
A DESIGN METHODOLOGY FOR

THE CONFIGURATION OF

BEHAVIOR-BASED MOBILE ROBOTS

A Thesis
Presented to

The Academic Faculty

By

Douglas Christopher MacKenzie

In Partial Ful�llment
of the Requirements for the Degree

Doctor of Philosophy in Computer Science

Georgia Institute of Technology

Tech Report #GIT-CS-97/01

Copyright c 1996 by Douglas Christopher MacKenzie

ii

for Karen, my friend, my con�dant, my wife.

iii

iv

Acknowledgements

The author would like to thank his advisor, Dr. Ronald C. Arkin, for directly support-
ing this research and for support encompassing the entire period of his enrollment.
Special thanks are given to the other committee members: Dr. Christopher G. Atke-
son, Dr. Richard J. Leblanc, Dr. Wayne J. Book, and Dr. John T. Stasko for the
helpful advice given during the progression of this research and for the time spent
reading this document. The author would also like to recognize the Computer Inte-
grated Manufacturing Systems program and the Material Handling Research Center
who provided support during his time at Georgia Tech. Special thanks goes to Dar-
rin Bentivegna for conducting the usability experiments and Erica Sadun for helping
�nalize the experiments. The friendship and camaraderie of Mark Gordon, Tucker
Balch, Khaled Ali, Darrin Bentivegna, and Dr. Jonathan Cameron made this pe-
riod of time one of the author's most enjoyable. And �nally, the proof-reading and
numerous suggestions supplied by his wife Karen are greatly appreciated.

v

vi

Contents

Dedication iii

Acknowledgements v

List of Tables xiii

List of Figures xviii

Summary xix

1 Introduction 1

1.1 The Research Questions : 3
1.2 Research Overview : 4
1.3 Structure of the Dissertation : 5

2 Related Work 7

2.1 Related Speci�cation Languages : 7
2.1.1 REX/Gapps : 8
2.1.2 RS : 9
2.1.3 The Robot Independent Programming Language : : : : : : : : 10
2.1.4 The SmartyCat Agent Language : : : : : : : : : : : : : : : : 10
2.1.5 Discrete Event Systems (DES) Theory : : : : : : : : : : : : : 11
2.1.6 Prepositional Linear Temporal Logic : : : : : : : : : : : : : : 12
2.1.7 Multivalued Logic Integration of Planning and Control : : : : 12
2.1.8 Petri nets : 13
2.1.9 A Language For Action (ALFA) : : : : : : : : : : : : : : : : : 14

2.2 Potential Target Architectures : 15
2.2.1 The AuRA architecture : 16
2.2.2 Subsumption architecture : 16
2.2.3 Maes' action-selection architecture : : : : : : : : : : : : : : : 18
2.2.4 ALLIANCE: The Cooperative Robot Architecture : : : : : : : 19
2.2.5 The Distributed Architecture for Mobile Navigation : : : : : : 20
2.2.6 SAUSAGES : 21
2.2.7 The Procedural Reasoning System : : : : : : : : : : : : : : : 21
2.2.8 Reactive Action Packages (RAPs) : : : : : : : : : : : : : : : : 22

vii

2.2.9 Supervenience : 22
2.2.10 Behavioral Architecture for Robot Tasks (BART) : : : : : : : 23

2.3 Graphical Programming Tools : 24
2.3.1 Khoros : 24
2.3.2 Onika : 26
2.3.3 ControlShell : 26
2.3.4 GI Joe Graphical FSA Editor : : : : : : : : : : : : : : : : : : 29
2.3.5 Mechanical design compiler : : : : : : : : : : : : : : : : : : : 31

2.4 Summary : 31

3 The Societal Agent 33

3.1 The Atomic Agent : 35
3.2 Primitive Behavior Classes : 38

3.2.1 Sensors : 38
3.2.2 Perceptual Modules : 38
3.2.3 Motor Modules : 40
3.2.4 Actuators : 40

3.3 The Assemblage Agent : 41
3.4 Classes of Coordination Modules : 41

3.4.1 Competition : 43
3.4.2 Temporal Sequencing : 45
3.4.3 Cooperation : 47

3.5 Overview of Binding : 48
3.6 Summary : 49

4 The Con�guration Description Language 51

4.1 Overview of CDL : 52
4.1.1 Example Janitor Con�guration : : : : : : : : : : : : : : : : : 54

4.2 Binding : 61
4.3 CDL Syntax: An Attribute Grammar : : : : : : : : : : : : : : : : : : 65

4.3.1 The CDL Attribute Grammar : : : : : : : : : : : : : : : : : : 67
4.4 CDL Semantics: An Axiomatic De�nition : : : : : : : : : : : : : : : 81

4.4.1 Data Type Axioms : 81
4.4.2 Data Movement Axioms : 82
4.4.3 Execution Axioms : 83

4.5 Summary : 84

5 Implementation: MissionLab 85

5.1 Graphic Designer : 85
5.1.1 Con�guration Speci�cation : 88
5.1.2 Use of the Graphic Designer : : : : : : : : : : : : : : : : : : : 89

viii

5.1.3 Datatype validation using a LISP subsystem : : : : : : : : : : 95
5.1.4 Command Description Language (CMDL) : : : : : : : : : : : 96

5.2 Hardware Binding : 99
5.3 Code Generation : 100

5.3.1 Supported Robot Architectures : : : : : : : : : : : : : : : : : 104
5.3.2 The Con�guration Network Language (CNL) : : : : : : : : : : 104
5.3.3 SAUSAGES : 105

5.4 MissionLab Maintenance : 108
5.4.1 The .cfgeditrc Resource File : : : : : : : : : : : : : : : : : : : 108
5.4.2 Adding New AuRA Primitives : : : : : : : : : : : : : : : : : : 108
5.4.3 Adding New CDL Primitives : : : : : : : : : : : : : : : : : : : 111

5.5 MissionLab Command Console for AuRA : : : : : : : : : : : : : : : : 112
5.6 AuRA simulator : 116
5.7 SAUSAGES simulator : 118
5.8 Demonstrations of Functionality : 119

5.8.1 Adding a new component to a library : : : : : : : : : : : : : : 120
5.8.2 Creating components containing FSA's : : : : : : : : : : : : : 126
5.8.3 Retargeting a con�guration : : : : : : : : : : : : : : : : : : : 138
5.8.4 Simulated Robot Scouting Mission : : : : : : : : : : : : : : : 143
5.8.5 Indoor Navigation with Two Robots : : : : : : : : : : : : : : 147

5.9 Availability of MissionLab : 150
5.10 The Frame Problem in MissionLab : : : : : : : : : : : : : : : : : : : 151
5.11 Summary : 153

6 Design of Experiments 155

6.1 Establishing Usability Criteria : 155
6.1.1 Usability Attributes : 157
6.1.2 Value to be Measured : 157
6.1.3 Current Level : 158
6.1.4 Worst Acceptable Level : 158
6.1.5 Best Possible Level : 158
6.1.6 Target Level : 159

6.2 The MissionLab Usability Criteria : 159
6.3 Designing Usability Experiments : 161
6.4 Experiment 1: CfgEdit Mission Speci�cation : : : : : : : : : : : : : : 163

6.4.1 Objective : 163
6.4.2 Experimental Setup : 164
6.4.3 Experimental Procedure : 166
6.4.4 Nature and Type of Data Generated : : : : : : : : : : : : : : 167
6.4.5 Data Analysis Procedures : 167

ix

6.5 Experiment 2: Mission Speci�cation using C : : : : : : : : : : : : : : 169
6.5.1 Objective : 169
6.5.2 Experimental Setup : 170
6.5.3 Experimental Procedure : 170
6.5.4 Nature and Type of Data Generated : : : : : : : : : : : : : : 171
6.5.5 Data Analysis Procedures : 171

6.6 Experiment 3: Con�guration Synthesis : : : : : : : : : : : : : : : : : 171
6.6.1 Objective : 171
6.6.2 Experimental Setup : 172
6.6.3 Experimental Procedure : 173
6.6.4 Nature and Type of Data Generated : : : : : : : : : : : : : : 174
6.6.5 Data Analysis Procedures : 174

6.7 Summary : 174

7 Experimental Evaluation 177

7.1 Experiment 1: CfgEdit Mission Speci�cation : : : : : : : : : : : : : : 178
7.1.1 Objective : 178
7.1.2 Experimental Setup : 179
7.1.3 Experimental Procedure : 180
7.1.4 Raw Data Generated : 180
7.1.5 Overview of Experimental Results : : : : : : : : : : : : : : : : 180
7.1.6 Detailed Experimental Results : : : : : : : : : : : : : : : : : : 185

7.2 Experiment 2: Mission Speci�cation Using C : : : : : : : : : : : : : : 220
7.2.1 Objective : 220
7.2.2 Experimental Setup : 220
7.2.3 Experimental Procedure : 221
7.2.4 Raw Data Generated : 221
7.2.5 Overview of Experimental Results : : : : : : : : : : : : : : : : 224
7.2.6 Detailed Experimental Results : : : : : : : : : : : : : : : : : : 225

7.3 Experiment 3: Con�guration Synthesis : : : : : : : : : : : : : : : : : 228
7.3.1 Objective : 228
7.3.2 Experimental Setup : 230
7.3.3 Experimental Procedure : 231
7.3.4 Raw Data Generated : 231
7.3.5 Experimental Results : 231

7.4 Summary : 232

8 Summary and Contributions 237

8.1 Summary : 237
8.2 Speci�c Contributions : 238

x

8.3 Future Work : 240
8.4 Conclusion : 240

A Documents from the Usability Experiments 241

Bibliography 265

Vita 267

xi

xii

List of Tables

3.1 The transition function for a trash collecting FSA : : : : : : : : : : : 47

4.1 Attributes used in the CDL grammar : : : : : : : : : : : : : : : : : : 68
4.2 The non-terminal symbols used in the grammar : : : : : : : : : : : : 71
4.3 Attributes associated with non-terminal symbols in the grammar : : : 72
4.4 Functions used to manipulate attributes in the CDL grammar : : : : 74

6.1 An example usability criteria speci�cation table : : : : : : : : : : : : 156
6.2 The MissionLab usability criteria speci�cation table : : : : : : : : : : 162

7.1 The completed MissionLab usability criteria speci�cation table : : : : 234

xiii

xiv

List of Figures

2.1 Example Gapps code fragment : 9
2.2 A petri net to coordinate a vision algorithm : : : : : : : : : : : : : : 14
2.3 Example Colony Architecture Network : : : : : : : : : : : : : : : : : 17
2.4 Screen snapshot of the Cantata graphical workbench : : : : : : : : : 25
2.5 Engineer's view of the Onika graphical programming system : : : : : 27
2.6 Example puzzle piece icons in Onika : : : : : : : : : : : : : : : : : : 28
2.7 A completed user application in Onika : : : : : : : : : : : : : : : : : 29
2.8 De�nition of a ip/op using COSPAN S/R : : : : : : : : : : : : : : 30
2.9 Representation of ip/op in GI Joe graphical editor : : : : : : : : : 30
2.10 Example schematic for a hydraulic power train : : : : : : : : : : : : : 31

3.1 Sexual behavior of the three-spined stickleback : : : : : : : : : : : : : 34
3.2 Schematic of three-spined stickleback mating behavior : : : : : : : : : 36
3.3 Schematic diagram of an atomic agent : : : : : : : : : : : : : : : : : 37
3.4 Schematic diagram of an input binding point : : : : : : : : : : : : : : 38
3.5 Schematic diagram of a perceptual module : : : : : : : : : : : : : : : 39
3.6 Schematic diagram of a motor module : : : : : : : : : : : : : : : : : 40
3.7 Schematic diagram of an output binding point : : : : : : : : : : : : : 41
3.8 Schematic diagram of a con�guration : : : : : : : : : : : : : : : : : : 42
3.9 Classes of Coordination Modules : 42
3.10 Example Colony Architecture Network : : : : : : : : : : : : : : : : : 43
3.11 Example Colony Architecture Behavior and Suppression Node : : : : 44
3.12 FSA for a trash collecting robot : 46
3.13 Schematic diagram of vector summation in AuRA : : : : : : : : : : : 48

4.1 Schematic diagram of the research components : : : : : : : : : : : : : 51
4.2 Reproduction of the trash collecting FSA : : : : : : : : : : : : : : : : 54
4.3 Photo of three trash collecting robots : : : : : : : : : : : : : : : : : : 55
4.4 Partial CDL description of multiagent janitor con�guration : : : : : 56
4.5 The cleanup FSA in the Con�guration Editor : : : : : : : : : : : : : 57
4.6 CDL description of cleanup agent : : : : : : : : : : : : : : : : : : : 58
4.7 Partial CDL description of LookForCan agent : : : : : : : : : : : : : 60
4.8 Partial CDL description of AvoidRobots agent : : : : : : : : : : : : : 60
4.9 Example AuRA implementation of AvoidObjects primitive : : : : : 62
4.10 CDL description of janitor con�guration bound to three robots : : : 64

xv

4.11 Portion of attribute grammar for assignment statements : : : : : : : 66

5.1 Block diagram of the MissionLab System : : : : : : : : : : : : : : : : 86
5.2 The Con�guration Designer (CfgEdit) with an FSA displayed : : : : 87
5.3 Pseudo code representation of the con�guration design process : : : : 89
5.4 Reproduction of the trash collecting FSA : : : : : : : : : : : : : : : : 90
5.5 Development of the trash collecting con�guration : : : : : : : : : : : 91
5.6 The completed FSA for a trash collecting robot. : : : : : : : : : : : : 92
5.7 Selecting and parameterizing assemblages : : : : : : : : : : : : : : : : 93
5.8 The construction of the Wander behavior : : : : : : : : : : : : : : : : 94
5.9 Example Mission Scenario Commands : : : : : : : : : : : : : : : : : : 96
5.10 Screen snapshot showing start of scout mission : : : : : : : : : : : : : 97
5.11 Scout mission with robots moving to position AP1 : : : : : : : : : : : 98
5.12 Scout mission with robots split into two sub-units : : : : : : : : : : : 99
5.13 The robot selection menu, presented during binding : : : : : : : : : : 101
5.14 trashbot con�guration with three robots : : : : : : : : : : : : : : : : : 102
5.15 Logging window showing progress of con�guration build : : : : : : : : 103
5.16 CNL code for avoid static obstacles behavior : : : : : : : : : : : : : : 106
5.17 Portion of CNL code generated for trashbot con�guration : : : : : : : 107
5.18 Example SAUSAGES code generated by CfgEdit : : : : : : : : : : : 109
5.19 Example .cfgeditrc �le. : 110
5.20 CNL prototype for avoid static obstacles behavior : : : : : : : : : : : 111
5.21 Generic CDL de�nition for avoid static obstacles behavior : : : : : : 112
5.22 AuRA speci�c CDL de�nition for avoid static obstacles behavior : : : 112
5.23 Example mission being executed in MissionLab : : : : : : : : : : : : 113
5.24 MissionLab with the Mobile Robot Lab overlay loaded. : : : : : : : : 114
5.25 The de�nition �le specifying the Mobile Robot Lab overlay : : : : : : 115
5.26 The trashbot con�guration executing in simulation : : : : : : : : : : : 117
5.27 Example screen snapshot of SAUSAGES simulation display : : : : : : 118
5.28 Example safe wander behavior : 120
5.29 Iconic representation of the safe wander behavior : : : : : : : : : : : 121
5.30 Snapshot showing selection of the target library : : : : : : : : : : : : 122
5.31 List of behaviors showing the new safe wander behavior : : : : : : : : 123
5.32 Snapshot showing new component in the workspace : : : : : : : : : : 124
5.33 Snapshot showing new component's de�nition : : : : : : : : : : : : : 125
5.34 FSA to clean up mine�eld : 126
5.35 Portion of the FSA which executes the mine cleanup task : : : : : : : 127
5.36 Parameter selection for \Push up input" action : : : : : : : : : : : : 128
5.37 System asking if all parameter instances should be modi�ed : : : : : 129
5.38 Dialog allowing parameter name aliasing : : : : : : : : : : : : : : : : 130

xvi

5.39 The user pushed up all instances of the mine objects parameter. : : : 131
5.40 The iconic FSA now includes the %Objects parameter : : : : : : : : 132
5.41 The user pushes up the container parameter : : : : : : : : : : : : : : 133
5.42 The parameter is aliased to Containers at the component level. : : : 134
5.43 The FSA after the two parameters have been pushed up. : : : : : : : 135
5.44 The completed PickupAgent FSA component : : : : : : : : : : : : : 136
5.45 The new component used to simplify the original FSA : : : : : : : : 137
5.46 Example generic con�guration : 138
5.47 The con�guration executing in the MissionLab simulator : : : : : : : 139
5.48 Operator console after executing on a real robot : : : : : : : : : : : : 140
5.49 Photo of robot executing mission at start/�nish location : : : : : : : 141
5.50 Photo of robot executing mission at Teleop location : : : : : : : : : : 141
5.51 SAUSAGES simulation display after executing the mission : : : : : : 142
5.52 The state transition diagram for the scouting mission : : : : : : : : : 144
5.53 Scout mission executing in the MissionLab simulator : : : : : : : : : 145
5.54 The completed scout mission : 146
5.55 MissionLab executing a simple two robot mission : : : : : : : : : : : 147
5.56 Photos of the robots executing the two robot mission : : : : : : : : : 149
5.57 MissionLab with the UTA extensions : : : : : : : : : : : : : : : : : : 150
5.58 FSA showing MissionLab race condition : : : : : : : : : : : : : : : : 151
5.59 FSA showing correctly handling the race condition : : : : : : : : : : 152

6.1 Annotated event log from a usability experiment : : : : : : : : : : : : 168

7.1 Annotated portion of a MissionLab event log : : : : : : : : : : : : : : 181
7.2 A representative Experiment 1 solution : : : : : : : : : : : : : : : : : 182
7.3 Summary of Experiment 1 results : 183
7.4 Non-programmer performance on Experiment 1 : : : : : : : : : : : : 184
7.5 Time to add a mission step raw data : : : : : : : : : : : : : : : : : : 188
7.6 Time to add a mission step event graph : : : : : : : : : : : : : : : : : 189
7.7 Time to add a mission step distribution graph : : : : : : : : : : : : : 190
7.8 Time to specialize a step raw data : 192
7.9 Time to specialize a step event graph : : : : : : : : : : : : : : : : : : 193
7.10 Time to specialize a step distribution graph : : : : : : : : : : : : : : 194
7.11 Time to parameterize a step raw data : : : : : : : : : : : : : : : : : : 196
7.12 Time to parameterize a step event graph : : : : : : : : : : : : : : : : 197
7.13 Time to parameterize a step distribution graph : : : : : : : : : : : : 198
7.14 Time to add a mission transition raw data : : : : : : : : : : : : : : : 200
7.15 Time to add a mission transition event graph : : : : : : : : : : : : : 201
7.16 Time to add a mission transition distribution graph : : : : : : : : : : 202
7.17 Time to specialize a transition raw data : : : : : : : : : : : : : : : : 204

xvii

7.18 Time to specialize a transition event graph : : : : : : : : : : : : : : : 205
7.19 Time to specialize a transition distribution graph : : : : : : : : : : : 206
7.20 Time to parameterize a transition raw data : : : : : : : : : : : : : : : 208
7.21 Time to parameterize a transition event graph : : : : : : : : : : : : : 209
7.22 Time to parameterize a transition distribution graph : : : : : : : : : 210
7.23 Number of compiles to create a con�guration raw data : : : : : : : : 211
7.24 Number of compiles to create a con�guration distribution graph : : : 213
7.25 Time to create a simple con�guration raw data : : : : : : : : : : : : 215
7.26 Time to create a simple con�guration event graph : : : : : : : : : : : 216
7.27 Time to create a simple con�guration distribution graph : : : : : : : 217
7.28 Annotated event log from Experiment 2 : : : : : : : : : : : : : : : : 222
7.29 A representative task solution : 224
7.30 Number of compilations using C raw data : : : : : : : : : : : : : : : 225
7.31 Graph of number of compiles required in GUI and C sessions : : : : : 227
7.32 Graph of time spent editing in GUI and C sessions : : : : : : : : : : 229
7.33 Edit time using C raw data : 230
7.34 Time to complete Experiment 3 raw data : : : : : : : : : : : : : : : : 231

A.1 Checklist used by the monitor for Experiments 1 and 2 : : : : : : : : 242
A.2 Consent form signed by all test subjects : : : : : : : : : : : : : : : : 243
A.3 Part 1 of background questionnaire : : : : : : : : : : : : : : : : : : : 244
A.4 Part 2 of background questionnaire : : : : : : : : : : : : : : : : : : : 245
A.5 The \hello" script used to start the session : : : : : : : : : : : : : : : 246
A.6 Part 1 of script used during the warmup task : : : : : : : : : : : : : : 247
A.7 Part 2 of script used during the warmup task : : : : : : : : : : : : : : 248
A.8 Script used for task 1 : 249
A.9 Form used by the experiment monitor to record progress : : : : : : : 250
A.10 Script used for task 2 : 251
A.11 Script used for task 3 : 252
A.12 Script used for task 4 : 253
A.13 Script used for task 5 : 253
A.14 The exit survey : 254
A.15 Part 1 of behavior library description for Experiment 2 : : : : : : : : 255
A.16 Part 2 of behavior library description for Experiment 2 : : : : : : : : 256
A.17 Script used for Experiment 3 : 257

xviii

Summary

Behavior-based robotic systems are becoming both more prevalent and more compe-
tent. However, operators lacking programming skills are still forced to use canned
con�gurations hand-crafted by experienced roboticists. This inability of ordinary
people to specify tasks for robots is inhibiting the spread of robots into everyday life.
Even expert roboticists are unable to share solutions in executable forms since there
is no commonality of con�guration descriptions. Further, a con�guration commonly
requires signi�cant rework before it can be deployed on a di�erent robot, even one
with similar capabilities. The research documented in this dissertation attacks this
problem from three fronts.

