
    D = {}              // variable to store the set of feature indices     
     /* Step 1. Figuring out what needs to be adapted */ 
    FOR all features in s     
        IF fi,s != fi,sn   // if the value of feature fi in case’s state s is 
                              // different from current state sn, store feature 
                              // index i into the set D 
            D ← D ∪ {i}     
     /* Step 2. Doing the adaptation */ 
    FOR all feature index i in D          
       FOR all rules rsj in  RS    // among all rules in RS  
            IF rsj.featureIndex == i AND  
                 rsj.adaptationCondition == True           
                // find the rule rsj that contains the feature index i 
                // if rsj‘s adaptation condition is satisfied, adapt by the rule 
                 an ← Perform rsj.adaptationRule;  
return an;           
 



  

= 𝑓!!𝑓!!𝑓!!  + 𝑓!!𝑓!
! .  Therefore, we finally have the 

generalized two states, <1, a, x> and <1, don’t care, y>. 

Algorithm 4 describes the entire process of the updating 
strategy in pseudocode. For the generalization process, the 
system will first select all cases that have the same action as 
the adapted action an and the same benefit as the new benefit 
rn. The states from the selected cases and the current state sn 
are then generalized by reducing the features. This feature 
reduction is performed using the minimization algorithm [29, 
30]. After the reducible features are determined, those 
features are valued as ‘don’t care,’ and the cases are 
generalized. If none of the cases are merged and generalized 
in the previous step, a new case cn = [sn, an, rn] is created and 
stored in the casebase for future use. By using this updating 
strategy, the casebase can maintain the best situation-action 
pairs that can provide the largest benefit to human victims. 
 

IV. EXEMPLAR SCENARIO 

We proposed the deceptive action-selection model via CBR 
in section 2. In this section, we will review our model with a 
specific SAR example; the scene of a fire.  
 
Case Representation 

We first define the case as c = [s, a, r], where s is a 
situational state, a is an action, and r is the benefit. State s in 
our example can be simply defined as s = < fm1, fm2, fm3, fm4, 
fe1, fe2 > where features indicate victim’s internal and external 
conditions as shown in Table 2.  

A set of actions contains the appropriate true and 
deceptive actions for each state. A true/default action is 
specifically defined for each state based on the literature or 
expert perspectives. Then, from the true action, the deceptive 
actions are generated by our deceptive action generation 
mechanism [10]. In this scenario, the true action at can be 
defined as at = [vt, <egpt, ft, pt>]. Here, vt is the verbal cue, 
which explains the current status to the human victim. 
Nonverbal cues < egpt, ft, pt > represent the emotional gesture 

primitive, facial expression, and proximity, respectively, 
where these values are matched to the current environmental 
status. After determining true action at, the set of possible 
deceptive actions are generated through the deception by 
omission and commission mechanisms. For example, 
situation s = < 1, 1, 1, anger, 1, 1> can have a true action 
such as at = [vt, <egppos, fpos, ppos>] since the environmental 
features fe1 and fe2 determine the positive state (e = pos). 
Then, the deceptive actions are generated such as ad1 = [vd, 
<egpneg, fneg, pneg >] using deception by omission and ad2 = 
[vd, <egpnull, fnull, pneg >] using the deception by commission 
mechanism. Finally, the exemplar situation can have a set of 
actions such as {at, ad1, ad2}. For each state, a set of actions is 
generated via the deceptive action generation mechanism. In 
addition, the measure of benefits is defined as R = {r | r  ∈ ℤ  
∧ -3 ≤  r  ≤  3} via the triage process [31]. 

 

Initial Casebase  

The initial casebase is determined manually and the benefits 
are filled by the experts. They are asked to rate the benefits of 
the action in the range of R by predicting how much the 
human’s state will be improved or worsened in each case. 
Table 3 is the initial casebase in our exemplar scenario. 

Table 3. Initial Casebase 
CaseID State Action Benefit fm1 fm2 fm3 fm4 fe1 fe2 

1 1 1 1 anger 1 1 at -1 
2 1 1 1 disgust 1 1 ad1 +1 
3 1 1 1 fear 1 1 ad2 +2 
4 1 1 1 happiness 1 1 at +3 
5 1 1 0 sadness 1 1 ad1 0 
6 1 0 0 anger 0 0 ad2 -3 
7 1 0 0 disgust 0 0 at +1 
8 0 0 0 fear 0 0 ad1 -2 
9 0 0 0 happiness 1 0 ad2 -3 

10 0 0 0 sadness 0 1 at -1 
 

Case Retrieval 

Next, a robot should perceive the actual current situation and 
compare it to the previously stored cases in the casebase. 
Further assume that a robot rescuer perceives the current state 
such as sn = < 1, 0, 0, fear, 1, 1 >. Then, as the first step of 
case retrieval, the similarity scores of each case in the 
casebase, should be calculated by Algorithm 1. In this 
example, similarity score ki for each feature fi is determined 
by the following algorithm. 

