

Abstract—By increasing the use of autonomous rescue robots
in search and rescue (SAR), the chance of interaction between
rescue robots and human victims also grows. More specifically,
when autonomous rescue robots are considered in SAR, it is
important for robots to handle sensitively human victims’
emotions. Deception can potentially be used effectively by
robots to control human victims’ fear and shock as used by
human rescuers. In this paper, we introduce robotic deception
in SAR contexts and present a novel computational approach
for an autonomous rescue robot’s deceptive action selection
mechanism.

I. INTRODUCTION

The use of robots in SAR is rapidly growing and a large body
of research has been conducted for developing rescue robots
[1]. Several robots were previously used in SAR situations
such as unmanned marine vehicles (UMV), unmanned
ground vehicles (UGV), and unmanned aerial vehicles
(UAV) in the Tohoku earthquake disaster [2], the World
Trade Center disaster [3], and others. Most previous rescue
robots focus on assisting human rescuers by supporting tasks
such as structural inspection, searching, reconnaissance, and
delivering supplies.

During the past few years, various novel robot systems
and software were also proposed and developed for the
DARPA robotics challenges [4]. They were expected to
effectively support and work in natural and man-made
disasters or emergency-response scenarios by focusing on
specific rescue tasks, but not the interactions or relationships
with human victims.

We argue that as increases in the use of autonomous
robots in SAR occur, the chance of interaction between
human victims and robots will increase as well. Thus, it is
increasingly important for a rescue robot to interact with
human victims naturally and effectively.

Human victims in SAR form a special population that
needs to be handled differently from the everyday people
typifying general human-robot interaction (HRI) studies.
Accordingly, it is important for rescue robots to be capable of
interacting with emotionally-sensitive humans in SAR
contexts. One important capability for a rescue robot in this
specific context is deception, specifically deception for the
benefit of human victims.

 J. Shim is with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, USA (corresponding author to
provide e-mail: jaeeun.shim@ gatech.edu).

R. C. Arkin is with the School of Interactive Computing, Georgia
Institute of Technology, Atlanta, USA (e-mail: arkin@cc.gatech.edu).

In a crisis, victims’ emotional state can seriously affect
their safety [5]. When victims’ cooperation is required during
the SAR tasks, managing their emotions is important. For this
reason, rescuers sometimes hide the truth of the situation and
act deceptively such as not describing the severity of injuries
or the situation to victims accurately [6].

We also argue that a rescue robot can establish a better
bond with human victims by having the capabilities of
deception. As a goal, we aim for a rescue robot to perform a
deceptive behavior only for the purpose of helping the
deceived human victim. In our previous research [7], we
defined this type of deception as other-oriented robot
deception. Briefly, according to DePaulo [8], deception can
be defined based on motivation, such as self-oriented and
other-oriented deception. Self-oriented deception is used for
the deceiver’s own advantages. Conversely, other-oriented
deception is motivated by the benefits that accrue to the
person who is being deceived. We similarly classify a robot’s
deception capabilities into these two categories. Finally, we
can formulate our research hypothesis as “A rescue robot can
perform other-oriented deception to benefit the deceived
human victims in SAR situations.”

To achieve a rescue robot's other-oriented deception, we
first develop a computational model for the robot to
determine when and how to perform those deceptive
behaviors in SAR. For inspiration, we reviewed deception
research in criminology [9]. According to the criminological
approach, deception can be analyzed by three criteria, which
are methods, motives, and opportunities (Figure 1). Methods
indicate the way to perform deception, where a novel
algorithm for generating deceptive actions is developed.
Motives indicate whether the current situation warrants the
use of other-oriented deception. If so, the robot should
determine specifically when the deceptive actions should be
performed given an Opportunity. Inspired by this approach, a
computational model of robot deception was developed for
use in SAR.

We presented the deceptive action generation model in
our previous research for the method part [10]. Briefly, we
developed a novel algorithm for a robot to generate deceptive
actions from the default true action based on two different
deception mechanisms in psychology: deception by omission
and deception by commission.

In this paper, as a next step, we present the computational
models for the motive and opportunity parts. Importantly, this
action selection mechanism should be adaptable since
modeling deceptive action selection varies significantly by
domains and users.

The Benefits of Robot Deception in Search and Rescue:
Computational Approach for Deceptive Action Selection via

Case-based Reasoning
Jaeeun Shim and Ronald C. Arkin, Fellow, IEEE

II. BACKGROUND

A. Human-robot interaction in SAR
As stated above, most SAR robotics research has focused on
supporting human rescuers’ specific tasks, and only a few
studies have been done within the context of the victim.
Nowadays, however, interests in HRI are growing rapidly
within SAR contexts [1].

Several case studies were performed to establish a
theoretical background for discussions of HRI in SAR
contexts. Casper et al. [3] performed a practical evaluation by
observing human operators’ uses of SAR robots during the
World Trade Center disaster. From the data collected during
the robot-assisted response, they identified and analyzed
interesting HRI events and finally made eleven
recommendations meant to improve HRI in SAR contexts.
Murphy [11] reviewed different practical cases and discussed
HRI issues in SAR to formulate a theoretical background.

Most HRI studies in SAR are focused on interaction
between human rescuers/operators and robots. For example,
Drury et al. [12] developed a human-robot interface and
evaluated its ability to support operators performing SAR
missions. Yanco et al. [13] also performed usability tests for
the two different interfaces and proposed recommendations
for a new interface to be used in urban SAR. Another
HRI-based study proposed and evaluated an architecture for
assisting human-robot teaming in SAR [14]. A recent study
analyzed the interfaces and interaction methods used in
DARPA robotics challenges [4]. As evidenced here, previous
research has generally evaluated the quality of interactions
between operators and rescue robots. In contrast to those
studies, our research aims to improve relationships between
rescue robots and human victims.