First, the foundational Societal Agent theory is developed to describe how agents
form abstract structures at all levels in a recursive fashion. It provides a uniform view
of agents, no matter what their physical embodiment. Agents are treated consistently
across the spectrum, from a primitive motor behavior to a con�guration coordinating
large groups of robots. The recursive nature of the agent construction facilitates
information hiding and the creation of high-level primitives.

Secondly, the MissionLab toolset is developed which supports the graphical con-
struction of architecture- and robot-independent con�gurations. This independence
allows users to directly transfer designs to be bound to the speci�c robots at the
recipient's site. The assemblage construction supports the recursive construction of
new coherent behaviors from coordinated groups of other behaviors. This allows users
to build libraries of increasingly high-level primitives which are directly tailored to
their needs. MissionLab support for the graphical construction of state-transition
diagrams allows use of temporal sequencing to partition a mission into discrete oper-
ating states, with assemblages implementing each state. Support for multiple code
generators (currently existing for AuRA and SAUSAGES) ensures that a wide variety
of robots can be supported.

Finally, speci�c usability criteria for toolsets such as MissionLab are established.
Three usability studies are de�ned to allow experimental establishment of values for
these criteria. The results of carrying out these studies using the MissionLab toolset
are presented, con�rming its bene�ts over conventional techniques.

xix

Chapter 1

Introduction

Specifying missions for mobile robots is an arduous and error-prone process currently
undertaken only by robotics experts. Several limitations in current methodologies
conspire to create this problematic situation. Reliance on text-based traditional pro-
gramming languages requires that operators be uent programmers. Poor represen-
tations encumbered with low-level details are di�cult to create, understand, and
maintain. The intermingling of hardware-speci�c issues with mission speci�cations
impedes sharing of solutions and limits the retargetability of con�gurations. The re-
search documented in this dissertation tackles each of these problems with the goal
to spread robotics beyond the con�nes of the laboratories.

Missions are currently speci�ed for the majority of robots using either C++, LISP
or a variant. This reliance on traditional programming languages limits the ability
of robot operators to raise their thought process above the level of programming
constructs and design with high-level abstract behaviors. Neither procedural nor ob-
ject class mechanisms provide a direct �t with the data-ow paradigm and recursive
compositions so common in behavior-based robot control software. This forces the
designer to add extra code to deal with bookkeeping issues imposed by the language's
need to support general programming. Further, using traditional programming lan-
guages causes data-movement and control-ow code to dominate the design. This
intermingles and hides important details of the mission with overhead issues best
managed by a run-time system tailored for robotics. The large amount of code neces-
sary to capture a design caused by using traditional languages also introduces greater
opportunities for errors and reduces the readability of the solution. However, the
major impact of reliance on traditional programming languages is that robot opera-
tors must be able to program in the language, and this eliminates a great number of
potential users of robots.

Existing speci�cation methods interminglehardware-speci�c issues with the generic
portions of the con�guration. Since most of a con�guration can be designed inde-
pendently of hardware constraints, this intermingling is unnecessary and counter-
productive. A major design goal must be to circumscribe the areas of the con�gura-
tion impacted by hardware issues, since those reect a binding of the con�guration

1

to a particular piece of hardware. Such a partitioning simpli�es the task of retarget-
ing the con�guration to di�erent robots and promotes the free exchange of solutions
between developers.

Until now the common response to the problems associated with traditional lan-
guages has been to de�ne robot-programming speci�c variants of LISP. The Behavior
Language (Section 2.2.2) is the most popular of these languages. Its LISP-based syn-
tax is tailored to support the Subsumption Architecture on small embedded micro-
processors. A second LISP-based language is called SAUSAGES (Section 2.2.6).
Using SAUSAGES, the user speci�es the mission in the form of a graph. Each link
represents a behavior which, when executed, moves the robot from one state to an-
other. SAUSAGES requires the operator the understand the LISP syntax (i.e., nested
parentheses) in order to specify missions. However, this language does provide for a
more abstract speci�cation than the Behavior Language.

The research presented in this document presents a language tailored for describ-
ing robot con�gurations. It describes the instantiation and interconnection of behav-
iors but defers implementations of behavioral primitives to appropriate programming
languages. This allows the con�gurations to be transported to any run-time system
which supports the primitives used in the mission. Hardware bindings are made ex-
plicit and attached only through a separate binding step, after the con�guration has
been developed. This Con�guration Description Language solves the problems which
have been noted with traditional programming languages and their variants.

Merely developing a better speci�cation language is not su�cient to enable non-
programmers to create missions. A graphical programming tool which allows users
to visually create missions would empower this group to create missions without
learning the syntax and semantics of a textual programming language. A graphical
programming tool developed for the manufacturing robot domain is the Onika system
(Section 2.3.2). Onika includes a simulation system for evaluating control programs
targeted for robot arms, but it does not include support for simulating or commanding
mobile robots. Graphical program speci�cation systems also exist in other domains.
Khoros (Section 2.3.1) provides a graphical means to specify chains of image process-
ing operations. ControlShell (Section 2.3.3) is a commercial graphical programming
toolset which is used to construct complex real-time control systems.

This dissertation presents the MissionLab toolset which has been created as an
integrated development environment for robot programming. MissionLab goes far
beyond the state of the art by providing a graphical editor speci�cally tailored for
creating and visualizing multiagentmissions and supporting explicit hardware binding
and the creation of architecturally-independent designs. A multiagent simulator and
operator console allow users to deploy and evaluate con�gurations both in simulation
and on supported mobile robots from within the toolset. MissionLab was shown to be

2

a powerful design tool in usability experiments, even in the hands of people unfamiliar
with robotics and programming languages.

1.1 The Research Questions

1. How can the di�cult task of constructing robot con�gurations be

simpli�ed to allow operators to easily specify complex robot missions?

The need for a design methodology to ease the process of generating robot con-
�gurations is clear. Reactive systems are becoming both more prevalent and
more complex as they gain competence through the addition of behaviors. It
is di�cult for humans to predict what the performance will be without exper-
imentation, causing problems when the system must operate in hazardous or
unique environments. Robots are generally optimized for expected environmen-
tal conditions, requiring modi�cations when the environment changes. Current
design techniques require specifying con�gurations using traditional program-
ming languages such as C and LISP. This increases the e�ort required to modify
con�gurations and requires robot operators to be uent in such languages. A
methodology is required to formalize and automate the con�guration task if
progress is to continue. A goal of this research was to create such a methodology
and develop tools based on that methodology which empower non-programmers
to generate and evaluate con�gurations.

2. What is the best representation of a con�guration to support retar-

geting and hardware independence?

Attempting to represent con�gurations using general purpose programming lan-
guages is counter-productive. Such languages require an inordinate amount of
code to specify data movement and task scheduling issues best left to the robot
run-time system. A new language tailored to the peculiarities of robot con-
�gurations is necessary to cleanly support the recursive composition of agents
found in complex con�gurations. A goal of this research project was to identify
common characteristics of robot con�gurations and develop a theory of soci-
etal agents. With such a theory in hand describing recursive structures which
transcend individual con�gurations, a language was developed capturing these
important design patterns.

3. How can a robot mission speci�cation toolset best be evaluated as to

its usability?

It is important when tools are presented that there exist methods and proce-
dures to evaluate their usability and utility. The existing research in usability

3

analysis is generally geared for o�ce environment tasks. In these cases the test
participants clearly understand what it is they want to do; the question to be
evaluated by the test procedures is whether they are able to �gure out how
to accomplish the task using the toolset. With robotics toolsets, this simple
analysis is insu�cient. When specifying a robotics mission, what is needed is a
toolset which allows users to incrementally build a mission and to easily evaluate
their solution. Since the task performed is so di�erent from o�ce systems, the
procedures used to evaluate these systems must correspondingly be reworked.
Therefore, an important research goal was to develop criteria and experimental
procedures for evaluating robot mission speci�cation toolsets.

1.2 Research Overview

The foundation of this research is the Societal Agent theory which describes how
agents form abstract structures at various levels in a recursive fashion. It expands on
the notion of an agent developed in \The Society of Mind"[58] to extend beyond the
con�nes of an individual. It is as valid to describe a ock of geese ying in a V as
a single agent when describing their speed and heading as it is to discuss the energy
level of an individual goose or even the primitive ocking motor behavior. It is all a
matter of which level in the ock-of-geese structure is being analyzed.

The Con�guration Description Language (CDL) was developed to capture the re-
cursive composition of con�gurations in an architecture- and robot-independent fash-
ion. CDL supports a compact, exact description of individual robot con�gurations
as well as the interactions of societies of cooperating mobile robots. The language
is used to specify the con�guration of behaviors and not the implementation of be-
haviors. This allows construction of generic con�gurations which can be bound to
speci�c robots through an explicit binding step.

TheMissionLab integrated development environment was developed as part of this
research to simplify behavior-based robot mission speci�cation. MissionLab includes
an interactive designer which allows the user to graphically specify robot missions.
MissionLab is based on CDL and supports the uniform representation of components
inherent in that language. Support for explicit binding and multiple code generators
allow MissionLab to move beyond the con�nes of individual laboratories.

Using MissionLab, the di�cult task of constructing robot con�gurations can be
simpli�ed by applying an object-oriented approach to the design of the mission. The
editor is structured around the idea of recursive composition of components using
the assemblage construct. This allows building high-level components tailored for a
speci�c domain from existing behaviors. These assemblages can be re-parameterized
and used in other parts of the mission or archived for use in subsequent projects.

4

The temporal sequencing methodology is also directly supported by MissionLab.
This allows the user to partition a task into discrete operating states and create
several smaller designs which each implement a single state. This temporal divide-
and-conquer strategy �ts well with the assemblage construct, with each operating
state in the design generally mapping to a single assemblage.

A major bene�t of MissionLab is the partitioning of development tasks along
knowledge boundaries. The robot operator is able to create missions by selecting
and parameterizing behaviors from a list of high-level domain-speci�c primitives de-
veloped by support personnel knowledgeable in robotics. In turn, these assemblage
developers are supported by programmers experienced in the development of primi-
tive robot behaviors. The partitioning of the development cycle in this fashion allows
a few skilled developers to support a large number of robot operators. Further, it
allows robot operators skilled in the particular application domain to command ro-
bots without knowing programming languages or even the intricacies of assemblage
development.

1.3 Structure of the Dissertation

The dissertation explores work related to this research in Chapter 2. Speci�cation
languages similar to the Con�guration Description Language (CDL) are reviewed.
Since CDL is intended to target multiple run-time architectures, potential target
architectures are surveyed to highlight any limitations they may impose on design-
ers targeting them from CDL. Finally, graphical programming tools similar to the
con�guration designer included in MissionLab are discussed.

Chapter 3 presents the Societal Agent theory which forms the theoretical basis
for this work. This theory develops a uniform representation of societies of agents
which spans the range of complexities from individual motor behaviors to coordinated
groups of robots.

Chapter 4 presents the Con�guration Description Language used to represent
con�gurations by the MissionLab toolset. CDL is based on the Societal Agent
theory and captures its uniformity of representation in a concrete language. Complete
syntactic and semantic de�nitions of CDL are presented.

Chapter 5 presents theMissionLab toolset. Use of the graphical con�guration edi-
tor, multi-agent simulation system and multiple code generators is presented. Several
missions are developed and their execution documented to further this presentation.

Chapter 6 designs usability experiments suitable for evaluating a robot toolset,
such as MissionLab. Criteria are developed to allow rating the usability of a toolset.
Three experiments are described which allow establishing values for the usability
criteria.

5

Chapter 7 documents the usability studies completed as part of this research
to evaluate the MissionLab toolset. The experiments designed in Chapter 6 were
performed with a group of participants and the results used to establish values for
the usability criteria.

The summary and conclusions in Chapter 8 complete the body of the document.
Appendix A reproduces the handouts used in the usability experiments.

6

Chapter 2

Related Work

No work of substance is accomplished in a vacuum and this e�ort is no exception.
In this chapter we will review the body of literature relevant to this research, taking
care to highlight facets that were used as stepping stones and the shortcomings of
the existing methods which prompted this undertaking. Although it is di�cult to set
the stage for related work without �rst presenting the research which causes it to be
relevant, an early presentation of the literature has been chosen to provide context for
subsequent developments. Therefore, we now preview Chapters 4 and 5 to provide a
basis for the work selected for presentation in this chapter.

A major facet of the software developed in conjunction with this research is the
Con�guration Description Language (CDL) presented in Chapter 4. CDL is used as
the underlying representation of the robot con�gurations in the MissionLab toolset.
Therefore, in this chapter we will examine related speci�cation languages to determine
how they compare to CDL in purpose, power, and utility.

CDL will be presented as a language which allows specifying robot con�gurations
in a generic fashion with subsequent binding to particular robots and run-time ar-
chitectures (e.g., AuRA, SAUSAGES). In this chapter we will survey the important
robot architectures with an eye towards their suitability as targets for CDL. What
limitations would be imposed on designers targeting those systems from within CDL?

A visual programming tool called the Con�guration Editor is presented in Chap-
ter 5 for manipulating con�gurations speci�ed in CDL. In this chapter we will survey
other visual programming systems to facilitate later comparisons, to gain an under-
standing of the niche that the Con�guration Editor must �ll, and to position it against
the state of the art.

2.1 Related Speci�cation Languages

Since part of this research involves development of a con�guration speci�cation lan-
guage, it is important to survey existing languages which CDL attempts to displace.
Many of the target architectures which will be surveyed in Section 2.2 also include

7

their own programming language. Most of these languages have been created specif-
ically for robotic applications[11, 18], while the remainder are generally extended
versions of traditional languages[15].

CDL di�ers from these languages in several ways. First, it is architecture- and
robot-independent, which none of the others are. This allows the construction of
con�gurations which transcend individual robot constraints. Second, it incorporates
recursive combination mechanisms to facilitate information hiding and construction
of high-level primitives. Finally, it relies on explicit hardware binding to prevent
hardware issues from di�using into the behavioral design. We now examine several
of the related speci�cation languages to more closely position them against CDL.

2.1.1 REX/Gapps

The REX/Gapps architecture[36] partitions perception from action and utilizes hor-
izontal decompositions, allowing complicated perceptual processes to be shared by
multiple motor modules. REX[37] is a LISP-based language for describing situated
automata. O�-line, the REX program is compiled into a synchronous digital circuit
which can be executed to implement the speci�ed system. Gapps[38, 39] is a declara-
tive language used to specify the goal-oriented planning component of a mobile robot.
The output from the Gapps compiler is a REX program which is then compiled into
a circuit for execution. The circuit model allows semantic analysis to be performed
to formally prove run-time properties[67]. By viewing the digital elements embedded
within the circuit as implementations of logical predicates, it is possible to analyze
the epistemic properties of the network (i.e., the knowledge embedded within the
REX program). It is also possible to analyze the transfer function of the circuit to
determine performance with respect to sample environments.

Gapps is a language for specifying goals for a robot. Figure 2.1 shows an example
goal de�nition written in Gapps. This example de�nes the goal of the robot having
both the saw and the hammer simultaneously. A typical Gapps program would have
a large collection of such goals de�ned and the mission speci�cation would simply be
a expression specifying which goals are to be carried out.

Neither REX nor Gapps provides support for information hiding as does CDL
with its recursive composition of components into new components. The generated
synchronous machines must have universal applicability since failure mechanisms are
not included. Exceptions are expected to trigger higher-level processes to determine
appropriate actions.

Support for multiagents or a mechanism for capturing inter-agent communication
is not speci�ed. Methods for activating/deactivating modules as their utility changes
are also absent. Although REX can be formally analyzed, that advantage is lost

8

(defgoalr (ach (have hammer) (have saw))

(if (have hammer)

(ach have saw))

(if (have saw)

(and (maint have saw)

(ach have hammer))

(if (closer-than hammer saw)

(ach have hammer)

(ach have saw))))

Figure 2.1: De�nes a Gapps goal to possess a hammer and a saw simulta-
neously (After [39], page 43). The ach function de�nes goals to
be achieved, and the maint function de�nes a goal to maintain a
particular state. The have perceptual predicate tests if the robot
is holding the object.

because it requires a detailed environmental model, which is unreasonable to expect
to exist for all but the most trivial cases.

2.1.2 RS

The Robot Schemas (RS) architecture[50] is based on the port automata model of
computation using synchronous communication. Primitive sensorimotor behaviors
are called basic schemas, schemas without input ports represent sensors, and actu-
ators are modeled as schemas without output ports. A group of basic schemas can
be interconnected using communication links to form an assemblage. An assemblage
is a network of schemas which can be treated as a single schema in subsequent con-
structions. The assemblage mechanism facilitates information hiding, modularity,
and incremental development. An example RS statement[50] is shown below.

Jmovei;x()(x) = [Jposi()(x);Jseti;x(x)(u);Jmoti(u)()]
C;E:

The example describes a simple position servo using the sensor Jpos, the com-
putation schema Jset, and the actuator Jmot. Jposi()(x) has no inputs, a single
output x, and this instantiation has been parameterized to read the position of joint
i. Jmoti(u)() has a single input u, no outputs, and has been parameterized to control
the motor for joint i. Jseti;x(x)(u) is the computational connection between sensing
and action for joint i. It takes the input x, computes a transfer function to drive the
joint location to the target value x, and outputs the corresponding motor signal as
the output u. The square brackets represent the assemblage construct. The three

9

schemas are interconnected using the network C (Jpos output ! Jset input, and
Jset output ! Jmot input). The port equivalence map E speci�es how the Jmove

ports map to the assemblage member's ports. In this case, the output of Jpos is the
output for the assemblage. The assemblage Jmove can be treated as a single schema
performing the servo task. When invoked for a speci�c joint i, the target position is
set to x, and the output of Jmove is the current location of the joint.

The computational model that the RS language embodies is rigorously de�ned,
facilitating formal descriptions of complex robotic systems in RS. Unfortunately, the
synchronous computational model of RS is not the most natural for mobile robotics
since the real world is both asynchronous and noisy. RS can describe such systems, but
at a loss of clarity in the description. RS does not provide mechanisms for expressing
coordination between multiple robots cooperating on a task. This research expands
on the concept of recursive composition of sensorimotor behaviors apparent here in
the assemblage construct.

2.1.3 The Robot Independent Programming Language

The Robot Independent Programming Environment (RIPE) project at Sandia Labs[57]
uses C++ classes to implement primitive operators. These classes are the task-level
primitives which constitute the Robot Independent Programming Language (RIPL).
To use RIPL, the designer writes a C++ program using those classes which are rel-
evant to the project. This system is easily extended and specialized as new devices
are made available.

The major drawback of such a system is that designers must be uent C++ pro-
grammers in order to use RIPL. This rather loosely de�ned language also su�ers
from the e�ects of intermingling the mission descriptions with the primitive imple-
mentations. There is no attempt to maintain a generic description of the mission and
retargeting di�erent hardware will require signi�cant e�ort.

2.1.4 The SmartyCat Agent Language

The SmartyCat Agent Language (SAL) developed at Grumman[47] is based on the
Common LISP Object System[7]. SAL is similar to CDL in drawing heavily from
the Robot Schemas (RS) architecture[50] and the Society of Mind theory[58]. In
SAL a con�guration is a data-ow graph of port automata nodes connected with
communication links. The Agencies construction provides support for hierarchical
speci�cation of complex objects. A graphical user interface for constructing the data-
ow graphs is mentioned in [47], although no description of its functionality was
located.

10

SAL co-mingles the con�guration with the speci�cation of the primitives and
buries hardware bindings within the implementations of individual primitives. Co-
ordination is distributed within the primitives, making it di�cult to understand and
modify policies. These limitations combine to impair the ability of the designer to
enhance and debug con�gurations as well as retarget designs for di�erent robots.