Table 2. Data structure of state S 
 Description 

fm1 
{x | x = 1 if  10 < r1 < 30 , otherwise x = 0} 
     : Normal or abnormal respiration 
     : r1 from respiratory sensor (breaths per minute, bpm) 

fm2 
{x | x = 1 if  60 < r2 < 100, otherwise x = 0} 
     : Normal or abnormal ranges of pulse 
     : r2 from pulse rate sensor (pulse beats per minute, pBPM) 

fm3 
{x | x = 1 if  60 < r3 < 100, otherwise x = 0}  
     : Normal or abnormal range of heartbeat 
     : r3 from heart rate sensor (heart beats per minute, hBPM) 

fm4 {x | x ∈ {anger, disgust, fear, happiness, sadness, and surprise}} 
     : Current emotional state from speech and pitch detection 

fe1 
{x | x=1 if  14  <  r5  <  32, otherwise x = 0} 
     : Normal or abnormal range of room temperature 
     : r5 from digital temperature sensor (Celsius, °C) 

fe2 
{x | x=1 if r6 == true, otherwise x = 0} 
     : Gas detected or not, r6 from CO-gas detection sensor 

 
 

Algorithm 4. Casebase Updating Strategy  
Input: Current State sn       
           Adapted Action an 
Determine the new benefit rn from a human expert 
 

/* Step 1.  Generalizing the cases */ 
candidateCases = {};  // cases that are potentially generalizable 
FOR each case c in Casebase C 
    IF c.r == rn && c.a == an  // if the case has the same action and  
                      // benefits as an and rn, it is potentially generalizable 

   candidateCases.add(c);   // add to the candidateCases  
 

// Generalize states via minimization algorithm [29, 30]  
allMinterms =   // get minterms via feature reduction algorithm 
    ExtendedQ-M (canonical forms of  candidateCases’ states,  
                             canonical form of sn );   
FOR each mintermi in allMinterms 
    sgeneralizeed = extract from mintermi by adding ‘don’t care’ terms 
    Remove all cases in candidateCases  
    Add generalized case [ sgeneralizeed,  an, rn]      
  

/* Step 2.  Storing the new case */ 
IF no cases are generalized 
     Create new case cn = [sn, an, rn]     // new case created  
     Add cn to the case base                  // updated  
 



  

 
 

For each feature fi in i = m1, m2, m3, m4, e1, e2 
         IF i == m4                  // for emotional feature fm4 
              Find ki from similarity lookup table Memotion(fi,sp, fi,sc)  
         ELSE                        // for all other features 
             IF   fi,sp == fi,sc        THEN       ki = 1 
             ELSE                      THEN       ki = 0 
 

 

 

 

Here, the similarity lookup table Memotion is generated 
based on Emotion Annotation and Representation Language 
(EARL) classification [32] as shown in Table 4. 

In addition, features should have different weights based 
on their relative importance. According to [33], in the context 
of a fire, rescuers primarily check the risk of the scene based 
on the temperature. Furthermore, the main purpose of  
deceptive behaviors in a crisis situation is managing the 
human victim’s emotions [6]. Consequently, we empirically 
set the weight vector such as w = <1, 1, 1, 2, 2, 1>. Now, we 
can get the similarity scores for each case and also the rank of 
similarity as Table 5. With the similarity scores, we find one 
best-case via the final selection process  (Algorithm 2).  

Table 5. Calculating similarity scores and sorting 

CaseID State S similarity Rank fm1 fm2 fm3 fm4 fe1 fe2 
2 1 1 1 disgust 1 1 0.75 1 
3 1 1 1 fear 1 1 0.75 1 
5 1 1 0 sadness 1 1 0.75 1 
1 1 1 1 anger 1 1 0.625 2 
6 1 0 0 anger 0 0 0.625 2 
7 1 0 0 disgust 0 0 0.625 2 
4 1 1 1 happiness 1 1 0.5 3 
8 0 0 0 fear 0 0 0.5 3 
9 0 0 0 happiness 1 0 0.5 3 

10 0 0 0 sadness 0 1 0.5 3 
 

Adaptation and Case Application 

From the final selection process (Algorithm 2), the system 
determines case 3 as the best case such as cb = [s, a, r] = [ <1, 
1, 1, fear, 1, 1>, ad2, +2]. After, it should be adapted to the 
current situation. To apply the adaptation algorithm, we first 
must have a set of predefined adaptation rules RS. In our 
example, we predefine the set of rules as shown in Table 6.  

Now, we should adapt the action. According to Algorithm 
3, the differences between the best-case state and the current 
state should first be discriminated. In our example, s and sn 
are different in features fm2 and fm3. Then, it should be adapted 
from the set of appropriate predefined rules RS. Rule 1 
should be chosen, since this rule’s feature indices include m2 
and m3. Then, since the current situation as sn = < 1, 0, 0, 
fear, 1, 1 > satisfies the adaptation condition (fm2,n == 0 && fm3,n 

== 0)  of rule 1, the adaptation rule will apply and the adapted 
action an = at will be used as a solution.  