B. Deception in Robotics
We intend to add deceptive capabilities to the rescue robots
with a goal of providing better outcomes for human victims.
Limited research related to robotic deception has been done
not only in the SAR context but in other domains in general.

Deceptive behaviors are commonly observed in animals,
and several of these deceptive behaviors are applied to
robotic systems. For example, inspired by animals, a
camouflage soft robot was developed at Harvard University
[15]. Carey et al. [16] developed an optimal control
mechanism based on motion camouflage of dragonflies.
Many animals also use deceptive behaviors to mislead
predators or competitors. Squirrel’s food protection behavior
includes an interesting deception mechanism that was applied
to a robotic system [17]. Another study explores the role of

deception according to Grafen’s dishonesty model in the
context of birds’ mobbing behavior and was applied to a
robotic system successfully [18].

Several robot deception projects have been conducted in
HRI contexts. In many cases, deception is used for engaging
a user’s attention. For example, a deceptive robot referee in a
multi-player robotic game shows an increase in users’
engagement and enjoyment [19]. A cheating robot in the
context of a rock-paper-scissors game also illustrates
increased engagement [20]. According to recent work [21], a
deceptive robot assistant can also improve the learning
efficiency of children.

Deception has been successfully used in a robotic
physical therapy system [22]. By giving deceptive visual
feedback on the amount of force patients currently exert,
patients can perceive the amount of force to be lower than the
actual amount. As a result, patients add additional force and
gain the benefits during the rehabilitation.

C. Case-based Reasoning in Robotics
This paper describes how we are embodying a computational
model that enables a robot to choose a beneficial behavior
from either the true or deceptive action set based on
other-oriented deception. Since modeling deceptive action
selection varies significantly by situation and users, the
computational model should be able to adapt the action
selection mechanism, and consequently, it uses a
learning-based computational approach.

Learning methods can be classified in two ways:
eager-learning and lazy-learning models [23]. Eager-learning
methods find generalization during training (e.g.,
reinforcement learning), and therefore, they require more
training experiences to converge to an optimal solution.
However, this long training time is impractical in a SAR
situation. Instead, a lazy-learning method is performed at the
instance-query time. In the initial stage, preloaded or
previously acquired cases can be used to solve the new
problem, and the cases can be adapted or updated through
experience. Therefore, even though it may include some
initial generality issues, it is more feasible when applied to
our computational model and domains. For this reason, we
build our computational model based on one of the
well-known lazy-learning mechanisms, the case-based
reasoning (CBR) mechanism [24], which has already been
applied in several robotic systems successfully [25, 26, 27].

In the CBR process, the instances of a situation-solution
pair are stored in the memory as a “case,” and the CBR cycle
can be illustrated in terms of four process stages [28]:

• Case retrieval: when a problem arises, the best
matching case is searched to retrieve an approximate
solution.

• Case adaptation: the approximate solution from the
case retrieval is adapted to the new problem.

• Solution evaluation: either before or after the solution is
applied, the adapted solution can be evaluated.

• Casebase updating: based on the verification of the
solution, the case may be updated or a new case may be
added to the casebase.

Figure 1. Criminology-inspired computational architecture for a robot’s
other-oriented deception

III. COMPUTATIONAL MODEL

 In our model, a rescue robot should be able to select an
appropriate action from a set of true/deceptive actions for a
given situation. The model should store the information of
situation-action pairs that increases/decreases the human
victim’s benefits. For this purpose, we develop a
computational model for a robot to select and learn the most
appropriate true/deceptive action via CBR.

A. Case C
A previously experienced situation-action pair is stored as a
case in the memory. In addition, how much the action can
benefit a human victim is also contained in the case.
Therefore, a situation (s) – action (a) – benefits (r) trio is
required to define a case as follows:

C = { [s, a, r] | s ∈ S, a ∈ A, r ∈ R}

State S

A robot should observe the current SAR situation as an
input and then should select and perform an appropriate
true/deceptive action as an output. The situational state
should express the current state of the human victim during
the interaction and also the environment. Therefore, state s
is defined as the combination of features, which can
represent victim’s internal (fm1,…, fmj) and environmental
(fe1, … fek) conditions. Finally, we can define the set of
situational state for our CBR mechanism as shown below:

S = {< fm1,…, fmj, fe1, … fek> | fi = feature to perceive
victim’s internal or environmental conditions }

Features can be valued as ‘don’t care’ if the system
determines that they do not play a key role in state
discrimination.

Action A

In previous work [10], we developed a novel algorithm to
generate a robot’s action set that includes the available true
and alternative deceptive actions. Briefly, a robot can find
and generate the action set based on general/emotional action
primitives. A robot action is defined as the combination of
different action cues; a = <g, f, p>, where g is the bodily
gesture cue, f is the facial expression cue, and p is the
proximity cue. The primitives of each action cue are
illustrated in our previous research [10]. When a robot’s true
action at is determined, it can generate the alternate deceptive
actions based on the characteristics of each primitive. This
deceptive action generation is possible according to two
mechanisms, namely deception by commission and deception
by omission. Finally, from the n default/true actions and
alternative m deceptive actions generated, the set of actions
can be defined as A = {at1, …, atn, ad1, …, adm}.