2.1.5 Discrete Event Systems (DES) Theory

The theory of Discrete Event Systems(DES)[65, 64] models systems as �nite state au-
tomata where inputs are in the form of observations (perceptual information extracted
by sensors) and outputs are termed actions (actuator commands). The perception-
action cycle is broken into discrete events where an event is an abrupt transition in
the system state, either in response to an action or observation. DES simpli�es some
problems with analyzing robot controllers by making the robot/world interactions
discrete. Several researchers have begun using DES techniques to analyze situated
behavior-based robot controllers.

RS-L3[49] is a subset of RS which has been implemented as a robot programming
language. Experiments using RS-L3 have been conducted to control an intelligent
robotic workcell which groups sub-assemblies into kits for traditional robots to assem-
ble. RS-L3 is able to capture the speci�cation of the robot control program as well as
situational expectations, allowing reasoning over the system as a whole. Since RS-L3
uses a synchronous model of computation, it is able to use the analysis methodologies
developed for DES. In this case, an evolve operator is de�ned which enumerates the
set of possible world states which could be achieved by executing the program (the
scnset). The scnset can then be analyzed to answer questions about the e�ectiveness
of the control program situated in the speci�ed environment. The problem with this
method is that it requires explicit statement of how all relevant world properties can
change both asynchronously and in response to actions performed by the robot.

An example is presented of a robot arm making one of four types of kits based
on which parts arrive on a conveyor. This is a vastly more constrained domain
than a mobile robot ranging over an unstructured environment. It seems impractical
to extend this work to general unstructured environments because of the resulting
representational explosion.

A small team architecture for multiagent robotic systems[42] has been developed
using DES theory. Behaviors are speci�ed as FSA's by enumeration of their operat-
ing states and the set of events causing transitions from one state to the next. By
describing everything in this terminology it is possible to prove that the resulting
system is controllable (any operating state of the system can be reached) using DES
techniques. Thus, DES theory provides analysis tools for complex systems.

11

2.1.6 Prepositional Linear Temporal Logic

A declarative representation for cooperating robots[72] has been developed in the
distributed AI community. The authors concentrate on the pursuit problem where
multiple cooperating blue agents attempt to surround and thus capture the red agent.
The exercise takes place on a �nite playing �eld delineated with a square grid. A
language based on Prepositional Linear Temporal Logic (PLTL)[16] was developed
for representing problems in this domain. The state of the world, the agents, and
their capabilities are each described in PLTL. A simulation environment was created
which reads these descriptions and simulates the pursuit problem to determine a
winner. This allows changing agent capabilities and then checking the impact of the
modi�cations.

The example system is a frame-based construction built on top of the Cyc[46]
database. This leads to a declarative representation where, for example, the percep-
tual capabilities of a robot could be represented as:

1: G
�
jB0

x � Rxj+ jB
0

y �Ryj � 2
�
! (B0:Rx = Rx) ^ (B

0:Ry = Ry)

2: G (B0:B0

x = B0

x)

3: G
�
B0:B0

y = B0

y

�

Line 1 states that if agent B0 is within two units of the red agent R, then B0 will
know exactly the x; y location of the red agent. Lines 2 and 3 state that the robot
will always know its true location.

The PLTL research is striving to provide tools for describing distributed AI sys-
tems, including agent reasoning and communication abilities. The goal is to provide
tools for describing systems of cooperating agents solving problems in a distributed
manner.

Conversely, CDL is concerned with behavior-based approaches and emergent com-
putation. It does not model the reasoning abilities of agents because behavior-based
agents don't reason, they react. What CDL represents are the basic sensorimotor
behaviors along with their associated coordination processes. However, the represen-
tational language PLTL provides formalisms which may prove useful in future e�orts.

2.1.7 Multivalued Logic Integration of Planning and Control

The use of multivalued logic provides a mechanism capable of supporting formal
analysis of the process of combining behaviors. Techniques are presented[68] for for-
mally describing what happens when behaviors are combined in various fashions.
Each behavior has a particular context with which it is associated where the context
circumscribes the set of environmental states for which the behavior is applicable.

12

When the robot operates within the behavior's context, the behavior can knowledge-
ably rank possible actions as to their desirability with respect to the behavior's goals.
Outside of this context the behavior is indi�erent and provides no information.

Given that the context can be de�ned (a di�cult problem in general), multivalued
logic provides mechanisms to determine the context of the resulting behavioral as-
semblage. Three combination operators are considered: Conjunction, Blending, and
Chaining. Conjunction creates a new object whose context is the intersection of the
conjoined behaviors' contexts. This relates to perceptual fusion, in which a more
focused behavior is created using multiple perceptual inputs. Blending is cooperative
coordination where the context is the union of the components. Chaining is sequenced
coordination where the second behavior gains control when it becomes applicable.

An implementation of the multivalued logic architecture is used to control the
robot Flakey where the control program takes the form of a fuzzy logic rule-based
system. For example, the following rules implement hall following with obstacle
avoidance:

1: IF obstacle THEN Keep-O� (ObstacleGrid)

2: IF at (Corridor1) ^ :obstacle THEN Follow(Corridor1)

Rule 1 says that if an obstacle is detected, then the Keep-Off behavior will cause
the robot to avoid the area associated with the obstacle. Rule 2 says that if the robot
is at Corridor1, and there are no obstacles present, then the Follow behavior will
move the robot along the corridor. Recalling that these are fuzzy rules a blending
of behaviors results based on how certain the system is about the obstacle. That is,
both rules (and their behaviors) will be active when the value of obstacle is between
0 and 1.

Multivalued logic provides formalisms capable of describing the results of behav-
ioral composition (coordination), allowing formal analysis of con�gurations as to their
performance. This application of multivalued logic to planning requires an explicit
high-�delity model of the environment to support the analysis.

2.1.8 Petri nets

Petri nets are speci�ed with a set of places (nodes), a set of transitions between
nodes, a set of input conditions under which each event can occur, and the e�ects of
the occurrence of each output event. Each place is allowed to contain zero or more
tokens, where a token is an arbitrary piece of information. The petri net functions
by moving tokens from one place to another in response to input events.

A three layer hierarchical architecture has been developed which uses petri nets
as the middle layer[45, 77]. This \coordination" layer receives sequences of tasks to
be executed from the higher layer and is responsible for coordinating the execution of
the tasks by the bottom layer. Figure 2.2 shows a graphical representation of a petri

13

net used to coordinate the execution of a vision algorithm to locate a particular spot
in an image.

..

. ..
.

req_
operationX

������ ������

����

start_find_spot end_find_spotfind_spot_active

SI I O SO

VC_ready

VC_start VC_avail VC_finish

VC_done

do_find_spot

do_operationX

req_
find_spot

Figure 2.2: Graphical representation of a petri net to coordinate a vi-
sion algorithm which �nds a particular spot in an image
(After [45], Figure 5).

The petri net is able to capture the unsynchronized movement of data in complex
control structures. This ability to represent data movements between �nite state au-
tomata is useful for describing coordination procedures. Petri nets are also useful for
describing how coordination procedures are related by providing a common represen-
tation for varied coordination algorithms. However, petri nets do not support the
recursive construction of components and thus eliminate hierarchical designs.

2.1.9 A Language For Action (ALFA)

ALFA[20, 18, 19] (A Language For Action), with its roots in the subsumption archi-
tecture, is used to describe behavior-based robots using a LISP-like syntax. It uses
a data ow architecture consisting of named computational modules connected with
a network of named communication channels. Channels are limited to transmitting
one analog (pulse width modulated) voltage which in practice limits the information
content that channels can transmit to small integer values (0-255 or perhaps 0-1023).

14

Channels combine inputs from several modules by using the minimum input value,
the maximum input value, the average of all input values, or the value from the high-
est priority input as the output value of the channel. The particular combination
algorithm to be used is speci�ed in the channel de�nition. Modules are parallelizable
because the computation of each command is disjoint. Outputs to channels are set
with a command of the form (DRIVE channel name expression) and input channels
are referenced by name. For example, (DRIVE chan 1 chan 2) is a null process which
passes the value of the input channel chan 2 to the output channel chan 1.

ALFA has been used to specify the reactive execution component of a hybrid
architecture (ATLANTIS). In this usage, higher-level control is injected by setting
up channels which read their inputs from blackboard (global) variables or by a higher-
level process actively enabling and disabling modules as their usefulness changes.

ALFA is more of an operating system and design methodology than just a language
for describing mobile robot behaviors. It is a good example of how higher-level control
can be injected into a reactive execution component of a hybrid architecture. The
use of blackboard variables as perceptual inputs from a planner allows construction
of a persistent con�guration for the reactive component where sequenced coordina-
tion activates major subsets of the con�guration based on inputs from a deliberative
planner.

2.2 Potential Target Architectures

When one begins turning a machine into a taskable robot, one of the �rst decisions
made is the choice of a run-time architecture. Unfortunately, the current situation
is that robots are generally delivered from the factory with only minimal software
support. Even more disturbing is that, in response to this shortcoming in support,
nearly every user develops their own run-time architecture. The resulting fragmen-
tation severely limits the exchange of software modules and the ability of users to
collaborate on solutions.

This confusion has led to a major goal of this research: development of a generic
speci�cation language which is robot and run-time architecture independent. Being
able to specify generic con�gurations which can later be bound to one of several
supported architectures will allow users to raise the design process above hardware
and architecture issues.

There exists a large body of literature describing architectures for behavior-based
robotics. We now examine several of the better known robot architectures with an
eye towards ones which could be supported as targets under this scheme.

15

2.2.1 The AuRA architecture

The Autonomous Robot Architecture (AuRA)[3, 2] is the platform in common use
in the Georgia Tech mobile robot lab and is the system from which the MissionLab

toolset grew. Therefore, it is natural that AuRA was the �rst architecture targeted
by the CDL compiler and that an AuRA-based simulation system is incorporated into
MissionLab, allowing a close interaction between speci�cation and evaluation when
that architecture is targeted.

The AuRA architecture is a hybrid system which includes planner, navigator, and
pilot components spanning the range from deliberative to reactive execution. The
pilot is the low-level reactive execution module which grounds the other modules in
physical devices. This behavior-based module is the target of the MissionLab system
when AuRA is the target architecture.

AuRA uses a vector-based approach to inter-behavior communication where motor
behaviors generate a vector denoting the direction and speed they would like the
vehicle to travel. Cooperative coordination occurs by summing the vectors to get a
composite vector for the group and competitive coordination occurs by ignoring the
desires of losing behaviors.

In con�gurations generated by MissionLab, we rely on the human to replace the
deliberative system. In this case, the operator crafts a suitable behavioral assem-
blage which can be instantiated and executed to complete the desired task. These
con�gurations commonly utilize temporally sequenced coordination to encode the op-
erator's knowledge of appropriate performance changes based on run-time perceptual
feedback.

2.2.2 Subsumption architecture

The subsumption architecture[9] is probably the most widely known behavior-based
mobile robot architecture. Sensations arriving on channels from sensors are processed
by behaviors which transmit actions on their output channels to actuators for exe-
cution. Prioritization of behaviors is handled through gating operators on input and
output data streams. A behavior may control the operation of lower priority behav-
iors by either overwriting their normal input data streams or overwriting the data
they output with its own values. Incremental development is handled by adding new
layers of competence on top of existing layers in an evolutionary way. Each layer can
consist of several individual behaviors and normally embodies a single higher order
skill, such as Avoid obstacles, Follow walls, or Exploration.

The subsumption architecture has been used to construct complicated mobile
robots[10] as well as societies of robots[55, 56]. However, the subsumption architec-
ture remains more of a design philosophy than a formal speci�cation. The Behavior

16

Language[11] is the LISP-based parallel programming language used to specify sub-
sumption con�gurations. Subsumption is rather restrictive in that all coordination
occurs via prioritized competition, precluding any cooperative interaction between
behaviors. Subsumption is prone to becoming unwieldy and di�cult to debug as new
layers are added, since there are no restrictions on how upper layers interact with
lower layers. There is no mechanism to support information hiding since the layering
scheme is transparent. In general, it is not clear that layering is always the best
partitioning of control. Mechanisms for clustering and managing groups of behaviors
within layers are helpful (perhaps even necessary) as the task complexity grows. It is
possible to describe subsumption-style con�gurations within the language we present,
but they would need to be restricted to using only competitive coordination.

S S
actuatorssensors

behavior 3

behavior 2

behavior 1

Figure 2.3: Example Colony Architecture Network.

A variant of the subsumption architecture is the colony architecture[14]. This is an
important target since it has also been used to drive non-trivial robots. The colony
architecture modi�es subsumption in several ways: First, it removes the ability of
behaviors to overwrite the inputs of other nodes and relies exclusively on inhibition
at outputs using suppression nodes. Second, messages are transmitted continuously
on connections while a given command persists, instead of being latched and presumed
active until overwritten, allowing suppressed behaviors to regain control as soon as
the inhibition is removed. As in the subsumption architecture, individual modules
are interconnected into a hierarchy using a �xed priority arbitration network. When
two modules are both generating output values, the one with the higher priority
will suppress the output of the lower priority module. Figure 2.3 shows an example
network where S is a suppression node.

17

The colony architecture moves subsumption towards a data ow architecture by
removing the input inhibition nodes and constantly outputting messages instead of
latching state information. The colony architecture also relies exclusively on priority-
based competitive coordination and could similarly be targeted as a supported run-
time architecture.

2.2.3 Maes' action-selection architecture

Maes' use of action-selection mechanisms for behavior coordination[54, 53] employs a
spreading activation mechanism to reactively control situated agents. Individual be-
haviors are termed competence modules after Minsky's Society of Mind theory[58] and
represent simple computational agents, encapsulating a particular expertise. Since
multiple modules are likely executable at each instant, they must compete for control
of the system. The coin of the realm is a module's level of activation, and the module
with the highest activation gains control.

Individual agents are connected via activation and inhibition links into a com-
plex graph. Agents which directly compete under similar circumstances will inhibit
each other in proportion to their level of activation. For example, pick up block and
put down block agents would try to inhibit each other to ensure that the active agent
can �nish its task without interruption.

Sensors provide a continuous source of activation from the environment which then
ows outward through the behavior graph. In turn, agents will pass on a fraction
of the activation they are receiving to those agents which can most help make them
applicable (satisfy their preconditions). For example, a pick up block agent might pass
some of its activation to behaviors which would move the system towards a block.

Activation also ows from the current set of system goals provided from a higher-
level process to those agents which can most closely achieve the desired actions.
Agents receive activation proportional to how applicable they are in the current sit-
uation. Ones having their preconditions met will receive the most activation, while
others receive less based on how much environmental change must occur before they
can execute. This spreading of activation both from goals and the current environ-
mental situation tends to maximize the activation level of agents which are both
currently applicable and useful in achieving the system goals.

A large problem with this architecture is how appropriate activation and inhibi-
tion links are created between agents. It is proposed in [54] that a second network
be used to con�gure the primary one, functioning as a meta-level planner. However,
this merely raises the problem up one level, leaving the issue of how the meta-layer is
constructed. Spreading activation implements a distributed competitive coordination
mechanism. Behavior-based systems decompose tasks into small manageable behav-
iors, leaving the major task when constructing a con�guration as the selection and

18

parameterization of the coordination mechanisms. Therefore, a goal for an architec-
ture should be the localization and compartmentalization of behavioral coordination.
Using this yardstick, spreading activation falls short.

Spreading activation is interesting to consider as a target architecture since it is
so di�erent from other behavior-based architectures. However, since it makes such
a strong commitment to the spreading activation coordination mechanism, it is not
very exible as a target. It would be useful to consider ways to support spreading
activation coordination in a generic sense, but it is unclear how one would generate
compatible con�gurations using other styles of coordination.

2.2.4 ALLIANCE: The Cooperative Robot Architecture

The subsumption architecture has been used as the basis of the ALLIANCE architec-
ture for controlling a society of heterogeneous robots[63, 60, 61, 62]. Individual agents
are guided by subsumption-based control programs using both sensor readings and
information received via communication with other robots. Each agent is \sel�sh" in
that it cares only about its own goals and also \lazy" since it is happy to let another
robot work on its tasks as long as the tasks are being accomplished. These simple
rules allow the robots to cooperate and not interfere with each other while achieving
objectives in unstructured environments.

This architecture relies on specialized motivational nodes added to the basic sub-
sumption architecture which selectively enable certain behavior sets when appropriate.
Each behavior set contains the capabilities to accomplish a distinct high-level task
such as clean oor or empty garbage. Behavior sets are de�ned as conicting and the
motivational nodes are required to ensure that only the most relevant behavior set is
active at any time.

The use of the specialized motivational nodes to enable particular assemblages
adds a new type of competitive coordination to the basic subsumption architecture.
A weakness of this scheme is that there is no way for two or more behavior sets to be
active at the same time. Some behavior sets are not mutually exclusive (for example,
clean oor and search for key) and the ability to activate more than one behavior set
would be bene�cial.

The main distinction between this architecture and subsumption is the addition of
the motivational nodes. This coordination adds the ability to turn large chunks of the
con�guration on and o� as they gain and loose applicability. As a target architecture,
this makes it more exible than plain subsumption.

19

2.2.5 The Distributed Architecture for Mobile Navigation

The Distributed Architecture for Mobile Navigation (DAMN) is used as the behavioral
arbiter on the ARPA Unmanned Ground Vehicles (UGV's). DAMN uses a fuzzy logic
approach to cooperative coordination. Each behavior has a certain number of votes
available and is able to allocate them to the available actions. The action with the
most votes is undertaken. DAMN grew out of the Fine Grained Alternative to the
Subsumption Architecture[66].

Limitations of the subsumption architecture are that it excludes cooperative coor-
dination mechanisms and internalizes state. Since all coordination occurs via priority-
based inhibition nodes, it is not possible for two behaviors to simultaneously con-
tribute to the actions of the robot. One of the major tenets of the subsumption
architecture philosophy is that existing layers of competence are not modi�ed and
continue to function unchanged when new layers are added. Since higher layers must
inhibit lower layers to gain control of the system, designers of new layers must have
intimate knowledge of the lower levels that they are subsuming, to ensure inhibition
only occurs when appropriate. Also, the new level may require access to internal
state information within lower level nodes to monitor its applicability. This can re-
quire rewriting the lower levels to make the required state information externally
available.

The �ne-grained alternative[66] to the subsumption architecture addresses these
problems by converting behaviors into a collection of simple transfer functions which
are not allowed to contain state information. This transforms a subsumption archi-
tecture into a connectionist architecture, where a new layer is added as a cluster of
nodes. The network is highly structured, with each node potentially computing a
di�erent transfer function. The only restriction is that the inputs and output at each
node are real values in the range �1::1.

There are several advantages to this architecture over subsumption: Cooperative
coordination can now easily occur since the transfer functions operate on all the inputs
and are not binary operators like the suppressor nodes in subsumption. All state
information is external so new clusters can easily access needed information. A fuzzy
arbiter is used to merge the demands of active behaviors, allowing for cooperation as
opposed to subsumption's reliance on priority-based competition.

DAMN does not �t well as a target architecture, but it is important nonetheless
since it is used as the behavior arbiter on the ARPA Unmanned Ground Vehicles
(UGV's)[25]. However, the target architecture for the UGV systems will be at the
level of the SAUSAGES interface (described in Section 2.2.6) with the DAMN arbiter
functioning as the behavior coordination mechanism.

20

2.2.6 SAUSAGES

The System for AUtonomous Speci�cation, Acquisition, Generation, and Execu-
tion of Schemata (SAUSAGES)[27, 26] provides a behavior con�guration speci�ca-
tion language as well as run-time execution and monitoring support. At run time,
SAUSAGES functions as the robot pilot, executing relevant behaviors, monitoring for
failures, and interacting with higher-level processes. A SAUSAGES program is rem-
iniscent of a owchart-like graph, where behaviors are speci�ed as operations which,
when executed, move along a link. After executing a link, the link informs the ex-
ecutor which new link to execute, allowing the ow of control to follow a complex
directed graph. This ow of control over the links is implementing sequenced coor-
dination. Since each link can be constructed from sub-links which run in parallel, a
form of cooperative coordination is also available to the designer.

What SAUSAGES does not provide is abstraction. CDL facilitates abstraction
through recursive composition of components into new components. A variant of
SAUSAGES called MRPL is used in the ARPA UGV's. SAUSAGES is supported
as a target architecture from CDL. This allows testing con�gurations constructed
with this system on the SAUSAGES simulation system available from CMU and
comparison with code developed for the ARPA UGV's as well as close comparisons
with the existing techniques in the UGV community.