 

Evaluation and Case Update 

After the case application, the adapted action should be 
evaluated to update the case. A human expert is asked to 
evaluate the change of victim’s state and rate the benefits 
gained, if any. After getting the new benefit rn (+2 in this 
example), the update algorithm should be applied. In this 
step, by following Algorithm 4, the system can determine 
the current situation sn is not used to generalize the cases in 
the casebase, and so the new case cn = [sn, an, rn] can be 
created with the current situational state, adapted action and 
the new benefits. Finally, the new case cn will be added to 
the casebase as shown in Table 7. The newly updated 

Table 4. Similarity score lookup table Memotion  
 anger fear disgust sadness happiness surprise 

anger 1 0.5 1 0.5 0 0 
fear 0.5 1 0.5 0.5 0 0 

disgust 1 0.5 1 0.5 0 0 
sadness 0.5 0.5 0.5 1 0 0 

happiness 0 0 0 0 1 0.5 
surprise 0 0 0 0 0.5 1 

Table 6. Rules for adaptation 
 

Rule 1. Extreme condition of human victim 
If vital features are different and the current values are false, we 
should consider victim’s life-threatening status and adapt the action.  

<rule> rsextreme_internal_condition 
    <feature Index> m1 | m2 | m3 </feature Index > 
    <origin> Lois’ Article [6], IAFC's 10 Rules [33] </origin> 
    <activity> True </activity > 
    <description> Perform the true action when human victims  
      are in an extreme condition. </description> 
     <adaptationCondition> (fm1,n == 0 && fm2,n == 0) ||  
     (fm1,n == 0 && fm3,n == 0)   ||  (fm2,n == 0 && fm3,n == 0)  ||  
     (fm1,n == 0 && fm2,n == 0 && fm3,n == 0) </adaptationCondition > 
     <adaptationRule> an = at </adaptationRule > 
</rule> 

 
Rule 2. Risky environmental condition 
When the features for the environmental state are different and the 
feature values from the current situation are false, we should 
consider it is a risky situation and adapt the action.  

<rule> rsrisky_external_condition 
     <feature Index> e1 && e2 </feature Index > 
     <origin> Lois’ Article [6], IAFC's 10 Rules [33] </origin>   
     <activity> True </activity > 
     <description> Perform the true action if the environment is  
      very risky.</description> 
     <adaptationCondition> fe1n == 0 && fe2n == 0  
     </adaptationCondition> 
     <adaptationRule > an = at </adaptationRule > 
</rule> 

 
Rule 3. Contradictions of emotional states 
If the victim’s emotional status is totally different in  fm4 and fm4n , it is 
determined as emotional contradiction, and the corresponding action 
should be adapted. Therefore, if fm4 and fm4n are in the different 
categories (negative/positive), the adaptation will be performed by 
regenerating the neutral gesture primitive and facial expression. 

<rule> rsavoid_contradiction 
     <feature Index> m4 </feature Index > 
     <origin>  Lois’ Article [6], Shim’s Article [10] </origin>   
     <activity> True </activity > 
     <description> Emotions are contradictory. </description> 
     <adaptationCondition> (fm4  ∈  Enegative && fm4n  ∈  Epositive) ||  
      (fm4  ∈  Epositive && fm4n  ∈  Enegative) </adaptationCondition> 
     <adaptationRule > an = <egpn, fn, p> </ adaptationRule > 
</rule> 

 
 

 

Table 7. Final casebase with the newly updated case 
CaseID State S Action Benefit fm1 fm2 fm3 fm4 fe1 fe2 

1 1 1 1 anger 1 1 at -1 
2 1 1 1 disgust 1 1 ad1 +1 

⋮                                      ⋮                                                                                                        ⋮ 
9 0 0 0 happiness 1 0 ad2 -3 

10 0 0 0 sadness 0 1 at -1 
11 1 0 0 fear 1 1 at +2 



  

casebase is maintained and reused when the robot faces a 
new search and rescue situation in the future. Through these 
experiences, the robot can gradually increase the accuracy 
and effectiveness of its true/deceptive behaviors over time. 

 

V. CONCLUSION 
With the increasing use of autonomous robots in SAR, 

improving the interaction between human victims and rescue 
robots is critical. Similar to human cases, deception can be 
one efficient and essential capability for rescue robots in 
HRI. In this paper, we present an interesting and important 
research question in developing the use of robot deception in 
the SAR context; Can deceptive capabilities of rescue robots 
benefit human victims? We argued that a robot’s deceptive 
capabilities can control a victim’s emotional state and 
consequently establish a strong bond between victims and 
robots that lead to better cooperation. For this purpose, we 
introduced the computational model for a rescue robot’s 
other-oriented deception inspired by criminological law. For 
the motive/opportunity parts, we proposed a deceptive action 
selection model using the CBR mechanism. Currently, we 
apply this model to a rescue robot system and are readying 
to conduct HRI studies (Figure 3) to evaluate the 
computational model and prove our research hypothesis. 

 

Figure 3. Robot platform (left) and Experimental Environment (right) 
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