Benefit R

The goal is to find the rescue robot’s action that maximizes
the benefit for the human victim. Therefore, how much
benefit a human victim can obtain from a robot’s
true/deception action is an essential element in the case. To
express those human benefits, we define a measure R such as:

R = {r | r ∈ Z ∧ Rw ≤ r ≤ Rb}.

Here, ℤ is the set of integers. Rw is the minimum limit for
negative benefits and Rb is the maximum limit for positive
benefits.

B. Case-based Reasoning Process
Overall, our deceptive action-selection model via CBR can
be presented in Figure 2. Details for each step will be
explained in this section.

Step 1. Case Retrieval

In the case retrieval step, the system should find which
case(s) has the most similar situational state to the current
perceived state. The case retrieval algorithm scores how
similar the current situational state is to other cases in the
casebase. By calculating this similarity score, the algorithm
can select the best-matched case or cases in this step.

Similarity metric

To determine the initial matched cases, a similarity score
is calculated that measures how much the state in the case is
similar to the current situation. For this, we use a syntactic
similarity assessment, which provides a global similarity
metric based on surface match. For computing this score, a
Manhattan distance calculation is used, similar to [27], by
calculating the L-1 norm between the two feature vectors of
the situational states. Since not all features in the state are
equally important, each feature is weighted to indicate its
relative importance. Φ(sp, sc) is defined as the similarity
metric between states sp and sc as shown in equation (1) when
the state vectors are illustrated as sp = <f1,p, f2,p, …., fn,p> and
sc = <f1,c, f2,c, …, fn,c>.

 Φ(sp, sc) =
!!∙!!!∈!
!!!∈!

 (1)

Here, ki is a similarity score for each feature fi and wi is a
weight for each feature fi. Here, the feature valued ‘don’t
care’ in sp indicates that it can be matched with any feature
value in state sc. Therefore, the similarity score for this
feature can be the maximum value. Weight wi should be
empirically set by a human expert’s domain knowledge.
Similarity score ki is defined as 𝑘! = 𝑥 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ≤ 1}
and it can be calculated differently based on the
characteristics of each feature fi as shown in Algorithm 1.

Figure 2. Computational architecture for the motives/opportunities model

Algorithm 1. Calculating similarity score ki for feature fi
 IF feature fi is ‘don’t care’
 𝒌𝒊 = 𝟏

 ELSE IF feature fi is a numeric datum
 𝒌𝒊 = 𝟏 − 𝒇𝒊,𝒄!𝒇𝒊,,𝒑

𝒗𝒊
 where 𝑣! is the range for feature fi

 ELSE IF feature fi is a categorical datum AND
 Cardinality of set Fi ≤ 2 where fi ∈ Fi

 𝒌𝒊 =

 𝟏 𝒊𝒇 𝒇𝒊,𝒑 = 𝒇𝒊,𝒄
 𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 ELSE IF feature fi is a categorical datum AND
 Cardinality of set Fi ≥ 3 where fi ∈ Fi
 𝒌𝒊 = Mi (fi,p, fi,c) where Mi is the fi-specified similarity table

As described in Algorithm 1, when feature fi is a
categorical datum, categorical matching can be used.
However, if there are more than two categories, there may be
shades of similarity; one category might be more like the one
of the other categories than another. To specify those shades
of similarity we define the feature-specified lookup table Mi
based on the characteristics of each feature, and similarity
scores for feature fi can be determined by the corresponding
entry in Mi.

After calculating Φ(sp, sc) for each case in the casebase,
the cases are sorted from the highest scored case to the lowest
one, and the top n cases are selected as the initial matched
cases and transferred to the case adaptation step.

 Step 2. Case Adaptation and Reuse

Once the initial matched cases are selected, the final selection
process is required to find the best-case cb = [s, a, r] to use.
Even though a robot finds the best-case, there is no reason to
reuse this case’s action if the benefits of the action are poor.
Therefore, as a final selection step, a robot should assess the
previous benefit and determine whether it should be selected
for execution. After selection, the corresponding action
should be adapted and passed to the robot to perform the
robot behavior. This final action selection process can briefly
be explained as follows:

[Step 1] Select the top n cases from the sorted casebase as the
initial matched cases

[Step 2] From the n cases, discriminate the cases that have a
positive benefit (r > 0)

[Step 3-1] If several cases have a positive benefit, choose one
case using the weighted roulette wheel algorithm (the
likelihood of a case being chosen are determined based on the
relative benefit of that case) and set it as the best matched case
cb = [s, a, r]

[Step 3-2] If none have a positive benefit, retrieve next n
cases and repeat the case selection process from step 2

[Step 4] From the selected case cb = [s, a, r], adapt action a to
the adapted action an (see algorithm 3 below)

[Step 5] If no case can be found after repeating to the last case,
assign the default action (which is the true action at) to the
adapted action an

More specifically, we can illustrate this final action
selection process as shown in Algorithm 2. After the
best-case is determined (cb = [s, a, r]), it may need to be
adapted to the current situation. If the current state is exactly
matched to the situational state in the best-case, we can
directly use action a in the case without adaptation. However,
if those two states are slightly different but the case is
selected since it has the most similar situational state, then the
action may be adapted before application.