2.2.7 The Procedural Reasoning System

The Procedural Reasoning System (PRS)[21] is a general purpose reasoning system
which is able to exploit opportunism as the robot moves through the environment.
PRS consists of a knowledge base which maintains the current beliefs about the world,
a set of active goals waiting to be achieved, a set of action plans which purport to
achieve goals, and a Short Term Memory (STM) containing those plans which have
been chosen for application. The control program adds plans to STM relevant to the
active goals with respect to the current environmental feedback and executes the plans
in STM. The UM-PRS system[44, 35] is a newer implementation of PRS generated
at the University of Michigan for use as a robot mission planning system. It was
recoded in C++ to increase speed and to support deployment on mobile robots.

UM-PRS is important since it has been considered for inclusion in the UGV ar-
chitecture as the behavioral controller. In such an application the action plans used
as the planner's primitives would be behavioral assemblages. Likely candidates are
behaviors like follow road and cross country travel. Using this strategy, UM-PRS
becomes a planner-based coordination module which at run time selects which as-
semblages should be active. Based on the point of view of planning as coordination,
UM-PRS is not so much a target architecture for this research as it is a possible
component to be incorporated.

21

2.2.8 Reactive Action Packages (RAPs)

Reactive Action Packages[17] (RAPs) are mechanisms to specify reactive programs.
Each RAP encapsulates a single action or competency the reactive robot controller
is capable of performing, such as Move down hall or Load into truck. The RAPs are
intended to be used as a set of primitive actions by a deliberative planner which
chooses a RAP to activate at each step as part of a plan to ful�ll the system goals.
Several di�erent methods (strategies) for accomplishing an action will exist within a
given RAP. At execution time, one of the methods is chosen as most applicable based
on precondition tests. The individual methods are allowed to fail, but are required
to cognizantly report any failures. The requirement that methods be self-monitoring
allows the RAP to try di�erent methods before the plan itself possibly fails and causes
re-planning.

The concept of a RAP matches somewhat with the notion of an assemblage.
Each encapsulates various sets of primitive behaviors which are coordinated by some
mechanism at run time. RAPs are presented as a way of grouping action packages
and specifying coordination between methods which is consistent with assemblages.

RAPs is a di�cult target architecture because the coordination mechanisms are
distributed throughout the behaviors. Each RAP coordinates itself until failure or
success when the planner regains control. Further study is necessary to determine
what class of con�gurations could be deployed on this architecture from within CDL.

2.2.9 Supervenience

Supervenience[73] is a theory of abstraction de�ning a hierarchy where higher lev-
els are more abstract with respect to their \distance from the world". Lower levels
represent the world in greater detail and perhaps more correctly while higher levels
represent the world more abstractly, possibly allowing erroneous beliefs to exist. The
supervenience architecture is de�ned as a non-monotonic representation to allow cop-
ing with these contradictions. The supervenience architecture is targeted for use in
dynamic-world planners.

The Abstraction-Partitioned Evaluator (APE) is one example system based on
the supervenience architecture. The author is careful to state that APE is not the
supervenience architecture, but is instead a particular implementation based on the
supervenience ideas. APE is a �ve level hierarchical architecture implemented in
common LISP. Inter-level communication is allowed only between adjacent levels.
Communication within APE is accomplished with a blackboard architecture. Moni-
toring daemons can be attached to the blackboard and trigger on arbitrary changes.
The operators contain traditional planner features such as add-lists and delete-lists
and the procedural part of each operator is encoded as a Petri net.

22

The most abstract level is called Conventional and represents the system's knowl-
edge of social norms and rules; that is, those things which are true based only on
convention. The Causal level encodes the system's knowledge of cause and e�ect.
The Temporal level can reason about time and contains explicit temporal relations.
The Spatial level organizes perceptual information based on spatial relationships.
Spatial reasoning, such as path planning, also resides at this level. The lowest level
is named Perceptual/Manual and encapsulates virtual sensors and virtual actuators.
Information represented at this level is in the form of individual percepts such as
current location and actuator commands (e.g., move three feet forward).

The author implemented a simulated robot using APE which operates within a
simulated home. Several tasks are demonstrated to highlight the capabilities of the
system. The HomeBot is able to cope with unexpected emergencies unrelated to the
currently executing task. If an unexpected obstacle is discovered while the robot is
moving along a planned route, and the obstacle is subsequently removed during the
replanning process, the robot immediately halts replanning and resumes execution of
the previous plan.

Supervenience is the formalization of the process of partitioning a control structure
into abstraction levels. It provides guidance which may prove useful to users of the
proposed con�guration designer: Information containing similar levels of abstraction
should be grouped together, and the layers should be ordered such that more exact
descriptions are lower.

The APE architecture is a deliberative dynamic-world planner and does not lend
itself to targeting from CDL. However, it might be possible to integrate supervenience
in some form with CDL as a deliberative planner-based coordination mechanism.

2.2.10 Behavioral Architecture for Robot Tasks (BART)

BART[40] (Behavioral Architecture for Robot Tasks) is an architecture and program-
ming language for specifying and controlling behavior-based mobile robots. BART
was designed to allow large, rapid changes in active behaviors. A situation where this
is necessary is a patrol robot which hears an unexpected noise, at which time it should
switch to a stealth mode so as not to divulge its own position while it investigates
the noise.

To facilitate such changes Task Groups aggregate individual behaviors into groups
based on semantic characteristics such as noisy-tasks and self-preservation-tasks. No-
tice that a given behavior may belong to many task groups. A Task Class provides
a speci�cation for an individual behavior of which the system is capable, such as
move-on-path. Each task class may have zero or more instances active at any time.
However, task instances only execute when they enter the current task mix. The
Current Task Mix represents those currently executing task instances. The Focus

23

of Attention Manager (FOAM) is responsible for determining which members of the
current task mix should be active at each step. To perform this function, each task
determines its own utility in the current situation. The FOAM is then able to se-
lect the most relevant tasks without intimate knowledge of each task's capabilities.
The LISP-based BART programming language is used to specify the individual tasks.
Multi-agent control is distributed and explicit. For example, a particular robot may
be told to go into formation with another robot.

The interesting facet of the BART architecture with respect to this research is its
support for high-level operator input provided by the semantic task groups. These
groupings allow operators to specify control in the form of high-level operating con-
cepts instead of low level details. The idea of semantic grouping is a powerful one
reected in the recursive constructions within CDL. A particular assemblage such as
forage represents a semantic grouping of behaviors useful to accomplish the forage
task. These semantically meaningful primitives simplify the creation and mainte-
nance of con�gurations as well as promote high-level operator input. Unfortunately,
it appears that BART was never fully developed.

2.3 Graphical Programming Tools

One of the primary goals of this research project was to empower non-programmers
to specify robot missions. The development of a graphical con�guration editor was
chosen as the best way to accomplish this task. This allows users to add icons to a
workspace and connect them into a speci�cation for a robot mission mission without
knowing how the underlying system works.

There are several other visual programming tools of note available and a survey
here will attempt to highlight the similarities and di�erences between the MissionLab

con�guration editor and these systems.

2.3.1 Khoros

The inspiration for the graphical construction of con�gurations in MissionLab was
the Khoros[76] image processing workbench. Khoros is a powerful system for graph-
ically constructing and running image processing tasks from a collection of primitive
operators. The user selects items from a library of procedures and places them on
the work area as icons (called glyphs). Connecting dataows between the glyphs
completes construction of the \program".

Figure 2.4 shows the Cantata graphical workbench from the Khoros system. A
program has been constructed which (reading left to right) loads an image �le, runs
a histogram equalization on the image, segments the image using a dynamic thresh-
olding algorithm, and then displays the resulting line segments. Once constructed,

24

Figure 2.4: Cantata graphical workbench with a program to execute a his-
togram equalization and segmentation of an image before dis-
playing it.

25

the program can be executed by clicking on the run button and the results will be
displayed within a popup window. Each glyph in a Khoros program represents a
distinct program which is instantiated as a separate UNIX process at run time.

Visual programming using the data-ow paradigm is a powerful way of describing
and presenting image processing algorithms. This idea has been extended to allow
the recursive speci�cation of robot control programs in the MissionLab toolset.

2.3.2 Onika

Probably the graphical programming environmentmost relevant to this research is the
Onika system[74, 22] from CMU. Onika is optimized for rapid graphical construction
of control programs for robot arms. It is tightly integrated with the Chimera real-time
operating system, also from CMU. This integration allows Onika to start, monitor,
and terminate Chimera tasks based on the operator's manipulation of graphical icons
on the desktop.

Programs are constructed by placing a linear sequence of icons using a puzzle
piece metaphor. Compatibilities between objects are represented on the input and
output side of tasks via a di�erent joint shape and color. This physically delimits
which tasks can follow each other and is a very good metaphor, especially for casual
users. Once programs are constructed, they can be saved to a library for later retrieval
and deployment, or executed immediately. Figure 2.5 shows the engineer's view of
a robot arm control program loaded into the Onika system. Figure 2.6 shows the
programs available for users as puzzle piece icons. Figure 2.7 shows a completed user
application.

Onika is network-based and allows components to be included from libraries phys-
ically located on remote systems. These symbolic links are then traversed when the
con�guration is deployed to locate the run-time modules. This facilitates code sharing
by allowing the development process to be dispersed.

Onika includes a simulation system for evaluating control programs targeted for
robot arms, but it does not include support for simulating or commanding mobile
robots. The presentation style is reminiscent of electronic schematic diagrams. Onika
modules are allowedmultiple output connections while CDL uses a functional notation
where each module has only a single output.

2.3.3 ControlShell

ControlShell[70] is a commercial graphical programming toolset from Real-Time In-
novations which is used to construct complex real-time systems. It is similar to
the Engineering level of Onika (e.g., Figure 2.5) and presents the same electronic
schematic-like look and feel. A data-ow editor is used to graphically select and place

26

Figure 2.5: The engineer's view of the Onika graphical programming system
with a program loaded for controlling a robot arm.
(www.cs.cmu.edu/afs/cs.cmu.edu/project/chimera/www/logos/Onika sim conf.gif)

components into the workspace, and connect them into control systems. The code
generator and operating system components allow deploying on embedded systems
supporting VxWorks. The state programming editor supports graphical speci�cation
of state transition diagrams which complete the desired tasks.

ControlShell has several features important for embedded systems: It uses small
grained concurrency where modules executing at the same rate are grouped into
a single process. It supports transparent network communications. The run-time
system preserves module names, allowing dynamic binding at run time.

27

Figure 2.6: The available programs in Onika, shown as puzzle piece icons for
the user.
(www.cs.cmu.edu/afs/cs.cmu.edu/project/chimera/www/logos/Onika upper start.gif)

However, ControlShell does not support recursive construction of components.
There exists a single layer of primitive components, a second layer of so called transi-
tion modules constructed from the primitives, and �nally the state diagram denoting
the sequencing of operating states. This lack of support for recursive construction
limits reuse and information hiding in complicated designs.

28

Figure 2.7: A completed user application in Onika which causes the robot
arm to move to a user de�ned point in space, home the controller,
and then move to a second point.
(www.cs.cmu.edu/afs/cs.cmu.edu/project/chimera/www/logos/Onika full appl.gif)

ControlShell is a commercial package targeted towards hard real-time control ap-
plications. This is compared to MissionLab which is targeted to the mobile robot
community. ControlShell does not support explicit hardware binding or support any
run-time architectures but its own.

2.3.4 GI Joe Graphical FSA Editor

The GI Joe toolset[8] allows graphical construction and visualization of �nite state
automata. These state machines can then be exported to a format used by COSPAN
for analysis. COSPAN[28] is a speci�cation language and veri�cation system for
state-based control systems. The speci�cation language is called S/R and the anal-
ysis tool is called COSPAN. The analysis of an FSA in COSPAN determines if the
language accepted by the FSA includes the language that the user proposes for test.
This allows automatic veri�cation of designs against the corresponding requirements
speci�cations.

Figure 2.8 is a S/R de�nition of a simple ip/op state machine. When the
current state is OFF and the select variable has the value on, it moves to the ON state.
Correspondingly, when the current state is ON and the select variable has the value
off, it moves to the OFF state.

29

proc ALT /* Flip/Flop */

selvar #:(off,on)

stvar $:(OFF,ON)

init OFF

trans

OFF {off,on}

-> ON : #=on

-> OFF : else;

ON {off,on}

-> OFF : #=off

-> ON : else;

end

Figure 2.8: De�nition of a ip/op using COSPAN S/R (After [8], Figure 1).

Figure 2.9 is the graphical representation of the ip/op shown in Figure 2.8 as
it would be constructed in the GI Joe editor. From this graphical representation the
COSPAN S/R de�nition is generated automatically.

OFF ON
off

on

Figure 2.9: The graphical representation of 2.8 in GI Joe

(After [8], Figure 2).

GI Joe allows running the COSPAN veri�cation system against the FSA's con-
structed using the editor to check their correctness. It also is able to generate C
code for the state machine itself, although there is no provision for specifying the
primitives active in each state from within the system. Overall, GI Joe and COSPAN
provide support for FSA's but little else. The MissionLab toolset goes far beyond
these capabilities in providing users with an integrated development environment.

30

2.3.5 Mechanical design compiler

A mechanical design compiler has been created[79, 78] which, given schematic speci�-
cations and a utility function, will generate a design for a mechanical system meeting
those goals. The output is in the form of catalog numbers for the selected components
which combine to create a design optimal with respect to the utility function. Tested
domains include mechanical and hydraulic power transmission units.

motors pumps

valves cylinders load

valves cylinders load

Figure 2.10: Example schematic for a hydraulic power train.

An example[78] will show the application of the compiler. The user would in-
teractively create the schematic for a hydraulic power train, shown in Figure 2.10,
using a graphical interface. The mechanical design compiler concentrates on search-
ing catalogs for components which can be connected in a consistent manner to meet
the design speci�cations with competing designs judged relative to the user's utility
function.

This work is interesting since it demonstrates a form of automatic design. In this
case, a description of the high-level structure of a system along with a speci�cation
of the utility function are su�cient for the system to propose a mapping of available
building blocks onto the original design, maximizing the utility function. In the
example, this involves looking up part numbers for speci�c devices and ensuring that
they all function together correctly.

2.4 Summary

An examination of the work related to any new research project is always necessary
to properly position the contributions against the state of the art. However, it is
just as necessary to acknowledge the work of others which proved fruitful as building
blocks and stepping stones in the new research. In this chapter we have attempted
to mention and provide insight into the existing work which was and is important to
this research.

31

There are many architectures in common use for developing robot control software.
We have surveyed the most popular architectures to attempt to evaluate which would
be suitable target architectures for the CDL compiler. Of the architectures mentioned,
AuRA and SAUSAGES were chosen as the �rst two target architectures. AuRA was
a natural choice due to its use at Georgia Tech and the author's familiarity with its
reactive execution module. SAUSAGES became important for researchers in the lab
when it was chosen as the basis of the language used to describe missions in the ARPA
UGV robots. Since the author was working on the UGV project while completing this
research, it became natural to look to SAUSAGES as a second target architecture.
The availability of a SAUSAGES simulation system also inuenced this choice.

The strengths and weaknesses of the other popular speci�cation languages which
CDL is competing were also presented. Of the group, CDL is the only one to support
the recursive construction of reusable components which may transcend individual
robots. Of course, it is di�cult to justify claims related to the suitability of a language
without an understanding of the target domain. As the next chapters unfold, the
points made regarding each of the languages should gain more credence.

The existing graphical programming tools were surveyed and found to consist pri-
marily of special purpose tools targeted to narrow domains. The Onika system is the
closest competitor to CDL. It has been developed to support the exible manufac-
turing domain and does not provide speci�c support for mobile robots.

In the �nal analysis, there are many useful building blocks scattered through the
literature. TheMissionLab toolset is the �rst to combine these ideas into a multiagent
mission speci�cation system usable by non-programmers. Basing the con�guration
editor on a language which supports explicit hardware binding and recursive construc-
tions extends the capabilities of the users while reducing the complexity presented to
the casual user.

32

Chapter 3

The Societal Agent

Thinking of societal agents conjures up mental images of herds of bu�alo roaming
the plains, ocks of geese ying south for the winter, and ant colonies with each
ant seemingly performing exactly the task that will provide the maximum utility to
the colony as a whole. Human examples tend more towards hierarchies, with the
prime examples being large corporations and military organizations. In each of these
example societies, the components are physical objects such as animals or humans.

Using Minsky's powerful \Society of Mind" representation, each bu�alo, goose,
ant, and human can be thought of as possessing a behavior-based controller consisting
of a society of agents. This leads to the view of a ock of geese as a huge society
with thousands of interacting agents. Within this society, nature has drawn boxes
around collections of agents and said, \These agents physically comprise a goose."
Recognizing each individual primitive behavior as an autonomous agent is generally
intuitive. However, it is sometimes a struggle to accept the description of coordinated
societies of these agents as cohesive agents in their own right. These higher-level, more
complex agents are as concrete as the primitive behavioral agents.

This abstraction is equally apparent in military organizations. When commanders
refer to their command they don't speak of individuals, but the unit abstractions. A
company commander might ask for \the strength of Bravo platoon" or \the location
of Alpha platoon", but rarely refers to a particular soldier in one of those platoons.
The hierarchical structure of military units is intentional. A squad consists of speci�c
members who live and train together as a group until they form the cohesive unit
called a squad. The squad has speci�c commands that it can respond to such as
\deploy at location Zulu" or \attack objective Victor". Squads are intended to be as
interchangeable as possible, in that they present the same responses to a command
as any other would. All of this serves to abstract the group of soldiers into a \squad",
a high-level agent which is as cohesive and concrete as an individual soldier.

As a second example of complex agents consider the well-documented sexual be-
havior of the three-spined stickleback[75] shown in Figure 3.1. As the schematic
shows, the sexual behavior involves a complex temporal chain of behaviors which
transcends the individual male and female �sh. The arrival of a female showing the

33

\ready to spawn" display signs triggers the male to do a zig-zag dance, which trig-
gers the female to swim towards the male, which triggers the male to lead her to
the nest, and so on. The individual behaviors such as the zig-zag dance, follow, and
show-nest are in fact individual agents within the Societal Agent representation.
A coordination operation transcending the individual �sh uses these primitive agents
as operators to create the sexual behavior apparent in this example.

Male

Zig-zag dance

Leads to nest

Shows entrance

Trembles

Female

Appears

Courts

Follows

Enters nest

Lays eggs

Fertilizes eggs

Figure 3.1: Sexual behavior of the three-spined stickleback (after [75]).

Now consider how one would specify a multiagent robotic society capable of ex-
hibiting this mating behavior. A design can be implemented and tested to determine
its validity, as opposed to explanations of biological systems which are di�cult to
validate. Figure 3.2 shows a schematic of the behaviors and coordination operators
active during the stickleback mating behavior. Level a shows the representation of
the reproductive agent. While this behavior is dominant, the two �sh are functioning
as a single coherent agent, much as one would speak of a herd of bu�alo or a marching
band as a cohesive unit having substance, direction, and purpose. This is decomposed
in Level b to show the two individuals. Level c shows the various operating states
present in each of the two �sh to support the mating ritual.

The linear chain of behaviors shown in Figure 3.1 can be represented as a Finite
State Automaton (FSA) using the methods of Temporal Sequencing [4]. Tempo-
ral sequencing formalizes methods for partitioning a mission into discrete operating
states and describing the transitions between states. The FSA is partitioned into
the relevant male and female portions and distributed within the respective robots

34

(�sh). However, the abstraction remains valid that a linear chain of behaviors tran-
scending an individual �sh is sequenced using perceptual triggers. In robotic systems,
a separate process may implement the FSA, perhaps even executing on a computer
physically remote from the robots, or it may be distributed similarly to the biologi-
cal solution. In either case, the implementation choice does not impact the abstract
description of the con�guration.

3.1 The Atomic Agent

The speci�cation of the components, connections, and structure of the control system
for a group of robots will be called the con�guration. A con�guration consists of a
collection of active components (agents), inter-agent communication links (channels),
and a data-ow graph describing the structure of the con�guration created from the
agents and channels. Con�gurations can be either free or bound to a speci�c archi-
tecture and/or robot. The agent is the basic unit of computation in the con�guration
with agents asynchronously responding to stimuli (arrival of input values) by gener-
ating a response (transmission of an output value). There are two types of agents:
atomic and assemblages. The atomic agents are parameterized instances of primitive
behaviors while assemblages are coordinated societies of agents which function as a
new cohesive agent. Agent assemblages are de�ned in Section 3.3 below.

The term agent has been overused in the literature but seems to most closely
convey the essence of what is intended in this instance. Agent will be used to de-
note a distinct entity capable of exhibiting a behavioral response to stimulus. This
de�nition is intentionally broad to allow application to a spectrum of objects ranging
from simple feature-extracting perceptual modules, perceptual-motor behaviors, com-
plex motor skill assemblages, individual robots, and coordinated societies of multiple
robots.