According to Kolodner [28], adaptation involves two
major steps: 1) figuring out what needs to be adapted and 2)
performing the adaptation. Similar to this approach, the
algorithm first observes whether there are differences
between best case’s state s and current state sn, and if the two
states are different each other, an appropriate adaptation
should be applied. Differences between states can be
discriminated by finding features that specifically have
different values (figuring out what needs to be adapted).
When the features having different values are determined, the
adaptation rules associated with those features are applied
(performing the adaptation). In addition, adaptation can be
varied for any particular domains or tasks, and a set of
adaptation strategies or heuristics can be used for a CBR
working system [28]. Therefore, the adaptation process is
designed based on predefined adaptation rules. For this, we
define the data structures of the rules that encode the
adaptation procedures (from experts or literature) that instruct

Algorithm 2. Final Action Selection Process
Input: Sorted casebase C
 Current situation sn
Output: Final adapted solution action an
startIndex = 0
// starting index of casebase when picking top n cases
LOOP:
 nCases = {} // reset nCases, which stores the top n cases
 FOR i in startIndex to startIndex+n //top n ranked cases
 IF c[i].r ≥ 0 // find the cases w/ positive benefit
 nCases.add(c[i]); // if positive, add to set nCases
 IF |nCases| > 0
 Find the best case from nCases
 using the weighted roulette wheel algorithm
 cb = selected best-case
 an = adaptingAction(cb, sn) // adapting the action (Algo. 3)
 return an;
 ELSE // If none have a positive benefit
 startIndex += n; // set startIndex to the next n cases
 goto LOOP; // retrieve n more cases
an = at; /* return the default action as a solution
return an; if no cases can be selected */

Table 1. Data structure for the rule
Field Description

FeatureIndex Indicates which feature should be observed for
the current adaptation rule

Origin The origin of the adaptation rule (reference)
Activity Indicates if the rule is currently active
Description Short, concise description of the rule

AdaptationCondition
Condition for determining whether the
adaptation rule should be applied to the current
action

AdaptationRule Formal expression defining the way to adapt
the current action

the robot how to adapt the selected action to the current
situation. The data structure of the rules is shown in Table 1.

 The adaptation process using the rules is summarized in
Algorithm 3. Again, when the state in the selected best-case
is exactly same as the current situation, action a in the case
can be directly used as a solution. However, when the two
situations are different, the adaptation process is called. As
shown in Algorithm 3, the system first compares all feature
values between the case state and the current state and if the
two values are different, those feature indices are compared
to the element in the set of rules RS. In other words, if the
discriminated feature index is matched with the element of
FeatureIndex in certain rule rs ∈ RS, this rule’s
AdaptationRule applies based on AdaptationCondition, and
an adapted action an will be generated.

Case application

From the retrieval and adaptation steps, a robot can
determine an appropriate adapted action an. Then, this
adapted action an should be performed by the robot. This step
is known as the case application step. When the adapted case
is applied (action an is determined and performed), we should
perceive the changes of human victim’s status for the next
evaluation/updating steps.

Step 3. Solution Evaluation and Casebase Updating

Cases are initially created by experts or experienced users.
Even then, the pair of situational state and action in each case
may not always be the best solution. During the
evaluation/updating phase, the cases should be revised and
updated to the most effective solution. In other words, it
should be observed whether a human victim truly receives
benefit from a rescue robot’s behavior, and the casebase
should be updated with the case that can generate the highest
payoff for the human victims.

After performing an action (case application), the benefits
should be identified to evaluate the action post facto. It can
be determined by a human expert afterwards or if possible
assessed autonomously by a robot. In our system, a human
expert will rate the benefits since it is a more practical and
accurate way in the real-world situation. When the human
expert determines the benefits, they should be asked to
observe the changes of the human victim’s condition after
performing a rescue robot’s adapted action and rate the
benefits within the predefined range of benefits R.

Updating casebase

Based on the new benefit rn, which is provided by a
human expert, the CBR system should update the cases if
necessary. According to Kolodner [28], the casebase can be
updated by 1) generalizing the cases in the casebase, or 2)
storing the new case. Similar to this approach, when the
current state sn, the adapted action an, and the new benefit rn
are perceived, they can be used to generalize existing cases
in the casebase. Otherwise, it will be stored as the new case
for future reference.

First, the system should determine whether
generalization is possible with sn, an, and rn. In our system,
states will be generalized when the cases have the same
action as an and benefit as rn. Since states are represented as
different features, the system can generalize the state by
finding/merging the features that may not play key roles
during the calculation of similarity scores. For the
generalization process, those unnecessary features will be
minimized to a ‘don’t care’ value.

This feature reduction can be solved using the
minimization algorithm of the algebraic variables. When all
the features are boolean variables, the ‘don’t care’ feature
can be determined by the Quine–McCluskey (Q-M)
algorithm [29]. Let us assume that we have the state
representation such as s = < f1, f2, f3 > and each feature is
defined as f1, f2, f3 ∈ {1, 0}. When we have two existing
states s1 = <1, 1, 1> and s2 = <1, 1, 0> and the new state sn =
<1, 0, 1>, those three states can be generalized using an
algebraic minimization algorithm. First, states s1, s2, and sn
can be represented as 𝑓!𝑓!𝑓!, 𝑓!𝑓!𝑓!, 𝑓!𝑓!𝑓! using a canonical
form. Via the Q-M algorithm [29], the states can be
generalized to the canonical sum of products expression by
summing the minterms such as 𝑓!𝑓!𝑓!+ 𝑓!𝑓!𝑓! + 𝑓!𝑓!𝑓! =
𝑓!𝑓! + 𝑓!𝑓!𝑓!. Since ‘don’t-care’ terms are left out of the
minterms, we finally get the generalized states such as <1, 1,
don’t care> and <1, 0, 1> from minterms 𝑓!𝑓! and 𝑓!𝑓!𝑓!.

Multi-valued features can be handled by the same
mechanism via the extended Q-M algorithm [30]. Again, let
us assume the state s = < f1, f2, f3 > and features are defined
as f1 ∈ {1, 2, 3}, f2 ∈ {a, b, c}, f3 ∈ {x, y}. When we have
three existing states s1 = <1, a, x>, s2 = <1, b, y>, s3 = <1, a,
y> and the new state sn = <1, c, y>, the states can be
generalized by the extended Q-M algorithm. First, the
canonical forms of states s1, s2, s3, and sn will be 𝑓!!𝑓!!𝑓!!,
𝑓!!𝑓!!𝑓!

! , 𝑓!!𝑓!!𝑓!
! , 𝑓!!𝑓!!𝑓!

! , and those four states can be
minimized such as 𝑓!!𝑓!!𝑓!! + 𝑓!!𝑓!!𝑓!

! + 𝑓!!𝑓!!𝑓!
! + 𝑓!!𝑓!!𝑓!

!

Algorithm 3. Adaptation Process: adaptingAction(cb, sn)
Input: best-case cb = [s, a, r] where s = <f1,s, f2,s, …, fk,s>
 Current state sn = <f1,sn, f2,sn, …, fk,sn>
 Set of rules RS = {rs1, rs2, rs3, … , rsn}
Output: Adapted action an
// determine whether the current state is same as the case’s state
IF s == sn // if two states are same,
 an = a // set the same action a as an adaptation action
ELSE // if two states are different, start adaptation
 D = {} // variable to store the set of feature indices
 /* Step 1. Figuring out what needs to be adapted */
 FOR all features in s
 IF fi,s != fi,sn // if the value of feature fi in case’s state s is
 // different from current state sn, store feature
 // index i into the set D
 D ← D ∪ {i}
 /* Step 2. Doing the adaptation */
 FOR all feature index i in D
 FOR all rules rsj in RS // among all rules in RS
 IF rsj.featureIndex == i AND
 rsj.adaptationCondition == True
 // find the rule rsj that contains the feature index i
 // if rsj‘s adaptation condition is satisfied, adapt by the rule
 an ← Perform rsj.adaptationRule;
return an;

= 𝑓!!𝑓!!𝑓!! + 𝑓!!𝑓!
! . Therefore, we finally have the

generalized two states, <1, a, x> and <1, don’t care, y>.

Algorithm 4 describes the entire process of the updating
strategy in pseudocode. For the generalization process, the
system will first select all cases that have the same action as
the adapted action an and the same benefit as the new benefit
rn. The states from the selected cases and the current state sn
are then generalized by reducing the features. This feature
reduction is performed using the minimization algorithm [29,
30]. After the reducible features are determined, those
features are valued as ‘don’t care,’ and the cases are
generalized. If none of the cases are merged and generalized
in the previous step, a new case cn = [sn, an, rn] is created and
stored in the casebase for future use. By using this updating
strategy, the casebase can maintain the best situation-action
pairs that can provide the largest benefit to human victims.

IV. EXEMPLAR SCENARIO

We proposed the deceptive action-selection model via CBR
in section 2. In this section, we will review our model with a
specific SAR example; the scene of a fire.

Case Representation

We first define the case as c = [s, a, r], where s is a
situational state, a is an action, and r is the benefit. State s in
our example can be simply defined as s = < fm1, fm2, fm3, fm4,
fe1, fe2 > where features indicate victim’s internal and external
conditions as shown in Table 2.

A set of actions contains the appropriate true and
deceptive actions for each state. A true/default action is
specifically defined for each state based on the literature or
expert perspectives. Then, from the true action, the deceptive
actions are generated by our deceptive action generation
mechanism [10]. In this scenario, the true action at can be
defined as at = [vt, <egpt, ft, pt>]. Here, vt is the verbal cue,
which explains the current status to the human victim.
Nonverbal cues < egpt, ft, pt > represent the emotional gesture

primitive, facial expression, and proximity, respectively,
where these values are matched to the current environmental
status. After determining true action at, the set of possible
deceptive actions are generated through the deception by
omission and commission mechanisms. For example,
situation s = < 1, 1, 1, anger, 1, 1> can have a true action
such as at = [vt, <egppos, fpos, ppos>] since the environmental
features fe1 and fe2 determine the positive state (e = pos).
Then, the deceptive actions are generated such as ad1 = [vd,
<egpneg, fneg, pneg >] using deception by omission and ad2 =
[vd, <egpnull, fnull, pneg >] using the deception by commission
mechanism. Finally, the exemplar situation can have a set of
actions such as {at, ad1, ad2}. For each state, a set of actions is
generated via the deceptive action generation mechanism. In
addition, the measure of benefits is defined as R = {r | r ∈ ℤ
∧ -3 ≤ r ≤ 3} via the triage process [31].

Initial Casebase

The initial casebase is determined manually and the benefits
are filled by the experts. They are asked to rate the benefits of
the action in the range of R by predicting how much the
human’s state will be improved or worsened in each case.
Table 3 is the initial casebase in our exemplar scenario.