Primitive behaviors are computable functions implemented in some convenient
programming language, and serve as the con�guration building blocks. An example
of a primitive behavior is a move-to-goal function which, given the goal location,
computes a desired movement vector to bring the robot closer to the goal. Figure 3.3
shows a schematic of a simple atomic agent parameterized with the con�guration
parameters parm1; parm2; : : : ; parmn.

To construct a formal de�nition of primitive behaviors let f be a function of n
variables, (v1; v2; : : : ; vn), computing a single output value, y. De�ne V1; V2; : : : ; Vn
as the set of input variables (either discrete or continuous). For f to be a suitable
function for a primitive behavior it is required to be computable, meaning that it is
de�ned on all n-tuples created from the Cartesian product V1�V2�: : :�Vn. Otherwise,
there will exist input sets which cause f to generate indeterminate operation of the
agent. Equation 3.1 formalizes this requirement of computable behaviors.

35

Reproductive Agent

(Male, Female mating)

dance
zig-zag

Lead

Show
nest

Tremble

Fertilize

Arrive

Court

nest
Enter

Follow

eggs
Lay

FemaleMale

Male Female

(a)

(b)

(c)

Figure 3.2: Schematic of three-spined stickleback mating behavior showing
three levels of abstraction. Level a represents the mating behav-
ior as a single agent, level b shows the two individual �sh, and
level c shows the various operating states required to create the
mating behavior.

36

...

Motor
Behavior

Agent

parm

parm
1

2

n

outputinputs

parm

Figure 3.3: Schematic diagram of an atomic agent.

y = f (v1; v2; : : : ; vm) j f is de�ned 8 (v1 � v2 � : : :� vm) (3.1)

Equation 3.2 speci�es that any entity capable of stimulus-response behavior can
be treated as a distinct agent.

Agent � Behavior (Stimulus) (3.2)

This leads to the question of whether a computable function exhibits such behavior.
In answer, one can easily view the inputs to the function as the stimulus and the
computed output from this stimulus as the response.

De�nition 1

Agent � f (v1; v2; : : : ; vm) j 9vi 2 [v1; v2; : : : ; vm] where vi varies temporally

De�nition 1 speci�es that a situated computable function is in fact an agent.
The restriction that the function be situated requires that the inputs are not simple
constants but, in fact, dynamic dataows providing temporally varying stimuli over
the lifetime of the agent in response to environmental changes. This de�nition ex-
pands the de�nition of an agent presented in \The Society of Mind"[58, pages 23,326]
to encompass all situated computable functions. This is a controversial assertion in
some circles, but clearly follows from the previous discussion.

37

3.2 Primitive Behavior Classes

To support the construction of atomic agents from primitive behaviors, a function
de�nition will be provided for each module class. Primitive behaviors have been
partitioned into four classes based on the actions they perform: sensor, actuator,
perceptual, and motor.

3.2.1 Sensors

Sensors are hardware dependent and are not present in the free con�guration. Instead,
input binding points are used as place holders to mark where the sensor device drivers
will be connected during the hardware binding process. Input binding points are
represented as a source for the con�guration dataows. Formally, an input binding
point is represented as generating a stream of sensations S where each sensation
s1; s2; : : : 2 S represents one sampling event. Sensations are generated at a rate
dictated by the capabilities of the particular sensor to which it is bound and the
demands of the perceptual modules using the sensation stream. Figure 3.4 shows a
schematic diagram of an input binding point bound to a sensor.

SensationsSensor fS
s s2 ...,1,

Figure 3.4: A schematic diagram of an input binding point. One is present
for each physical sensor in the robot con�guration.

The same input binding point can be represented using functional notation as the
function fS () which generates the sensation si at time t. Equation 3.3 presents this
functional notation.

si = fS (t) (3.3)

3.2.2 Perceptual Modules

Perceptual modules function as virtual sensors[30, 29] which extract semantically
meaningful features from one or more sensation streams and generate as output a

38

stream of features (individual percepts). Viewing perceptual modules as virtual sen-
sors facilitates hardware-independent perception and task-oriented perceptual pro-
cessing relevant to the current needs of the con�guration.

This generic view of a perceptual module also supports a�ordance-based[24, 23]
implementations. In this case, the features extracted from the environment would
each be a�ordances for the robot, allowing it to generate some response. The theory
of a�ordances contends that perception extracts from the environment not geometric
information, but information about what actions the environment a�ords the ob-
server. For example, perception for a sit down behavior would locate an object that
has the a�ordance of sittable as a target object upon which to rest.

Formally, a perceptual module extracts features from one or more sensation streams
S1; S2; : : : ; Sn and generates a stream of features P where each p1; p2; : : : 2 P repre-
sents one percept. Features are generated at a rate dictated by the capabilities of the
sensors and the demands of the modules using the feature stream. Each pi is made
available (via broadcast, shared memory, etc.) to all modules using the perceptual
module. Figure 3.5 shows a schematic diagram of a perceptual module consuming
sensations to generate a feature stream.

s s2 ...,1,

s s2 ...,1,

s s2 ...,1,

Sensations

Sensations

Sensations

2 ...,1,p p...

Features

Perception
Module

fP

Figure 3.5: Schematic diagram of a perceptual module. There will exist
many perceptual modules in a con�guration, each tailored to the
speci�c needs of one or more motor modules which consume the
output feature stream.

The perceptual module can also be represented as a function fP over the task-
speci�c input sensation stream state vector S1; S2; : : : ; Sn where each sensation stream

39

Si is generated by a sensor module. Equation 3.4 denotes this functional representa-
tion.

pi = fP (s1; s2; : : : ; sn) (3.4)

3.2.3 Motor Modules

Motor modules consume one or more feature streams (perceptual inputs) to generate
an action stream (a sequence of actions for the robot to perform). Formally, a motor
module M uses information from one or more feature streams P1; P2; : : : ; Pn to gen-
erate an action ai at time t. Figure 3.6 shows a schematic diagram of a motor module
consuming perceptual features to generate a stream of actions to be performed.

2 ...,1,p p Features 2 ...,1,Actions a a
Motor

Module

f M

Figure 3.6: Schematic diagram of a motor module. There will exist many
motor modules in a con�guration, each closely coupled with a
perceptual module. These pairs of perceptual and motor modules
are called sensorimotor behaviors and form the basis for stimulus
response actions within the con�guration.

The motor module can also be represented as a function fM () over the speci�c
perceptual feature stream state vector P1; P2; : : : ; Pn where each feature stream Pi is
generated by a perceptual module. Equation 3.5 formalizes this view of the motor
behaviors.

at = fM(p1; p2; : : : ; pn) (3.5)

3.2.4 Actuators

Similar to sensors, actuators are not present in the free con�guration. Instead, output
binding points are used to mark where the actuator will be connected during binding.
The output binding point is represented as a data-ow sink in the con�guration.
Formally, an output binding point is represented as a consumer of a stream of actions
A where each a1; a2; : : : 2 A represents one action to be performed. Figure 3.7 shows
a schematic diagram of an output binding point bound to an actuator.

40

Actions2 ...,1,a a Af Actuator

Figure 3.7: A schematic diagram of an output binding point. One is present
for each actuator in the robot con�guration.

An output binding point can also be represented as function fA which at time
t consumes the action ai while attempting to make the changes to the environment
speci�ed in the action. Equation 3.6 presents this functional notation.

fA (ai) =) Environmental Changes (3.6)

3.3 The Assemblage Agent

An assemblage is actually a coordinated society of agents which are treated as a new
coherent agent. For example, an agent can be constructed from a society of other
agents using a suitable coordination operator, C as follows:

Agent = C (Agent1;Agent2; : : : ;Agenti)

When an assemblage agent is constructed, subordination occurs with one or more
agents placed subordinate to the coordination operator. The construction creates a
new assemblage agent which encapsulates the subordinates, thereby concealing them
from other agents and forcing all interactions with the subordinates to be initiated
via the coordination operator. Figure 3.8 shows a schematic diagram for a simple
con�guration. Each box represents an agent, with nested boxes denoting agents
subordinate to the surrounding agent. In the example, the agents are labeled with
either Ai for atomic and assemblage agents and Cj for coordination operators.

The assemblage construction is denoted functionally. For example, in Figure 3.8,
the case of A5 created by making A4 subordinate to the coordinator C2 is denoted
C2 (A4). Equation 3.7 provides a complete expansion of the construction of Figure 3.8.

C5 (C2 (C1 (A1; A2)) ; C4 (C3 (A6; A7) ; A8)) (3.7)

3.4 Classes of Coordination Modules

A coordination module modi�es the activities of the group of agents it is managing,
exploiting the strengths of each to execute a speci�c task. This intervention may

41

C2

A6 A7 A8

A9

A10

C3

C4

C5A11

A1 A2

C1A4

A5

Figure 3.8: Schematic diagram of a con�guration.

range from none (the null case) to explicit control of every action of the members.
Figure 3.9 shows a taxonomy of the coordination mechanisms presented in this section.
Notice that coordination is partitioned at the top level into state-based and continuous
classes.

State-Based

Competitive Temporal Sequencing

Continuous

Coordination Classes

Cooperative

Figure 3.9: Classes of Coordination Modules.

State-based coordination mechanisms partition the agents they are managing into
distinct groups, allowing only a single group representing a subset of the total agents
to be active at any one time. This behavior allows the operating system to suspend
execution and perhaps de-instantiate all but the active group of agents to conserve
resources. Temporally sequenced coordination is the prime example of state-based
mechanisms.

Continuous coordination mechanisms utilize results from all the agents they are
managing to generate the desired output. This behavior requires that all the agents
remain instantiated and executing. Cooperative coordination, which merges the out-
puts from each individual agent into a single value, is perhaps the best example of
continuous coordination.

42

Each of the leaf nodes in Figure 3.9 represent distinct types of coordination and
will be explained below.

3.4.1 Competition

The competition style of coordination selects a distinguished subset of the society
to activate based on some metric. The process of determining this collection of
active members (arbitration) can use a variety of techniques including spreading ac-
tivation, assigning �xed priorities, or using relevancy metrics. Architectures using
competition mechanisms include spreading activation nets[54], and the subsumption
architecture[9].

The colony architecture[14] is a variant of the subsumption architecture which
tends to simplify the behavioral networks (Section 2.2.2). As in the subsumption
architecture, individual modules are interconnected into a hierarchy using a �xed
priority arbitration network. Figure 3.10 shows a simple colony architecture network
with three behaviors and two suppression nodes (labeled S). The design is that if
behavior 3 has something to contribute, then it overwrites any outputs generated by
behaviors 1 and 2. Otherwise, behavior 2 is given a chance to control the robot if it
determines it is applicable, and �nally, behavior 1 will output commands as a default
behavior.

S S
actuatorssensors

behavior 3

behavior 2

behavior 1

Figure 3.10: Example Colony Architecture Network.

Figure 3.11 shows a schematic of a behavior and suppression node in the colony
architecture. Each behavior consists of a policy which generates control commands,
and an applicability predicate which enables the output of the policy when it is per-
ceived relevant. The suppression node passes on the high priority input whenever it
is valid and falls back to passing the low priority input otherwise.

43

Applicability
Predicate

Policy

Behavior

Gate
Suppression Node

Low Priority Link Output

High Priority Link

Figure 3.11: Example Colony Architecture Behavior and Suppression Node.

44

Consider how the simple colony architecture network shown in Figure 3.10 would
be represented in the Societal Agent architecture. First, de�ne the functions com-
puting the three behavior policies as policy1, policy2, and policy3 which transform
input values to outputs. Next, de�ne the three boolean applicability predicates as
the functions valid1, valid2, and valid3 which determine if the corresponding policies
are relevant and likely to generate useful values or not. These six functions would
need to be implemented by the user to actually compute the expected algorithms; in
this construction they are simply referenced by name. Equation 3.8 de�nes a suitable
suppression function, suppress, for use in implementing the network, where hi is the
value of the function when the boolean ag hi valid signals that the high priority
input is valid and low is the default value of the function.

suppress(hi; hi valid; low) =

(
hi if hi valid
low otherwise

(3.8)

Using Equation 3.8 twice allows speci�cation of Figure 3.10 functionally as shown in
Equation 3.9.

suppress(policy3; valid3; suppress(policy2; valid2; policy1)) (3.9)

Notice that, based on the de�nition of suppress in Equation 3.8, policy3 correctly
dominates when it is valid, otherwise policy2 dominates policy1 when it has valid data
and policy1 is only allowed to generate an output when both of the other behaviors
are not generating useful data.

3.4.2 Temporal Sequencing

Temporal sequencing is a state-based coordination mechanism which uses a Finite
State Automaton (FSA)[34, 1] to select one of several possible operating states based
on the current state, the transition function, and perceptual triggers. Each state in
the FSA denotes a particular member agent which is dominant when that state is
active. This type of coordination allows the group to use the most relevant members
based on current processing needs and environmental conditions.

Equation 3.10 provides a formal de�nition of temporal sequencing using the coor-
dination function fseq. This function uses the FSA � containing the set of perceptual
triggers along with the set of agents [a1; a2; : : : ; am] to select the speci�c agent to
activate based on the current state in the FSA.

fseq (a1; a2; : : : ; am; �) = ai j state i is active in � (3.10)

Without loss of generality, assume that there is a one-to-one mapping of states in
the FSA to the list of members [a1; a2; : : : ; am], with agent ai active when the FSA is
operating in state i. The FSA � is speci�ed by the quadruple[34] (Q; �; q0; F) with

45

� Q the set of states, fq0; q1; : : : ; qmg where each qi is mapped to ai.

� � the transition function mapping the current state (qi) to the next state qi+1
using inputs from the perceptual triggers is generally represented in tabular
form.

� q0 2 Q is the start state.

� F � Q is the set of accepting states which signal completion of the sensorimotor
task.

detect_can

have_can

drop_can

drop_can

Put_can

Start

detect_basket

Look_for_

Look_for_

Pick_up_can

basket

can

Figure 3.12: An FSA for a trash collecting robot.

Consider speci�cation of a con�guration implementing a janitorial task for a team
of robots (e.g., 1994 AAAI mobile robot competition[5]). Speci�cally, each robot
should wander around looking for empty soda cans, pick them up, wander around
looking for a recycling basket, and then place the can into the basket. Figure 3.12 is
a graphical representation of an FSA for such a robotic trash collector. The circles
represent the possible operating states with the label indicating the assemblage agent
active during that state. The arcs are labeled with the perceptual triggers causing the
transitions, where relevant. Unlabeled transitions leave the state immediately after
the assemblage executes the �rst time. There are no accepting states since during the
competition the robots ran until they were manually turned o�.

The FSA in Figure 3.12 would be represented by the quadruple
(fStart; Look for can; P ick up can;Look for basket; Put cang; �; Start; ;)

46

Table 3.1: Tabular representation of � function for Figure 3.12 FSA.

State normal terminal error

Start Look for can Look for can ;

Look for can Look for can Pick up can ;

Pick up can Pick up can Look for basket Look for can
Look for basket Look for basket Put can Pick up can
Put can Put can Look for can ;

The transition function � for the trash collecting FSA is speci�ed in Table 3.1. Power-
ing up in the start state, the robot begins to wander, looking for a suitable soda can,
operating in the Look for can state. When a can is perceived, the Pick up can state
is activated and, if the can is successfully acquired, a transition to the Look for basket
state occurs. Loss of the can in either of these states causes the FSA to fall back
to the previous state and attempt recovery. When a recycling basket is located, the
Put can state becomes active and the can is placed in the basket. A transition back
to the Look for can state repeats the process.

3.4.3 Cooperation

The cooperative class of coordination manages the actions of members of the society
to present the appearance and utility of a single coherent agent. The vector sum-
mation in the AuRA[3, 2] architecture is such a mechanism. The AuRA gain-based
cooperative cooperation operator can be represented functionally as a weighted vec-
tor summation, as shown in Equation 3.11. In this case, the coordination function
f scales each of the input vectors vi by its corresponding weight (gain) wi before
computing the vector sum of these scaled inputs as the output for the group.

f (~v1; ~v2; : : : ; ~vn; w1; w2; : : : ; wn) =
~X

k=1;n

(~vk � wk) (3.11)

Figure 3.13 shows a schematic example of gain-based cooperation in AuRA. All of
the behaviors Avoid obstacles, Move to goal, Noise, and Probe are active and generate
a two dimensional vector denoting the direction and speed they would like the robot
to move. This representation allows a simple vector summation process to compute
a composite vector which represents the group's behavioral consensus.

47

Move to goal

Avoid obstacles

Noise

Probe

Individual vectors

Combined vector

Figure 3.13: Schematic diagram of vector summation in AuRA.

3.5 Overview of Binding

Binding is covered in depth in Sections 4.2 and 5.2. However, a brief overview here
will provide a better perspective on why physical entities (robots) were not mentioned
in the preceding discussions.

The design process speci�es a free con�guration using abstract data types and
behavior speci�cations. Instances of this con�guration may then be bound to a par-
ticular architecture and speci�c robot hardware. Using these bound con�gurations,
executables for the chosen target architecture and hardware may then be generated
automatically.

Architectural binding selects a particular implementation library and code gen-
erator. This binding replaces the abstract data types with architecture-speci�c im-
plementations. Additional con�guration parameters may be added to behaviors to
control architecture-speci�c features.

Hardware binding attaches sensor and actuator device drivers to the input and
output binding points used in the free con�guration. These devices will add con�gu-
ration parameters to control device-speci�c features.

It is important that the notion of an agent in the free con�guration remain devoid
of hardware limitations so it can be mapped to robots with disparate functionality.
For example, one particular binding of a con�guration may attach the perceptual
agents to separate robots to implement distributed perception where another uses
a single, complex robot. If the free con�guration contains any explicit partitioning
into physical objects exibility has been lost and there exist societies to which the
con�guration can no longer be mapped.

48

3.6 Summary

The \Society of Mind"[58] develops a particularly appealing behavior-based model
of intelligence where the overt behavior of the system emerges from the complex
interactions of a multitude of simple agents. This model �ts naturally with the work
in behavior-based robotics where the controller is clearly separable from the vehicle.
This representation shows that societies of robot vehicles should simply comprise a
new level in the hierarchical description of the societies of agents comprising each
robot.

The Societal Agent representation has been developed which formalizes this
viewpoint. Two types of agents are de�ned: instantiations of primitive behaviors,
and coordinated assemblages of other agents. This recursive construction captures
the speci�cation of con�gurations ranging in complexity from simple motor behaviors
to complex interacting societies of autonomous robots. Coordination processes which
serve to group agents into societies are partitioned into state-based and continuous
classes. State-based coordination implies that only the agents which are members
of the active state are actually instantiated. Continuous coordination mechanisms
attempt to merge the outputs from all agents into some meaningful policy for the
group.

The power of this architecture is the uniformity of its recursive descriptions of
complex systems and its hardware and architecture independence. Con�gurations
are constructed and manipulated without commitment to hardware, architecture,
or speci�c implementations of behaviors. A binding step creates instances of free
con�gurations bound to particular architectures and robots. Making the binding
step explicit facilitates retargeting and reuse of con�guration components.

49

50

Chapter 4

The Con�guration Description

Language

Of MissionLab

Experimental Evaluation

The Societal Agent

The Configuration Description Language

The MissionLab Toolset

Conceptual Theory

Implementation

Architectual Specification

Figure 4.1: The research components.

As shown in Figure 4.1, the next step after developing the Societal Agent theory
(Chapter 3) is to mold it into a concrete speci�cation presented in the form of a lan-
guage. The Con�guration Description Language (CDL) captures the critical uniform
representation of recursively de�ned agents developed in the Societal Agent theory.
CDL supports the speci�cation of architecturally-independent con�gurations which
are not couched in the terms of a particular robot architecture. It is an agent-based
language which encourages the construction of new agents from coordinated collec-
tions of existing agents. These new agents are treated as atomic objects with the
same stature as all other agents available to the system designer. The recursively

51

constructed con�gurations created using this process faithfully follow the Societal
Agent theory.

To support the construction of generic con�gurations and thereby the ability to
target disparate robot run-time architectures, hardware bindings are separately and
explicitly represented only when a CDL con�guration is deployed on particular de-
vices. Raising generic con�gurations above run-time constraints ensures maximum
code reuse opportunities by minimizing machine dependencies.

Mechanisms for implementing the individual software primitives which ground
the recursive constructions are architecture-dependent and reside below the scope of
a CDL representation. CDL's strict partitioning of the implementation of primitives
from the con�guration of those primitives allows the mission speci�cation task to be
decoupled from the implementation of primitive behaviors. For our purposes it is
su�cient to be assured that a suitable collection of primitives is available and that
each supported robot run-time architecture can utilize some subset of this collection.
CDL supports mechanisms for describing the interfaces to such primitives so they are
available for use. The task for the con�guration designer is to take these building
blocks and describe how they are to be combined and deployed to perform a particular
mission. The use of explicit hardware bindings simpli�es the task of retargeting an
existing con�guration to a new vehicle.