Table 3. Initial Casebase
CaseID State Action Benefit fm1 fm2 fm3 fm4 fe1 fe2

1 1 1 1 anger 1 1 at -1
2 1 1 1 disgust 1 1 ad1 +1
3 1 1 1 fear 1 1 ad2 +2
4 1 1 1 happiness 1 1 at +3
5 1 1 0 sadness 1 1 ad1 0
6 1 0 0 anger 0 0 ad2 -3
7 1 0 0 disgust 0 0 at +1
8 0 0 0 fear 0 0 ad1 -2
9 0 0 0 happiness 1 0 ad2 -3

10 0 0 0 sadness 0 1 at -1

Case Retrieval

Next, a robot should perceive the actual current situation and
compare it to the previously stored cases in the casebase.
Further assume that a robot rescuer perceives the current state
such as sn = < 1, 0, 0, fear, 1, 1 >. Then, as the first step of
case retrieval, the similarity scores of each case in the
casebase, should be calculated by Algorithm 1. In this
example, similarity score ki for each feature fi is determined
by the following algorithm.

Table 2. Data structure of state S
 Description

fm1
{x | x = 1 if 10 < r1 < 30 , otherwise x = 0}
 : Normal or abnormal respiration
 : r1 from respiratory sensor (breaths per minute, bpm)

fm2
{x | x = 1 if 60 < r2 < 100, otherwise x = 0}
 : Normal or abnormal ranges of pulse
 : r2 from pulse rate sensor (pulse beats per minute, pBPM)

fm3
{x | x = 1 if 60 < r3 < 100, otherwise x = 0}
 : Normal or abnormal range of heartbeat
 : r3 from heart rate sensor (heart beats per minute, hBPM)

fm4 {x | x ∈ {anger, disgust, fear, happiness, sadness, and surprise}}
 : Current emotional state from speech and pitch detection

fe1
{x | x=1 if 14 < r5 < 32, otherwise x = 0}
 : Normal or abnormal range of room temperature
 : r5 from digital temperature sensor (Celsius, °C)

fe2
{x | x=1 if r6 == true, otherwise x = 0}
 : Gas detected or not, r6 from CO-gas detection sensor

Algorithm 4. Casebase Updating Strategy
Input: Current State sn
 Adapted Action an
Determine the new benefit rn from a human expert

/* Step 1. Generalizing the cases */
candidateCases = {}; // cases that are potentially generalizable
FOR each case c in Casebase C
 IF c.r == rn && c.a == an // if the case has the same action and
 // benefits as an and rn, it is potentially generalizable

 candidateCases.add(c); // add to the candidateCases

// Generalize states via minimization algorithm [29, 30]
allMinterms = // get minterms via feature reduction algorithm
 ExtendedQ-M (canonical forms of candidateCases’ states,
 canonical form of sn);
FOR each mintermi in allMinterms
 sgeneralizeed = extract from mintermi by adding ‘don’t care’ terms
 Remove all cases in candidateCases
 Add generalized case [sgeneralizeed, an, rn]

/* Step 2. Storing the new case */
IF no cases are generalized
 Create new case cn = [sn, an, rn] // new case created
 Add cn to the case base // updated

For each feature fi in i = m1, m2, m3, m4, e1, e2
 IF i == m4 // for emotional feature fm4
 Find ki from similarity lookup table Memotion(fi,sp, fi,sc)
 ELSE // for all other features
 IF fi,sp == fi,sc THEN ki = 1
 ELSE THEN ki = 0

Here, the similarity lookup table Memotion is generated
based on Emotion Annotation and Representation Language
(EARL) classification [32] as shown in Table 4.

In addition, features should have different weights based
on their relative importance. According to [33], in the context
of a fire, rescuers primarily check the risk of the scene based
on the temperature. Furthermore, the main purpose of
deceptive behaviors in a crisis situation is managing the
human victim’s emotions [6]. Consequently, we empirically
set the weight vector such as w = <1, 1, 1, 2, 2, 1>. Now, we
can get the similarity scores for each case and also the rank of
similarity as Table 5. With the similarity scores, we find one
best-case via the final selection process (Algorithm 2).

Table 5. Calculating similarity scores and sorting

CaseID State S similarity Rank fm1 fm2 fm3 fm4 fe1 fe2
2 1 1 1 disgust 1 1 0.75 1
3 1 1 1 fear 1 1 0.75 1
5 1 1 0 sadness 1 1 0.75 1
1 1 1 1 anger 1 1 0.625 2
6 1 0 0 anger 0 0 0.625 2
7 1 0 0 disgust 0 0 0.625 2
4 1 1 1 happiness 1 1 0.5 3
8 0 0 0 fear 0 0 0.5 3
9 0 0 0 happiness 1 0 0.5 3

10 0 0 0 sadness 0 1 0.5 3

Adaptation and Case Application

From the final selection process (Algorithm 2), the system
determines case 3 as the best case such as cb = [s, a, r] = [<1,
1, 1, fear, 1, 1>, ad2, +2]. After, it should be adapted to the
current situation. To apply the adaptation algorithm, we first
must have a set of predefined adaptation rules RS. In our
example, we predefine the set of rules as shown in Table 6.

Now, we should adapt the action. According to Algorithm
3, the differences between the best-case state and the current
state should first be discriminated. In our example, s and sn
are different in features fm2 and fm3. Then, it should be adapted
from the set of appropriate predefined rules RS. Rule 1
should be chosen, since this rule’s feature indices include m2
and m3. Then, since the current situation as sn = < 1, 0, 0,
fear, 1, 1 > satisfies the adaptation condition (fm2,n == 0 && fm3,n

== 0) of rule 1, the adaptation rule will apply and the adapted
action an = at will be used as a solution.