4.1 Overview of CDL

CDL is used to specify the instantiation and coordination of primitives and not their
implementation. Therefore, each of the primitives must have a CDL de�nition which
speci�es its programming interface. For example, a primitive which adds two numbers
and returns their result might have a CDL de�nition such as

defPrimitive integer Add (integer A, integer B) ;

This de�nes the primitive Add which takes two integer inputs A and B and outputs
an integer.

An agent can be instantiated from the Add primitive just by referencing it, as in

Add (A = f3g;B = f5g) ;

This statement creates an instance of the Add primitive and assigns the constant
initializer 3 to the input A and 5 to the input B. Although the implementation of
Add is not speci�ed, we expect that the output of the agent will be 8. Notice from
this example that parameters are speci�ed by name and passed by value in CDL.
These features support tight syntax checking and eliminate side e�ects. All constant
initializer strings are surrounded in f g brackets to simplify parsing.

52

The previous statement created an anonymous (unnamed) agent. CDL uses a
functional notation to specify recursive construction of objects and the only mecha-
nism for extracting the output value from such an agent is to embed the invocation on
the right-hand side of an assignment statement using standard functional notation.
For example, this statement creates two nested anonymous agents where the input
parameter A for the outermost one gets the output value 8 from the innermost one
and then adds 1 to it.

Add (A = Add (A = f3g;B = f5g) ;B = f1g) ; (4.1)

Although powerful, this nesting can become cumbersome when carried to great
depths. It also prevents the output value from an agent to be shared by multiple
consumers. However, if an agent is given a name the output value can be referenced
using that name. This partitions the speci�cation of the agent from its usage and
allows the output value to be used in multiple places. Creating a named agent is
accomplished using the instAgent keyword.

instAgent myAgent from Add (A = f3g;B = f5g) ;

Now other agents can reference the output of myAgent by name.

Add (A = myAgent;B = f1g) ;

is equivalent to the earlier nested agents declaration. Notice the uniformity with
usage of the in-line anonymous agents.

It is important to be aware that each agent instantiated from a particular primitive
is a unique entity, disjoint from all other instantiations of the primitive. When data
values must be distributed to multiple consumers the named agent mechanism must
be used to ensure that the same process is providing the data to all consumers.

An important feature of CDL is the support for recursive construction of assem-
blages. An assemblage is a coordinated society of agents which can be treated exactly
the same as a primitive behavior. A common situation is for a designer to spend time
building and debugging a con�guration which completes a single high-level task such
as traveling down a hallway or chasing a moving target. Once completed, this con�g-
uration should be archived to a library as a new high-level assemblage for later reuse.
CDL provides a simple mechanism for converting a complex agent instantiation to an
assemblage which can later be instantiated.

In CDL assemblages are created using the defAgent keyword. Consider, for ex-
ample, Statement 4.1 which demonstrated the nesting process. We can turn that
agent into an assemblage as follows:

defAgent Add8 from Add(A = Add (A = f3g;B = f5g) ;B = f^ Valg);

53

Notice the use of the f^ Valg deferral operator to push up a parameter to the
level of the new assemblage de�nition. This mechanism allows the designer to provide
values for those parameters which are truly internal to the new construction while
making relevant parameters visible to the user. In this case the value of input B is
deferred and also renamed to Val. This creates an assemblage which has an interface
equivalent to the following primitive de�nition. Agents can be instantiated from this
assemblage in exactly the same manner as from a true primitive.

defPrimitive integer Add8 (integer Val) ;

When an agent is instantiated from the assemblage the value assigned to Val will
replace the deferral operator, and is the value assigned to input B.

This completes our cursory overview of the usage of CDL. There are many syn-
tactic constructions related to de�ning the operators, binding points, and data types
which have yet to be explained. Some of these will be presented in the next section
during development of the example con�guration and the remainder when the full
language is presented.

4.1.1 Example Janitor Con�guration

The use of CDL is further demonstrated here by constructing an example robot
con�guration for the cleanup the o�ce (or janitor) task using three robots. This task
is similar to the 1994 AAAI mobile robot competition[5] where the robots retrieved
soda cans and placed them near wastebaskets.

detect_can

have_can

drop_can

drop_can

Put_can

Start

detect_basket

Look_for_

Look_for_

Pick_up_can

basket

can

Figure 4.2: FSA for a trash collecting robot (cleanup agent).

54

Figure 4.3: Three trash collecting robots from AAAI94[5].

Reconsider the trash collecting state-transition diagram Figure 3.12 from Sec-
tion 3.4.2 reproduced in Figure 4.2. Let's call this the cleanup agent. During the
actual AAAI competition a similar cleanup agent was deployed on each of the three
vehicles shown in Figure 4.3 to retrieve soda cans and place them in wastebaskets1.
We will use this cleanup agent to construct a janitor con�guration similar to the
one used in the AAAI competition.

The CDL description for the top level of the generic janitor con�guration shown
in Figure 4.4 represents the three cleanup robots as a single janitor entity. We will
now examine each statement of the janitor con�guration.

Statement 1 de�nes a prototype cleanup behavior. The prototype creates a place-
holder which allows building a particular level in the con�guration before moving
down to de�ne the implementation of the cleanup behavior as either an assemblage
or a primitive. This is an important feature when building con�gurations in a top-
down manner. The defProto keyword is not yet supported in MissionLab and only
a single built-in prototype behavior is available. It is used in the example to demon-
strate its utility. Conversion of MissionLab to support the defProto syntax will
expand the ability of designers to work in a top-down fashion using the toolset.

The prototype cleanup agent in Statement 1 generates an output of type movement.
The movement data type is used to send motion commands to control motion of the
robot and contains the desired change in heading and speed.

Statements 2, 3 and 4 instantiate three agents based on the cleanup behavior.
Since this con�guration is being constructed from the top down and it is known a

1Due to hardware limitations the robots in Figure 4.3 only placed the cans near the wastebaskets.

55

/* De�ne cleanup behavior as a prototype */

1. defProto movement cleanup();

/* Instantiate three cleanup agents */

2. instAgent Io from cleanup();

3. instAgent Ganymede from cleanup();

4. instAgent Callisto from cleanup();

/* Create an uncoordinated janitor society */

5. instAgent janitor from IndependentSociety(

Agent[A]=Io,

Agent[B]=Ganymede,

Agent[C]=Callisto);

/* janitor agent is basis of con�guration */

6. janitor;

Figure 4.4: Partial CDL description of multiagent janitor con�guration.
Note that comments are bounded by /* */ and that line numbers
were added to allow reference to particular statements and are
not part of CDL.

priori that it will control three robots, an early commitment to a three agent society
is made in these statements.

Statement 5 creates a society of three of the cleanup agents and gives it the
name janitor. It also introduces new notation which requires explanation. CDL
partitions the primitive behaviors from the operators used to coordinate them. This
helps to keep both the behaviors and operators independent and understandable. In
Statement 5, IndependentSociety is a coordination operator which can be de�ned as
follows:

defOperator movement IndependentSociety CONTINUOUSstyle(list integer Agent);

This de�nes the IndependentSociety operator as coordinating a list of agents. The
CONTINUOUSstyle keyword means that the operator is not state-based and that the
output will be a function of the instantaneous inputs. This provides information to
the CDL compiler allowing it to generate more e�cient code. The list keyword
de�nes the input parameter as a list of Agent entries. Assignments to lists use the
[] brackets to denote the index, in this case A, B, and C are used for the indices.
These only matter when the list consists of two or more inputs which must be kept
in correspondence. The IndependentSociety operator is implemented to have no

56

coordinative e�ect on the individual robots in Figure 4.3, allowing them to operate
independently.

Statement 6 speci�es that the janitor society is the top level in the con�guration.
This extra step is necessary since some or all of the preceding statements could be
placed in libraries and this reference would cause their linkage. This completes the
high-level design of the janitor con�guration.

Figure 4.5: Screen snapshot of the cleanupFSA in the Con�guration Editor.
See Section 5.1.2 for a description of the editor.

The next step in the development cycle is to de�ne an implementation for the
cleanup prototype speci�ed in Statement 1 of Figure 4.4. Because the cleaning task is
state-based, it was decided to implement cleanup using an FSA and a state-transition
diagram of the solution was presented in Figure 3.12. To implement the cleanup

behavior, this diagram was entered graphically using the MissionLab con�guration
editor (which will be presented in Chapter 5). A screen snapshot of the FSA in

57

the editor is shown in Figure 4.5. The con�guration editor will be described in
Section 5.1.2.

/* De�ne the FSA coordination operator */

1. defOperator movement FSA STATEstyle(

list movement states, list boolean triggers);

/* Instantiate the cleanup agent from the FSA operator */

2. instAgent cleanup from FSA(

/* De�ne which agent will be active in each state */

2a. states[Start] = Idle(),

2b. states[LookForCan] = Explore(),

2c. states[MoveToCan] = MoveTo(objects = f^ g, class = Can),

2d. states[PickUpCan] = PickUp(objects = f^ g, class = Can),

2e. states[LookForBasket] = Explore(objects = f^ g),
2f. states[MoveToBasket] = MoveTo(objects = f^ g, class = Basket),

2g. states[PutCan] = PutCan(),

/* De�ne the transitions out of each state */

2h. triggers[Start] = if [true] Trigger LookForCan,

2i. triggers[LookForCan] = if [DetectObject(objects = f^ g, class = Can)]

Trigger MoveToCan,

2j. triggers[MoveToCan] = if [Near(objects = f^ g, class = Can)] Trigger PickUpCan,

2k. triggers[MoveToCan] = if [Not(A=DetectObject(objects = f^ g, class = Can))]

Trigger LookForCan,

2l. triggers[PickUpCan] = if [HaveCan()] Trigger LookForBasket,

2m. triggers[PickUpCan] = if [Not(A=HaveCan())] Trigger MoveToCan,

2n. triggers[LookForBasket] = if [DetectObject(objects = f^ g, class = Basket)]

Trigger MoveToBasket,

2o. triggers[LookForBasket] = if [Not(A=HaveCan())] Trigger PickUpCan,

2p. triggers[MoveToBasket] = if [Near(objects = f^ g, class = Basket)] Trigger PutCan,

2q. triggers[MoveToBasket] = if [Not(A=HaveCan())] Trigger PickUpCan,

2r. triggers[PutCan] = if [true] Trigger LookForCan,

/* push up the objects parameter to our parent */

2s. objects = f^ g);

Figure 4.6: CDL description of cleanup agent.

The FSA code generated by the editor (reformatted for clarity) is shown in
Figure 4.6. The FSA is speci�ed with agents attached to each operating state
(states[]) and each perceptual trigger (triggers[]). At run-time, the output

58

of the active agent (attached to the active state) is passed through as the output
of the FSA. Then the transition function manifested in the perceptual triggers uses
perceptual inputs and the current state to determine the new (possibly the same)
state.

Statement 1 de�nes the operator FSA which is the basis of the temporal sequenc-
ing coordination. The built-in styles of coordination operators are STATEstyle and
CONTINUOUSstyle. STATEstyle operators maintain internal state and use that past
history along with the current inputs to compute the output value. An example is
spreading activation, where the activation level of behaviors is constant from instant
to instant and only changes in response to excitation and inhibition links, and global
rates of decay. The CONTINUOUSstyle operators do not maintain any state informa-
tion so the output is a function only of the instantaneous inputs. An example is
a function which simply passes the \strongest" of its inputs through as the output.
The choice as to which is \strongest" is made each time without any reliance on what
occurred in the past.

Statement 2 declares the cleanup agent as an instance of the FSA operator. Com-
pare Figure 4.6's statements with the graphical representation in Figure 4.2. The
states (circles) are represented as a list of assignments (Statements 2a-2g). The right-
hand side of these statements is the agent which will provide the output for the FSA
when that particular state is active. These agents are unrestricted in stature and can
contain their own FSA's or other agents in the normal recursive manner.

Statements 2h-2r denote the transitions from state to state. The left-hand side
lists the state that the transition leaves from and the new state is listed after the
Trigger keyword. The agent within the square brackets on the right-hand side is a
perceptual trigger which evaluates to a boolean true or false. The FSA remains
in the the current state until an output transition originating from the active state
becomes true. When this occurs the state mentioned in the transition becomes the
new active state.

Figure 4.7 provides a de�nition of LookForCan as a representative example of the
motor agents implementing the states in the cleanupFSA. The WeightedCombination
coordination operator is de�ned in Statement 1. This operator computes a weighted
combination of its inputs as the output for the society.

Statement 2 de�nes the LookForCan agent as the coordinated combination of
the Wander, Probe, AvoidObstacles, and AvoidRobots agents. The objects in-
put parameter has been deferred and will be determined at the FSA level. The
WeightedCombination coordination operator uses the list of matching weights in the
combination process to control the relative contributions of the three agents to the
group's output.

The AvoidObstacles agent is shown in Figure 4.8. Statement 1 de�nes a new
class of input binding points and gives them the name sense objects. The input

59

/*De�ne weighted combination coordination operator*/

1. defOperator movement WeightedCombination

CONTINUOUSstyle(list movement inputs,

list float weights);

/* Create explore agent from coordination operator */

2. instAgent LookForCan from WeightedCombination(

/* De�ne the agents active when explore is active */

2a. inputs[A] = Wander(persistence = f10g),
2b. inputs[B] = Probe(objects = f^ g),
2c. inputs[C] = AvoidObstacles(objects = f^ g),
2d. inputs[D] = AvoidRobots(objects = f^ g),

/* De�ne each agent's contribution */

2e. weights[A] = f0.5g,
2f. weights[B] = f1.0g,
2g. weights[C] = f1.0g,
2h. weights[D] = f0.8g,

/* Push up speci�cation of parameter to parent */

2i. objects = f^ g);

Figure 4.7: Partial CDL description of LookForCan agent.

/* De�ne a new class of input binding points */

1. defIBP ObjectList sense objects(

number max sensor range);

/* Create the AvoidRobots agent */

2. instAgent AvoidRobots from AvoidObjects(

2a. horizon = f2.0g,
2b. safety margin = f0.5g,

/* Defer speci�cation of the objects parameter */

2c. objlist = FilterObjectsByColor(

color = fGreeng, objects = f^ g),

/* Push up objects parameter to our parent */

2d. objects = f^ g);

Figure 4.8: Partial CDL description of AvoidRobots agent.

60

binding points serve as connection points for input sensor device drivers when con-
�gurations are bound to speci�c robots. The de�nition declares that sensors of this
type generate streams of ObjectList readings and require a con�guration parameter
max sensor range denoting the distance beyond which sensor readings are ignored.
Note the uniform representation of input binding points and the other primitives.
CDL attempts to keep the syntax similar for all objects.

Statement 2 creates the AvoidRobots agent as an instance of the AvoidObjects
primitive. This primitive motor module uses horizon and safety margin parame-
ters to determine the strength of its reaction to objects. Statement 2c speci�es the
perceptual �lter FilterObjectsByColor will construct the list of robot objects for
the AvoidRobots behavior by removing those objects from its input list whose color
doesn't match the speci�ed value. In this example, the robots are green.

AvoidObjects is a primitive and CDL does not include a facility for directly
specifying the implementation of primitive behaviors. Instead, for each supported
robot run-time architecture in which a particular primitive is to be available, an
agent prototype de�nition describing the interface to the module is used to make the
primitive available to the designer.

The CDL syntax has been overviewed and an example con�guration developed in
detail. The uniform treatment of objects in CDL provides a clean syntax for the user.
The recursive support for the construction of assemblages allows building high-level
primitives and archiving them for later reuse.

An example AvoidObjects implementation for the AuRA architecture is shown
in Figure 4.9 for completeness. Discussion of how primitives are implemented will be
deferred until Chapter 5.

4.2 Binding

One of the strengths of CDL is its support for retargeting con�gurations through the
use of generic con�gurations and explicit hardware binding. The binding process maps
an abstract con�guration onto a speci�c collection of robots; linking the executable
procedures and attaching the binding points to physical hardware devices. At this
point the user commits to speci�c hardware devices. The hardware binding process
must ensure that required sensing and actuator capabilities are available, with user
interaction guiding selection when multiple choices are available. The �rst step during
binding is to de�ne which portions of the con�guration will be resident on each of the
target robots. This partitioning can occur either bottom up or top down.

Working from the bottom up, the input and output binding points can be matched
with the capabilities of the pool of available robots to create a minimal mapping. For
example, a surveillance con�guration might specify use of both vision and sound
detectors. Such a con�guration might be deployed on one robot which has both

61

procedure Vector AvoidObjects with

double horizon;

double safety_margin;

ObjectList objlist;

header

body

/* Loop for each input object */

for(int i=0; i<objlist.count; i++)

{

/* If close enough that we should react */

if (dist <= safety_margin + horizon)

{

/* Get a vector from the robot to the object */

Vector contribution = objlist.objects[i].location;

/* compute the distance to this object */

double dist = length_of_vector(contribution);

/* React strongly if closer than our minimum safety margin */

if (dist < safety_margin)

{

/* Construct a very large vector away from this object */

contribution = set_vector_magnitude(contribution, INFINITY);

}

else /* Normal case: A linear drop in repulsion over distance */

{

/* Magnitude is 0 at edge of horizon and 1 at safety margin */

double magnitude = (horizon - (dist-safety_margin)) / horizon;

contribution = set_vector_magnitude(contribution, magnitude);

}

/* Add it to the running sum */

output = vector_sum(output, contribution);

}

}

/* Thread automatically sends the variable "output" to consumers */

pend

Figure 4.9: Example AuRA implementation of AvoidObjects primitive.

62

sensors available, or two robots, each with a single sensor. A second use of the list
of required sensor and actuator capabilities is to use it as a design speci�cation for
the robotic hardware. In this scenario, the con�guration is constructed based on
the mission requirements. The actual hardware is later tailored to the requirements
originating from this design.

An alternate method of completing the binding process is to work from the top
down. In this case, the con�guration may be partitioned along the lines of the behav-
ioral capabilities required on each vehicle or based on the desired number of vehicles.
For example, mission requirements may specify four scouting robots and one support
robot. These requirements may be driven by desired coverage, protocol, redundancy,
and budget constraints.

Binding a portion of a con�guration to a speci�c robot will also bind that portion
to a speci�c architecture since robots are modeled as supporting a single architecture.
If a particular robot happens to support multiple architectures, multiple robot de�-
nitions can be created with di�erent names, one for each architecture. Therefore, we
can restrict a single robot de�nition to supporting a single run-time architecture with
no loss of generality. During binding to a particular architecture, the system must
verify that all components and coordination techniques used within the con�guration
are realizable within the target architecture since certain behaviors may not have
been coded for that architecture and some coordination operators can be architecture
speci�c.

Figure 4.10 shows the relevant CDL code for the janitor after it has been bound
to the three robots shown in Figure 4.3. Statement 1 de�nes a class of robots called
blizzard. This de�nition also speci�es the set of sensors and actuators available on
robots of this class. The actuator driving the vehicle is called wheelActuator and
has a data type of movement. The only sensor on the robots, objectSensor, returns
a list of perceived objects.

Statements 2-4 de�ne three particular blizzard robots, Io, Ganymede, and Callisto.
Statements 5-7 bind an instance of the cleanup agent to each of the robots. Statement
8 creates a society of the three robots and gives it the name janitor. Statement 9
speci�es that the janitor society is the top level in the con�guration.

This binding process completes construction of the con�guration bound to the
three available blizzard robots. The con�guration is now ready for the code generators
to create executables for each of the three robots. Once the executables are complete,
the con�guration can be deployed on the vehicles and executed.

The graphical con�guration editor built into the MissionLab toolset (presented
in the next section) supports automatic binding of con�gurations to robots. When
the user clicks on the bind button, the system analyzes the con�guration, matching
output and input binding points to robot capabilities. It attempts to minimize the
number of robots required to deploy a con�guration and prompts for user input when

63

/* De�ne new blizzard class of robots */

1. defRobotModel AuRA blizzard(

movement wheelActuator; objlist objectSensor);

/* Specify there are three blizzard robots */

2. defRobot Io isA blizzard;

3. defRobot Ganymede isA blizzard;

4. defRobot Callisto isA blizzard;

/* Bind the robots to copies of cleanup agent */

5. bindRobot Io(wheelActuator =

cleanup(objects=objectSensor));

6. bindRobot Ganymede(wheelActuator =

cleanup(objects=objectSensor));

7. bindRobot Callisto(wheelActuator =

cleanup(objects=objectSensor));

/* Create uncoordinated society of the agents */

8. instAgent janitor from IndependentSociety(

Agent[A]=Io,

Agent[B]=Ganymede,

Agent[C]=Callisto);

/* Specify janitor agent as basis of con�guration */

9. janitor;

Figure 4.10: CDL description of janitor con�guration bound to the three
trash collecting robots. Notice that Statements 8 and 9 are
unchanged from the initial design in Figure 4.4, demonstrating
the separation of binding issues from generic portions of the
con�guration.

64

choices are required. This vastly simpli�es the binding process and promotes the
creation of generic con�gurations.

4.3 CDL Syntax: An Attribute Grammar

The examples in the previous section were an attempt to provide some intuition
for how CDL is used to specify con�gurations. Now it is time to formally de�ne
the language. Construction of a formal de�nition of the context-sensitive syntax
of CDL is necessary to ensure that the language is completely and unambiguously
speci�ed. Presenting only a de�nition of the context-free aspects would leave various
constructions open to di�ering interpretations and thus subvert attempts by others to
implement compatible systems. Examples include scoping rules limiting which names
are visible to the compiler and type checking requirements in assignments.

The choice of which formalization technique to use in specifying the CDL language
was made after considering several choices. The traditional Backus-Naur Form (BNF)
grammars can be used to specify only the context-free aspects of a language. It is
then necessary to specify the context-sensitive features in an ad hoc manner, perhaps
in tabular or narrative form. Two-level grammars are capable of representing context-
sensitive language features through the use of meta-grammars. The designer speci�es
a grammar used to construct the actual grammar for the language. This allows the
creation of an in�nite number of actual productions in the target grammar using a
small number of rules within the meta-grammar. However, it appeared that it would
be quite complex to specify various aspects of CDL using a two-level grammar (e.g.,
scoping rules). Therefore, the choice was made to utilize an attribute grammar.

Attribute grammars were �rst de�ned by Knuth in [41] and subsequently used
in a post priori formal de�nition of the context-sensitive features of Pascal[80]. The
syntax of CDL is de�ned using such an attribute grammar following the style pro-
moted in [59]. Standard Backus-Naur Form (BNF) notation is used to establish
the underlying context-free portions of the grammar but, in this style of grammar
these productions are augmented with attributes, evaluation rules, and conditions to
capture the context-sensitive portions of the language. The augmentations serve to
prune the set of strings accepted by the context-free grammar to only those meeting
the context sensitive restrictions. These restrictions capture requirements within the
grammar itself such as type matching in assignments and the need to de�ne objects
before referencing them. The actual pruning of the acceptance set occurs through use
of the Assert conditional operator (Cond in [59]). A rule augmented with an Assert
conditional requirement still has the normal restriction on its application (in that the
right-hand side must match) as well as the new restriction that the assertion must
hold.

65

The productions for the CDL grammar are written in standard BNF, augmented
with the attribute construction and evaluation rules. An example production is shown
below:

hlhsi (= hrhsi

Attribute constructor

Assert : Attribute

Non-terminals are denoted as hnonterm namei, and terminal symbols are speci�ed as
bold faced names such as terminal and sometimes are enclosed in single quotes like
`a' when it might be confusing otherwise. The(= operator separates the right-hand
side of the production from the left. The rule

hai (= hbi Z

can be read as follows:2 A non-terminal symbol hbi followed by the terminal symbol
Z can both be replaced by the non-terminal symbol hai. Attribute construction is
denoted by the assignment operator, and attribute evaluation occurs through use
of the Assert conditional operator. A particular production is only allowed to �re
when both the right-hand side matches and any conditionals attached to the rule are
satis�ed.

Match variable declarations like \int a" and \int b".

1a. hvardefi (= htype namei hnamei ;
1b. DataType (hnamei) Tag (htype namei)
1c. SymbolType (hnamei) fVariableg

If a name refers to a variable, rewrite it as \variable name".

2a. hvariable namei (= hnamei ;
2b. Assert: Equal (SymbolType(hnamei) ; fVariableg)

Match assignment statements like \a = b", but only when their types match.

3a. hstatementi (= hvariable namei
1

`=' hvariable namei
2
;

3b. Assert: Equal (DataType (hvariable namei
1
) ; DataType (hvariable namei

2
))

Figure 4.11: Portion of attribute grammar for assignment statements.

2This is an acceptance-style description. It is equally valid to discuss a grammar as generating

the right-hand side from the left.

66

Figure 4.11 could be a portion of a grammar used to ensure type matching in
assignment statements. Line 1a of Figure 4.11 is a standard BNF production rule for
the non-terminal symbol vardef. The convention is followed in the grammar that
non-terminals are surrounded in brackets, yielding hvardefi. Therefore, Line 1a says
that a non-terminal htype namei symbol next to a non-terminal hnamei symbol can
be reduced to a hvardefi.

Line 1b is an example of the use of inherited attributes. The DataType attribute
for the variable name hnamei is set to the textual name of the htype namei. Therefore,
the variable's data type will be the name of the \type" used in its de�nition. Line 1c
sets the SymbolType attribute to the Variable keyword, allowing subsequent rules to
validate its usage.

Line 2a is a rule which allows use of the symbol hvariable namei for hnamei sym-
bols which have been de�ned to be variables. Notice that the assertion in Line 2b
will prevent this rule from applying to any hnamei symbols which do not have the
SymbolType attribute set to Variable. This rule allows other rules dealing with vari-
ables to be simpler, since they all do not need to verify that hnamei is actually a
variable.

Line 3a is a production rule matching variable to variable assignments. The
assertion in Line 3b ensures that the types for the two variables are the same by
forcing the DataType attributes to be equivalent. This textual matching of the type
names is quite restrictive, requiring an exact match of the type names.

Given the grammar fragment in Figure 4.11, and the following code fragment:

int a;

int b;

string c;

a = b;

a = c;

The statement a = b is legal, while a = c will not be accepted since the assertion
requiring type consistency is not satis�ed.

4.3.1 The CDL Attribute Grammar

The Assert conditional tests attached to rules within the grammar allow constraining
the application of the rule to just those cases where the assertion holds. The pieces of
information that the assertions test are called attributes. The attributes are chunks
of information that are attached to non-terminal symbols within the grammar and
then copied, modi�ed, or tested by rules which mention the non-terminal. There are
�ve di�erent attributes used within the CDL grammar (Tag, Parms, DeferredParms,

67

Definition, and SymbolTable) and each requires explanation. A tabular description
of the attributes and their associated forms is presented in Table 4.1.

Table 4.1: The attributes used within the CDL grammar.

CDL Attributes and Values

Attribute Values

Tag sequences of letters ('a'; : : : ; 'z')

Each hnamei symbol has its print string attached as a Tag attribute

Parms sets of tuples of the form (Type, Tag)

Parameter de�nitions are speci�ed using a Parms attribute

DeferredParms sets of Parms which have been deferred in an instantiation.

Definition n-tuple of the form determined by the �rst �eld:

De�ne a new data type.

('Type', Tag, \StreamIn", \StreamOut", \TextIn", \TextOut",

\Validation")

De�ne a new run-time architecture.

('Arch', Tag)

De�ne a new class of robots. Parms1 is the list of sensors,

Parms2 is the list of actuators.

('Robot', Tag, Parms1, Parms2)

De�ne a new primitive so it is available for instantiation.

('Prim', Tag, OutputType, Parms)

De�ne a new class of input binding points.

('IBP', Tag, OutputType)

De�ne a new class of output binding points.

('OBP', Tag, InputType)

De�ne a new agent.

('Agent', Tag, OutputType)

SymbolTable set of De�nitions

There are two symbol tables:

GlobalSymbolTable and ArchSymbolTable.

68

The attribute Tag is a character string containing the name of something (e.g., a
type name, an agent name, etc.). For simplicity, and with no loss of generality, this
grammar restricts the allowable character set for such names to just the lowercase
letters.

The attribute Parms is a set of tuples de�ning the interface to an object. Each
element of the set denotes the type and name of a particular parameter (e.g., f(int
a),(string b)g). This attribute is a set and not an ordered list since, in CDL, parameter
assignment is by name and not by position.

When a new composite agent is de�ned as an assemblage of other agents it is
likely premature to commit to values for some of the parameters. These parameters
are indicated by assigning them to the deferral operator (f^g). This set of de-
ferred parameters de�nes the interface for the new composite agent. The attribute
DeferredParms is a set of Parms which have been deferred in parameter assignments
in such a construction.

The Definition attribute is the most complicated. It contains the information
required to de�ne a particular object. Since the type of information required varies
based on the kind of object being de�ned, the �elds in a Definition also vary. The
�rst �eld in the record speci�es the kind of object being de�ned and determines the
remaining record �elds.

De�nition of a new data type in CDL creates a Definition of the form

(0Type0; Tag, \StreamIn", \StreamOut", \TextIn", \TextOut", \Validation")

where Tag is the name the user gave to this new type. The StreamIn and StreamOut

parameters are text strings giving the name of functions the code generators should
reference to convert instances of the data type from and to machine-independent byte
streams. The TextIn and TextOut parameters are text strings giving the name of
functions the code generators should reference to convert instances of the data type
from and to human readable text strings. In particular, initializer data will be loaded
using the TextIn function. The Validation parameter is the textual description of a
LISP function to be used to validate initializer data before it is passed to the TextIn
input function to ensure that the data is correctly formed.

De�ning a new architecture generates a declaration (0Arch0; Tag), where Tag is
the name of the new architecture. De�nition of a new class of robots requires more
information and generates a declaration of the form (0Robot0; Tag; Parms1; Parms2),
where Tag is the name of this new robot class, Parms1 is the list of physical sensors
available on robots of this style, and Parms2 is the list of actuators. De�nition of a
new software primitive is represented as (0Prim0; Tag;OutputType; Parms), where the
name of the new primitive is Tag, the data type for the output value is OutputType,
and the parameter list for the module is Parms.

69

The input and output binding point de�nitions are represented using the triples
(0IBP 0; Tag;OutputType) and (0OBP 0; Tag;OutputType), respectively. The Tag is
the name of the binding point and OutputType constrains the classes of sensors and
actuators which can be attached.

The �nal type of de�nition is generated to specify a new agent. The form of
the de�nition is (0Agent0; Tag;OutputType) where Tag is the name of the agent and
OutputType de�nes the type of value generated by the agent.

The SymbolTable attribute is a set of Definitions which de�ne the symbols
visible to the parser. Two symbol tables are used in the grammar, the GlobalSym-
bolTable and the ArchSymbolTable. The global table captures de�nitions which are
global in scope and should be visible to all. An architecture-speci�c table is attached
to each de�ned architecture and captures de�nitions speci�c to a particular architec-
ture. Only one ArchSymbolTable is active at any one time.

Each non-terminal symbol in the grammar may have both inherited and synthe-
sized attributes with which it is associated, although it is likely that the rules within
the grammar will not use all the available attributes on any particular class of non-
terminals such as hnamei. Consider a particular non-terminal symbol occurring on
the left-hand side of a production in a grammar. The set of inherited attributes
are those already attached to the symbol when the right-hand side of a particular
rule is matched and the synthesized attributes are those assigned values by functions
attached to the rule and are passed back up the parse tree.

Inherited attributes are passed down the parse tree from above and are available
when the right-hand side of a rule matches the input so that conditionals attached
to the rule can check if the rule should �re. For example, in the following grammar
fragment the attribute SymbolTable is inherited and available for testing within the
production. The conditional can then easily verify that the types of the two variable
names match (based on their most recent de�nitions) before allowing the production
to match the string.

hstatementi (= hnamei1 = hnamei2
Assert : Equal (latesttype (Tag (hnamei1) ; SymbolTable (hstatementi)) ;

latesttype (Tag (hnamei2) ; SymbolTable (hstatementi)))

The second and more common class of attributes is synthesized by functions at-
tached to the right-hand side of productions. The action of the production �ring
executes attached statements which modify the synthesized attribute associated with
the left-hand side of the rule. For example, in the following grammar fragment the
attribute Tag is created for hletter sequencei as the concatenation of the inherited
Tag attributes for hletter sequencei

1
and hletteri.

hletter sequencei (= hletter sequencei1 hletteri

70

Tag (hletter sequencei) concat (Tag (hletter sequencei1) ;Tag(hletteri))

Each of the non-terminal symbols used in the CDL grammar is listed in Table 4.2
along with the number of the rule which de�nes it in the grammar.

Table 4.3 lists the non-terminal symbols which also carry attributes around within
the grammar. Although there are �ve attributes available, only a small subset are ever
used with any given symbol. This table allows looking up a particular symbol to see
which attributes are actually used. The distinction between inherited and synthesized
attributes helps to check which attributes should be de�ned in any particular instance
of the symbol within productions in the grammar. A dash (|) is used to indicate
that no attributes of that class are used with the indicated symbol.

Table 4.2: The set of non-terminal symbols and the rule which de�nes them
in the grammar.

The Non-Terminal Symbols and De�ning Rule

Rule Symbol Name

1 hletteri
2 hdigiti

3 hcharacter sequencei
4 hnamei
5 hdata typei

6 hrobot classi
7 harchitecture defsi

8 hglobal defsi
9 hpreamblei

10 hagenti
11 hparm defi

12 hparm listi
13 hparmset listi

14 hparmseti
15 hbinding listi
16 hbindingi

17 hcon�gurationi

71

Table 4.3: The set of non-terminal symbols which carry attributes within
the grammar. A dash (|) indicates no attributes of that class
are used with that symbol.

Non-Terminal Symbols and Associated Attributes

Inherited Synthesized
Nonterminal attributes attributes

hletteri | Tag

hdigiti | Tag

hcharacter sequencei | Tag

hnamei | Tag, Type

hdata typei | Tag, De�nition

hrobot classi | Tag, De�nition

hparm defi Parms |

hparm listi Parms |

hparmset listi DeferredParms Parms

hparmseti DeferredParms Parms

hbinding listi De�nition Parms

hbindingi De�nition Parms

72

The functions used to manipulate attributes within the grammar are de�ned in
Table 4.4. These functions are used within production in the grammar to de�ne and
check the values of attributes associated with symbols.

73

Table 4.4: Attribute manipulation functions used within the grammar.

1. Return the �rst element in a sequence.

�rst(s)

The �rst element of the sequence s.

2. Return all but the �rst element in a sequence.

rest(s)

The sequence s with the �rst element removed.

3. Return the concatenation of all the inputs.

concat(item1; item2; : : : ; itemn)

The sequence resulting from juxtaposing each of the sequences item1; item2; : : : ; itemn.

4. Check if a name is de�ned in the speci�ed symboltable.

IsUnde�ned(SymbolTable; tag)

true if SymbolTable = <>

false; if 9d 2 �rst(SymbolTable) where d = (p; tag; q) for some p; q;

IsUnde�ned(rest(SymbolTable), tag), otherwise.

5. Return a copy of the named de�nition from the speci�ed symboltable.

LookUpSymbol(SymbolTable; tag)

h`unde�ned'i if SymbolTable = <>

d; if 9d 2 �rst(SymbolTable) where d = (p; tag; q) for some p; q;

LookUpSymbol(rest(SymbolTable), tag), otherwise.

6. Return a copy of the named parameter de�nition from the parms list.

LookUpParm(Parms; tag)

h`unde�ned'i if Parms = <>

d; if 9d 2 �rst(Parms) where d = (p; tag; q) for some p; q;

LookUpSymbol(rest(Parms), tag), otherwise.

7. Check if the two sequences are equivalent.

Equal(tag1; tag2)

true, if (tag1 = ;) ^ (tag2 = ;);
false, if first(tag1) 6= first(tag2);

equal(rest(tag1); rest(tag2)), otherwise.

8. Check if the initializer is consistent with the data type.

Conformable(t; str)

true, if the initializer string str can be converted to the type t; false, otherwise.

74

The CDL attribute grammar is de�ned below. Each production is commented
and numbered. The comments use Roman typeface while symbols and operators are
in typewriter font.

Production and Attribute Evaluation Rules for CDL

1. A letter is one of the upper or lower case characters and has an attribute Tag which is the textual

value of the letter.

hletteri (=
a

Tag (hletteri) h`a'i
j : : :

: : :

j z
Tag (hletteri) h`z'i

j A
Tag (hletteri) h`A'i

j : : :

: : :

j Z
Tag (hletteri) h`Z'i

2. A digit is one of the characters 0 to 9.

hdigiti (=
0

Tag (hdigiti) h`0'i
j : : :

: : :

j 9
Tag (hdigiti) h`9'i

3. A character sequence is a string of one or more characters and the Tag attribute for the sequence

is the textual value of the string.

hcharacter sequencei (=
hletteri

Tag (hletter sequencei) Tag (hletteri)
j hdigiti

Tag (hletter sequencei) Tag (hdigiti)
j ` '

Tag (hcharacter sequencei) h` 'i
j hletter sequencei

2
hletteri

Tag (hletter sequencei) concat (Tag (hletter sequencei
2
) ; Tag (hletteri))

j hletter sequencei
2
hdigiti

Tag (hletter sequencei) concat (Tag (hletter sequencei
2
) ; Tag (hdigiti))

j hletter sequencei
2
` '

Tag (hletter sequencei) concat (Tag (hletter sequencei
2
) ; h` 'i)

75

4. De�ne name as string of letters. The Tag attribute is copied from the sequence.

hnamei (=
hletteri

Tag (hnamei) Tag (hletteri)
j hletteri hletter sequencei

Tag (hnamei) concat (Tag (hletteri) ; Tag (hletter sequencei))

5. De�ne data type as name which has been de�ned using defType.

hdata typei (=
hnamei

Make sure the data type is de�ned.

Let a = LookUpSymbol(GlobalSymbolTable ; Tag (hnamei))
Assert: Equal (SymbolType (a) ; fTypeg)
Pass the de�nition for the data type along with the symbol.

Definition (hdata typei) a

Tag (hdata typei) Tag (hnamei)

6. De�ne robot class as name which has been de�ned using defRobotClass.

hrobot classi (=
hnamei

Look up the de�nition for hnamei and make sure it is a robot class.

Let a = LookUpSymbol(GlobalSymbolTable ; Tag (hnamei))
Assert: Equal (SymbolType (a) ; fRobotg)
Pass the de�nition for the robot class along with the symbol.

Definition (hrobot classi) a

Tag (hrobot classi) Tag (hnamei)

7. Those de�nitions available only within a speci�c architecture.

harchitecture defsi (=
De�ne a new input binding point within the current architecture.

defInputBindingPoint hdata typei hnamei
ArchSymbolTable ArchSymbolTable [fIBP ; Tag (hnamei) ; Tag (hdata typei)g

De�ne a new output binding point within the current architecture.

j defOutputBindingPoint hdata typei hnamei
ArchSymbolTable ArchSymbolTable [fOBP ; Tag (hnamei) ; Tag (hdata typei)g

De�ne a new class of robots.

j defRobotClass hnamei (hparm listi
1
; hparm listi

2
)

ArchSymbolTable ArchSymbolTable [
fRobot ; Tag (hnamei) ; Parms (hparm listi

1
) ; Parms (hparm listi

2
)g

De�ne a new type of coordination operator.

j defOperator hnamei (hparm listi
1
; hparm listi

2
)

ArchSymbolTable ArchSymbolTable [
fPrim ; Tag (hnamei) ; Parms (hparm listi

1
) ; Parms (hparm listi

2
)g

76

De�ne a new agent.

j defAgent hname1iFrom hname2i (hparm listi)
Make sure the name we are building on is de�ned appropriately.

Let a = LookUpSymbol(ArchSymbolTable ; Tag (hnamei
2
))

Assert: Equal (SymbolType (a) ; fPrimg)
Create a de�nition for the new primitive and add it to the symbol table.

ArchSymbolTable ArchSymbolTable [
fPrim ; Tag (hnamei

1
) ; ThirdField (a) ; Parms (hparm listi)g

De�ne a primitive behavior.

j defPrimitive hdata typei hnamei (hParm listi)
ArchSymbolTable ArchSymbolTable [

fPrim ; Tag (hnamei) ; Tag (hdata typei) ; Parms (hparm listi)g

8. Those de�nitions which create symbols globally scoped.

hglobal defsi (=
De�ne a new target robot architecture.

defArch hnamei
Make sure the name is not already in use.

Assert: IsUndefined (GlobalSymbolTable ; Tag (hnamei))
De�ne the new architecture.

GlobalSymbolTable GlobalSymbolTable [fArch ; Tag (hnamei)g

De�ne a new data type.

j defType hnamei \StreamIn" \StreamOut" \TextIn" \TextOut" \Validation"

Make sure the name is not already in use.

Assert: IsUndefined (GlobalSymbolTable ; Tag (hnamei))
De�ne the new type.