Evaluation and Case Update

After the case application, the adapted action should be
evaluated to update the case. A human expert is asked to
evaluate the change of victim’s state and rate the benefits
gained, if any. After getting the new benefit rn (+2 in this
example), the update algorithm should be applied. In this
step, by following Algorithm 4, the system can determine
the current situation sn is not used to generalize the cases in
the casebase, and so the new case cn = [sn, an, rn] can be
created with the current situational state, adapted action and
the new benefits. Finally, the new case cn will be added to
the casebase as shown in Table 7. The newly updated

Table 4. Similarity score lookup table Memotion
 anger fear disgust sadness happiness surprise

anger 1 0.5 1 0.5 0 0
fear 0.5 1 0.5 0.5 0 0

disgust 1 0.5 1 0.5 0 0
sadness 0.5 0.5 0.5 1 0 0

happiness 0 0 0 0 1 0.5
surprise 0 0 0 0 0.5 1

Table 6. Rules for adaptation

Rule 1. Extreme condition of human victim
If vital features are different and the current values are false, we
should consider victim’s life-threatening status and adapt the action.

<rule> rsextreme_internal_condition
 <feature Index> m1 | m2 | m3 </feature Index >
 <origin> Lois’ Article [6], IAFC's 10 Rules [33] </origin>
 <activity> True </activity >
 <description> Perform the true action when human victims
 are in an extreme condition. </description>
 <adaptationCondition> (fm1,n == 0 && fm2,n == 0) ||
 (fm1,n == 0 && fm3,n == 0) || (fm2,n == 0 && fm3,n == 0) ||
 (fm1,n == 0 && fm2,n == 0 && fm3,n == 0) </adaptationCondition >
 <adaptationRule> an = at </adaptationRule >
</rule>

Rule 2. Risky environmental condition
When the features for the environmental state are different and the
feature values from the current situation are false, we should
consider it is a risky situation and adapt the action.

<rule> rsrisky_external_condition
 <feature Index> e1 && e2 </feature Index >
 <origin> Lois’ Article [6], IAFC's 10 Rules [33] </origin>
 <activity> True </activity >
 <description> Perform the true action if the environment is
 very risky.</description>
 <adaptationCondition> fe1n == 0 && fe2n == 0
 </adaptationCondition>
 <adaptationRule > an = at </adaptationRule >
</rule>

Rule 3. Contradictions of emotional states
If the victim’s emotional status is totally different in fm4 and fm4n , it is
determined as emotional contradiction, and the corresponding action
should be adapted. Therefore, if fm4 and fm4n are in the different
categories (negative/positive), the adaptation will be performed by
regenerating the neutral gesture primitive and facial expression.

<rule> rsavoid_contradiction
 <feature Index> m4 </feature Index >
 <origin> Lois’ Article [6], Shim’s Article [10] </origin>
 <activity> True </activity >
 <description> Emotions are contradictory. </description>
 <adaptationCondition> (fm4 ∈ Enegative && fm4n ∈ Epositive) ||
 (fm4 ∈ Epositive && fm4n ∈ Enegative) </adaptationCondition>
 <adaptationRule > an = <egpn, fn, p> </ adaptationRule >
</rule>

Table 7. Final casebase with the newly updated case
CaseID State S Action Benefit fm1 fm2 fm3 fm4 fe1 fe2

1 1 1 1 anger 1 1 at -1
2 1 1 1 disgust 1 1 ad1 +1

⋮ ⋮ ⋮
9 0 0 0 happiness 1 0 ad2 -3

10 0 0 0 sadness 0 1 at -1
11 1 0 0 fear 1 1 at +2

casebase is maintained and reused when the robot faces a
new search and rescue situation in the future. Through these
experiences, the robot can gradually increase the accuracy
and effectiveness of its true/deceptive behaviors over time.

V. CONCLUSION
With the increasing use of autonomous robots in SAR,

improving the interaction between human victims and rescue
robots is critical. Similar to human cases, deception can be
one efficient and essential capability for rescue robots in
HRI. In this paper, we present an interesting and important
research question in developing the use of robot deception in
the SAR context; Can deceptive capabilities of rescue robots
benefit human victims? We argued that a robot’s deceptive
capabilities can control a victim’s emotional state and
consequently establish a strong bond between victims and
robots that lead to better cooperation. For this purpose, we
introduced the computational model for a rescue robot’s
other-oriented deception inspired by criminological law. For
the motive/opportunity parts, we proposed a deceptive action
selection model using the CBR mechanism. Currently, we
apply this model to a rescue robot system and are readying
to conduct HRI studies (Figure 3) to evaluate the
computational model and prove our research hypothesis.

Figure 3. Robot platform (left) and Experimental Environment (right)

REFERENCES
[1] R. Murphy, Disaster Robotics, MIT press, 2014.
[2] F. Matsuno, N. Sato, K. Kon, H. Igarashi, T. Kimura, and R. Murphy,

Utilization of robot systems in disaster sites of the great eastern japan
earthquake, Field & Service Robotics (FSR), 2014.

[3] J. Casper and R. Murphy, Human-robot interactions during the
robot-assisted urban search and rescue response at the world trade
center, Proc. IEEE Systems, Man and Cybernetics Conference, 2003.

[4] H. A. Yanco, A. Norton, W. Ober, D. Shane, A. Skinner, and J. Vice,
Analysis of Human-­‐‑robot Interaction at the DARPA Robotics
Challenge Trials, Journal of Field Robotics 32, no. 3 (2015): 420-444.

[5] J. Whalen and H. Zimmerman, Observations on the display and
management of emotion in naturally occurring activities: The case of
“hysteria” in calls to 911, Social Psychology Quarterly, 1998.

[6] J. Lois, Managing emotions, intimacy, and relationships in a volunteer
search and rescue group, Journal of Contemporary Ethnography, 30,
131-179, 2001

[7] J. Shim and R. C. Arkin, A taxonomy of robot deception and its
benefits in HRI, Proc. IEEE Systems, Man and Cybernetics
Conference, 2013.

[8] B. M. DePaulo, D. A. Kashy, S. E. Kirkendol, M. M. Wyer, and J. A.
Epstein, Lying in everyday life. Journal of personality and social
psychology, 1996, 70(5): 979–995.

[9] E. Adar, D. S. Tan, and J. Teevan. Benevolent deception in human
computer interaction. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 1863-1872, 2013.

[10] J. Shim and R. C. Arkin, Other-Oriented robot Deception: A
Computational Approach for Deceptive Action Generation to Benefit
the Mark, Proc. IEEE International Conference on Robotics and
Biomimetics, 2014.

[11] R. Murphy, Human-robot interaction in rescue robotics, Proc. IEEE
Systems, Man and Cybernetics Conference, 2004

[12] J. Drury, L. Riek, A. Christiansen, Z. Eyler-Walker, A. Maggi, and D.
Smith, Evaluating Human-Robot Interaction in a Search-and-Rescue
Context, In Proceedings of the Performance Metrics for Intelligent
System (PerMIS) Workshop, 2003.

[13] H. A. Yanco, M. Baker, R. Casey, B. Keyes, P. Thoren, J. L. Drury,
D. Few, C. Nielsen, and D. Bruemmer, Analysis of human-robot
interaction for urban search and rescue. Proceedings of the IEEE
International Workshop on Safety, Security and Rescue Robotics,
National Institute of Standards and Technology (NIST), 2006

[14] I. Nourbakhsh, K. Sycara, M. Koes, M. Young, and S. Burion,
Human-robot teaming for search and rescue, IEEE Pervasive
Computing: Mobile and Ubiquitous Systems, pp. 72-78, 2005.

[15] S. A. Morin, R. F. Shepherd, S. W. Kwok, A. A. Stokes, A.
Nemiroski, and G. M. Whitesides, Camouflage and Display for Soft
Machines, Science 337(6096):828–832, 2012.

[16] N. Carey, J. Ford, and J. Chahl, Biologically inspired guidance for
motion camouflage, in 5th Asian Control Conference, 2004.

[17] J. Shim, and R. C. Arkin, Biologically-inspired deceptive behavior for
a robot. 12th International Conference on Simulation of Adaptive
Behavior, 2012.

[18] J. Davis and R. Arkin, Mobbing behavior and deceit and its role in
bio-inspired autonomous robotic agents, International Conference on
Swarm Intelligence, pp. 276–283, 2012.

[19] M. Vazquez, A. May, A. Steinfeld, and W.-H. Chen, A deceptive
robot referee in a multiplayer gaming environment, in International
Conference on Collaboration Technologies and Systems (CTS), 2011.

[20] E. Short, J. Hart, M. Vu, and B. Scassellati, Nofair!!: an interaction
with a cheating robot, in Proceedings of the 5th ACM/IEEE
international conference on Human-robot interaction, 2010.

[21] S. Matsuzoe and F. Tanaka, How smartly should robots behave?:
Comparative investigation on the learning ability of a care-receiving
robot, IEEE RO-MAN, 2012, pp. 339–344.

[22] B. Brewer, R. Klatzky, and Y. Matsuoka, Visual-feedback distortion
in a robotic rehabilitation environment, Proceedings of the IEEE, vol.
94, no. 9, pp. 1739–1751, 2006.

[23] D. Chen and B. Burrell, Case-based reasoning system and artificial
neural networks: A review, Neural Computing & Applications, vol.
10, no. 3, pp. 264-276, 2001.

[24] A. Aamodt and E. Plaza, Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches, AI
Communications. 7(1): p. 39-59, 1994.

[25] M. Likhachev and R. C. Arkin, Spatio-temporal case-based reasoning
for behavioral selection, In ICRA, pp. 1627–1634, 2001.

[26] L. Moshkina, Y. Endo, and R. C, Arkin, Usability evaluation of an
automated mission repair mechanism for mobile robot mission
specification. In Proceedings of the 1st ACM SIGCHI/SIGART
conference on Human-robot interaction, 2006.

[27] L. Moshkina, S. Park, R. C. Arkin, J. K. Lee, and H. Jung, TAME:
Time-Varying Affective Response for Humanoid Robots,
International Journal of Social Robotics, August 2011, Volume 3,
Issue 3, pp 207-221, 2011.

[28] J. L. Kolodner, An introduction to case-based reasoning, Artificial
Intelligence Review, vol. 6, no.1, pp.3-34, 1992.

[29] E. J. McCluskey, Minimization of Boolean function, Bell system Tech.
Journal, vol.35, No.5, pp. 1417-1444, 1956.

[30] A. Mishchenko, R. K. Brayton, and T. Sasao, Exploring multi-valued
minimization using binary methods, 12th International Workshop on
Logic and Synthesis, Laguna Beach, California, USA, 2003.

[31] http://www.remm.nlm.gov/
[32] HUMAINE Emotion Annotation and Representation Language,

Emotion-research.net. Retrieved June 30, 2006.
[33] The 10 rules of engagement for structural fire fighting and the

acceptability of risk, International Association of Fire Chiefs, 2001.