GlobalSymbolTable GlobalSymbolTable [
fType ; Tag (hnamei) ; \StreamIn", \StreamOut",

\TextIn", \TextOut", \Validation"g

9. Collect all the rules which de�ned types, primitives, etc. into a single entity called the preamble

hpreamblei (=
hglobal defsi
j harchitecture defsi
j useArchitecture hnamei

Find the architecture de�nition and make sure it is valid.

Let a = LookUpSymbol(GlobalSymbolTable ; Tag (hnamei))
Assert: Equal (SymbolType (a) ; fArchg)
Switch to the desired architecture.

ArchSymbolTable a

j hpreamblei
1
hglobal defsi

j hpreamblei
1
harchitecture defsi

j hpreamblei
1
useArchitecture hnamei

Find the architecture de�nition and make it sure is valid.

Let a = LookUpSymbol(GlobalSymbolTable ; Tag (hnamei))

77

Assert: Equal (SymbolType (a) ; fArchg)
Switch to the desired architecture.

ArchSymbolTable a

10. Instantiate a new agent

hagenti (=
Instantiate an anonymous (unnamed) agent

hnamei (hparmset listi)
Look up the de�nition for hnamei and make sure it is a primitive.

Let a = LookUpSymbol(GlobalSymbolTable ; Tag (hnamei))
Assert: Equal (SymbolType (a) ; fPrimg)
Pass the parameter list for the de�nition down to the parameter assignment rules.

Parms (hparmset listi) FourthField (a)

Instantiate named agents.

j instAgenthnamei
1
From hnamei

2
(hparmset listi)

Look up the de�nition for hnamei
2
and make sure it is a primitive.

Let a = LookUpSymbol(GlobalSymbolTable ; Tag (hnamei
2
))

Assert: Equal (SymbolType (a) ; fPrimg)
Pass the parameter list for the de�nition down to the parameter assignment rules.

Parms (hparmset listi) FourthField (a)

Create a de�nition for the new agent and add it to the symbol table.

ArchSymbolTable ArchSymbolTable [
fAgent ; Tag (hnamei

1
) ; Tag (hnamei

2
)g

A bound robot is treated as an anonymous (unnamed) agent.

j bindrobot(hagenti ; hrobot classi ; hbinding listi)
Pass the de�nition for the robot class down to the parameter assignment rules.

Definition (hbinding listi) Definition (hrobot classi)

11. De�ne a parameter as part of a primitive de�nition.

hparm defi (=
hdata typei hnamei

Construct a parameter de�nition and pass it up.

Parms(hparm defi) f(Tag (hdata typei) ; Tag (hnamei))g

12. Collect the list of parameters for a primitive de�nition.

hparm listi (=
hparm listi

2
`,' hparm defi

Combine the parameter de�nitions and return them.

Parms(hparm listi) Parms (hparm listi
2
) [Parms (hparm defi)

j hparm defi
Return the parameter de�nitions.

Parms(hparm listi) Parms (hparm defi)

78

13. Match a list of parameter assignments.

hparmset listi (=
hparmset listi

1
`,' hparmseti

Pass the parameter list for the de�nition down to the assignment rules.

Parms (hparmseti) Parms (hparmset listi)
Combine and return any deferred parameters.

DeferredParms(hparmset listi)
DeferredParms (hparmset listi

2
) [DeferredParms (hparmseti)

j hparmseti
Pass the parameter list for the de�nition down to the assignment rules.

Parms (hparmseti) Parms (hparmset listi)
Return this deferred parameter.

DeferredParms(hparmset listi) DeferredParms (hparmseti)

14. Assign a value to a parameter.

hparmseti (=
The value is a constant.

hnamei = finitializer stringg
Look up the parameter.

Let p = LookUpParm (Parms (hparmseti) ; Tag (hnamei))
Make sure the parameter is de�ned.

Assert: NotEqual (p; ;)
Check that the initializer string makes sense given the type of the parameter.

Assert: Conformable (Type (p) ; finitializer stringg)

The value is generated by an agent.

j hnamei = hnamei
2

Make sure parameter and output type of the agent have the same data type.

Let p = LookUpParm (Parms (hparmseti) ; Tag (hnamei))
Let a = LookUpSymbol(mboxArchSymbolTable; Tag (hnamei

2
))

Assert: Equal (Type (p) ; Type (a))

The value is deferred and will be assigned by the user of this module.

j hnamei = f^ g
Look up the parameter.

Let p = LookUpParm (Parms (hparmseti) ; Tag (hnamei))
Make sure the parameter is de�ned.

Assert: NotEqual (p; ;)
Return this deferred parameter.

DeferredParms(hparm seti) DeferredParms(hparm seti
2
) [p

15. Collect the list of hardware bindings for a robot.

hbinding listi (=
hbinding listi

1
; hbindingi

Pass the port list for the robot class down to the binding rules.

Parms (hbindingi) Parms (hbinding listi)

79

j hbindingi
Pass the port list for the robot class down to the binding rules.

Parms (hbindingi) Parms (hbinding listi)

16. Specify binding a sensor or actuator to a binding point.

hbindingi (=
hnamei

1
`=' hnamei

2

Make sure the two names have the same data type.

Let h = LookUpParm (Parms (hbindingi) ; Tag (hnamei
1
))

Let b = LookUpSymbol(mboxArchSymbolTable; Tag (hnamei
2
))

Assert: Equal (Type (h) ; Type (b))

17. The distinguished non-terminal (the start symbol) is the configuration.

hconfigurationi (=
hpreamblei hagenti

80

4.4 CDL Semantics: An Axiomatic De�nition

The semantic description of a language serves as a design speci�cation. While the
syntax description de�nes what the language looks like and circumscribes the set of
legal programs, it is the semantic de�nition of the language which states what those
programs will actually do when they are executed.

There are three popular methods for specifying language semantics. The �rst is
the operational approach, where the semantics are speci�ed in terms of the operation
of some abstract machine which executes the language being de�ned. The Vienna
De�nition Language (VDL)[81] is a meta-language used to construct such de�ni-
tions. The second method is called the denotational approach, where a mathematical
description is created to represent the meaning of each of the language constructs.
A collection of semantic domains are speci�ed and a corresponding set of semantic
equations map programs onto these domains, thereby describing their meaning. The
�nal method used to describe the semantic meaning of programming languages is
the axiomatic approach. The axiomatic method is attributed to Hoare[32] and has
been used to de�ne the semantics of PASCAL[33]. This style uses a collection of
axioms which are true of any correct program and serve to de�ne the meaning of the
program. These axioms provide a set of conditions which are to hold in any par-
ticular implementation of the language, without specifying how the system is to be
implemented.

The Axiomatic technique was chosen for use in de�ning the semantics of CDL
based on its ability to specify the semantic meaning without constraining the imple-
mentation. The style suggested in [59] has been followed as closely as possible in the
following presentation. CDL is a language for describing how threads of execution are
instantiated from externally de�ned procedures and, since con�gurations transcend
individual robot run-time implementations, the semantic description of CDL centers
on thread execution and data movement issues and not the implementations of the
primitive behaviors.

4.4.1 Data Type Axioms

Recall the syntax for a data type de�nition named T reproduced here:

defType T \StreamIn" \StreamOut" \TextIn" \TextOut" \Validation"

Data types are merely symbolic tokens within CDL, since the underlying representa-
tions are implementation-dependent. To support movement of arbitrary data struc-
tures across thread, process, and machine boundaries, it is necessary for the user to
specify procedures to convert an instance of the data type to a machine-independent
byte stream and a procedure to reverse the process within the receiver.

81

The StreamOut parameter references a function in the run-time library which
creates a byte stream version of an instance of the data type T. The StreamIn func-
tion can be used to reverse the process and construct an equivalent instance of the
data type T. Axiom 1 formalizes the requirement that the StreamIn and StreamOut
functions reverse each others e�ects.

Axiom 1 StreamIn (StreamOut (i)) � i 8i j i instance of T

The validation parameter is a string of LISP code used by a suitable LISP in-
terpreter to check the syntax of an arbitrary text string. It is responsible for verifying
that the string is a valid speci�cation of an instance of the data type T. Such vali-
dation procedures are desirable to allow checking that the initializer strings are well
formed in assignments to constant inputs. The desire to validate initializer strings
causes a rather large problem, making it necessary to allow speci�cation of such a
validation procedure as arbitrary executable code within the defType statement it-
self. Rather than encumbering CDL with general purpose programming constructs
to solve this limited issue we choose to specify inclusion of a LISP subsystem with
implementation-dependent capabilities that will process the validation procedures.
The speci�c capabilities of the LISP are not restricted, allowing the designer to fol-
low the most natural implementation (see Section 5.1.3 for an example). If validation
is not desired, the LISP subsystem can be eliminated and the validation procedures
ignored. Axiom 2 speci�es that a validation function for data type T must be able to
check if a string is a well formed initializer for data type T.

Axiom 2 LISP (validationT initializer string)) true i� the initializer string is a well formed

initializer for instances of data type T

The TextIn parameter names the function in the run-time library to be used to
build instances of the data type from user-speci�ed initializer strings. The TextIn
function will construct an instance of the data type from any text string acceptable
to the validation function. Initializers are arbitrary strings from of the machine-
dependent characters C and are denoted as C� (zero or more characters from C).
The TextOut function can be used to print a readable description of the object to
aid debugging. Note: The output of TextOut need not match the input format for
TextIn. The two text processing functions are optional and, if they are not speci�ed,
that capability is lacking for the data type. Axiom 3 speci�es that the TextIn function
must accept any initializer string which passes the LISP validation function.

Axiom 3 If LISP (Validation str)) true then TextIn (str) is de�ned 8str 2 C�

4.4.2 Data Movement Axioms

The input values for agent parameters can either be constant values speci�ed at
compile time or the output of another agent. Consider a particular agent a which
is an instance of the primitive p (L) where L is the list of parameters. If l 2 L is a

82

particular input parameter and if a is parameterized such that l is assigned a constant
value as in

a (l = finitializer stringg)

then the input value is always available and there is no need to wait for another
agent to generate it. Axiom 4 de�nes a function to allow checking if an input has
been assigned a constant value.

Axiom 4 IsConstantInput (l) = 't i� l is assigned to a constant

Now consider the other case where the input parameter l 2 L is assigned to
receive the output of another agent. This generator agent could be instantiated in-
line as an anonymous agent or referenced by name if it was previously instantiated.
The following example demonstrates both possibilities. The notation b (: : :) is used
to indicate that b is properly parameterized, but the detail is unimportant for the
current discussion.

instAgent n from b (: : :) ; a (l1 = b (: : :) ; l2 = n)

It is necessary for the outputs generated by b and n to be available through the
parameter links l1 and l2. Axiom 5 formalizes the common sense notion that specifying
an agent as the input for a parameter means the output of that agent will be the value
of the parameter.

Axiom 5 If a (l = v) where v references an agent anonymously or by name, for each execution

of a; l gets the last value generated by v

4.4.3 Execution Axioms

From the execution point of view there are two classes of agents, active and inactive.
Active agents are generating new output values at some rate while inactive agents
are not executing. This distinction is made to allow ensuring that the input values
being used by an active agent are all constant values or are, in turn, being generated
by active agents.

A particular agent a which is an instance of the primitive p (L) can not become
active until all inputs in the list of parameters L are available. Parameters which
are constant values are always available but those generated by other agents are only
available if the source agent is also active. Axiom 6 formalizes the requirements that
a particular agent is allowed to execute only when all of its input values are available.

Axiom 6 :IsActive (a) if 9 l 2 L where : IsActive (GeneratorAgent (l)) ^ : IsConstantInput (l)

The notation fPgSfQg will be used to describe activation of an agent S, where
P is a logical statement of the conditions existing before activation of S, and Q is a
logical statement describing the results of the activation. In Axiom 7, :IsActive(a)
is substituted for P as the precondition, A (L) is substituted for S as the action, and
IsActive(a) is substituted for Q as the post condition. This formalizes the meaning
of the IsActive predicate.

83

Axiom 7 f:IsActive (a)g A (L) fIsActive (a)g

4.5 Summary

The Con�guration Description Language was developed as an architectural speci�-
cation for the Societal Agent theory presented in Chapter 3. CDL captures the
important recursive nature of the Societal Agent theory in an architecture- and
robot-independent language. The uniform representation of components at all levels
of abstraction simpli�es exchanging portions of con�gurations and facilitates reuse
of existing designs. The ability to describe complicated structures in a compact lan-
guage eliminates unexpected interactions, increases reliability, and reduces the design
time required to construct mission speci�cations.

The context-sensitive syntax of CDL was formally de�ned using an attribute gram-
mar. This speci�cation goes beyond the traditional Backus-Naur Form (BNF) gram-
mars by attaching attributes and conditional tests to productions. These conditionals
are used to prune the set of strings accepted by the productions to just those meeting
the context-sensitive requirements of the language.

The semantics of CDL were formally de�ned using an axiomatic de�nition. This
technique uses a collection of logical statements to formally de�ne the results of
executing programs written in the language. These de�nitions serve as design spec-
i�cations for implementers by specifying what programs are to do when executed.
This nicely supplements the syntax de�nitions which specify only which programs are
legal, and not what they actually do.

CDL strictly partitions speci�cation of a con�guration from the implementation
of the underlying primitives. Further, the ability of CDL to rise above particular ro-
bot run-time architectures vastly increases its utility. It is now possible, using CDL,
to specify con�gurations independent of constraints imposed by particular robots
and architectures. Only after the mission has been developed do hardware binding
issues need to be addressed. These contributions of generic con�gurations and ex-
plicit hardware bindings allow the construction of toolsets based on this architecture
which provide the correct depths of presentation to various classes of users. This
separation in structure supports the separation of presentation required to empower
non-programmers with the ability to specify complex robot missions.

84

Chapter 5

Implementation: MissionLab

The MissionLab toolset has been developed based on the Con�guration Description
Language. Figure 5.1 shows a block diagram of the MissionLab system. The user
interface centers around the graphical Con�guration Editor (CfgEdit). From within
that environment the user can develop con�gurations, bind them to speci�c robots,
and generate executables. The CDL compiler generates either CNL or SAUSAGES
code based on the robot to which the con�guration has been bound. Built-in support
for the AuRA architecture allows deploying and monitoring con�gurations on the
multiagent simulation system and/or robots, all from within MissionLab.

CfgEdit is used to create and maintain con�gurations and supports the recursive
construction of reusable components at all levels, from primitive motor behaviors to
societies of cooperating robots. CfgEdit supports this recursive design process by
allowing creation of coordinated assemblages of components which are then treated
as atomic higher-level components available for later reuse. It allows deferring com-
mitment (binding) to a particular robot architecture or speci�c vehicles until the
con�guration has been developed. This explicit binding step simpli�es development
of a con�guration which may be deployed on several vehicles each requiring use of a
speci�c architecture. The process of retargeting a con�guration to a di�erent vehicle
when requirements change is similarly eased.

The capability exists to generate code for either the ARPA Unmanned Ground
Vehicle (UGV) architecture or for the AuRA architecture. The AuRA executables
drive both simulated robots and several types of Denning vehicles (DRV-1, MRV-2,
MRV-3). The binding process determines which compiler will be used to generate the
�nal executable code as well as which libraries of behavior primitives will be available
for placement within the editor.

5.1 Graphic Designer

Reactive behavior-based architectures[3, 9] decompose a robot's control program into
a collection of behaviors and coordination mechanisms. This decomposition allows

85

Graphic
Designer

[CDL]

CDL Compiler
syntax semantics

Compiler
Interface

SAUSAGES

Architecture
Descriptions

Robot
Descriptions

architecturej

Unix
Executable

Behavior
library

Maintenance
Interface

Architecture
binder
interface

Architecture specific
and robot specific

representations

U
S
E
R

be
ha

vio
rs

abstract behaviors

Architecture
binding

Robot
binding

Requirements
checking

Requirements
checking roboti

Code generator
for Code generator

for UGV
Code generator

for AuRA
architecture

Parse Tree

C++ Code

execute on
matching
simulation

execute on
matching

robot

CNL Code

behavior implementations

Figure 5.1: Block diagram of the MissionLab System.

86

construction of a library of reusable behaviors and assemblages of behaviors by design-
ers skilled in low-level control issues. Subsequent developers using these components
need only be concerned with their speci�ed functionality. Creating a multiagent robot
con�guration using this paradigm involves three steps; determining an appropriate
set of skills for each of the vehicles; translating those mission-oriented skills into sets
of suitable behaviors (assemblages); and the construction/selection of suitable coor-
dination mechanisms to ensure that the correct skill assemblages are deployed over
the duration of the mission.

Figure 5.2: The Con�guration Designer (CfgEdit) with an FSA displayed.

Mission speci�cation is facilitated by encoding the steps in the mission using
a Finite State Automaton (FSA). This makes explicit the various operating states
and perceptual triggers causing transitions between states. Figure 5.2 shows CfgEdit
with an illustrative FSA loaded. CfgEdit supports the graphical construction of such
FSA's and the skill assemblages active in each state. The selection of archived library
behaviors from pull-down menus supports use by personnel with minimal system
training but who are skilled in the domain within which the robots are operating.

Support for users in the various stages of mission development (e.g., behavior
implementation, assemblage construction, and mission speci�cation) are provided.

87

The primitive behavior implementor must be familiar with the particular robot ar-
chitecture in use and a suitable programming language such as C++ or LISP. The
assemblage constructor uses a library of behaviors to build skill assemblages using
the graphical con�guration editor. This allows visual placement and connection of
behaviors without requiring programming knowledge. However, the construction of
useful assemblages still requires knowledge of behavior-based robot control. Specify-
ing a con�guration for a robot team consists of selecting which of the available skills
are useful for the targeted environments and missions.

5.1.1 Con�guration Speci�cation

The Societal Agent theory presents a uniform view of all robot con�guration com-
ponents as agents. These agents occur at various levels in the recursively constructed
con�guration and encapsulate skills of varying scope and complexity but are, in
essence, equivalent from a representational viewpoint. Whether a travel along road
agent consists of an assemblage of behaviors interacting in complex ways or is in fact
a monolithic behavior is unimportant to the designer attempting to utilize that skill
in a con�guration. The whole purpose of the coordination operator is to make it
unimportant!

Assemblages encapsulate a particular skill or ability which is a higher level con-
struction than a behavior[52]. A simple skill such as Wander will include several
behaviors: Noise to generate random motion, Avoid obstacles to keep the robot from
bumping into things, and perhaps Follow wall to encourage exploration of the perime-
ter. A more complicated skill such as \follow road" might include several behaviors
(e.g., stay on road, move ahead, and avoid static obstacles), other skill assemblages
(e.g., avoid dynamic obstacles) and perhaps even behaviors transcending the individ-
ual robot (e.g., maintain formation). In either case, the chosen coordination operator
is responsible for ensuring that the group of behaviors can be treated as an integrated
unit.

The ability to treat assemblages as coherent objects allows abstracting the de-
tails of the implementation and naturally suggests the following top-down design
philosophy: Beginning with the top level, de�ne the desired overt behavior, specify a
collection of simpler, more focused, more concrete behaviors which could be used to
generate the desired complex behavior, then recursively expand those new de�nitions
until they bottom out in capabilities available from library components or behaviors
which can be implemented as new primitives. Figure 5.3 enumerates these steps.

This top-down design process fosters reuse by supporting archival of components
at all levels of detail. When a new component is created, it can be added to the
library and made available for reuse in subsequent projects, independent of whether
it is a primitive behavior or a con�guration for a society of robots conducting a

88

cfg design()

If there exists a library component implementing the skill

� Use the library component

� Parameterize it

� Return

Else if the skill can be divided into temporally distinct operating states

� Specify the operating states and perceptual triggers causing transitions be-

tween the states.

� Decide on basis of design and select either an FSA or Mission Coordination

operator (Section 5.1.4). Encode the state diagram in the selected format.

� Specify the skill embodied in each state.

� Recursively invoke cfg design for each of these skills.

Else if the skill can be decomposed into distinct behaviors

� Specify the behaviors which combine to create the skill.

� Create an assemblage using the cooperative coordination operator and these

behaviors.

� Recursively invoke cfg design for each of these skills.

Else

� Implement a new primitive behavior to encompass the skill

� Parameterize it

� Return

End Function

Figure 5.3: Pseudo code representation of the con�guration design process.

search and rescue mission. Con�guration design tools have been developed to reduce
the workload on designers following this development process.

5.1.2 Use of the Graphic Designer

To demonstrate use of the graphic designer we will develop a con�guration im-
plementing a janitorial task for a team of robots (e.g., 1994 AAAI mobile robot
competition[5]). Reconsider the trash collecting state-transition diagram from Chap-
ter 3 (Figure 3.12) reproduced in Figure 5.4. Each robot wanders around looking
for empty soda cans, picks them up, wanders around looking for a recycling basket,
and places the can into the basket. We will refer to the con�guration ful�lling these
design requirements as the trashbot con�guration.

89

detect_can

have_can

drop_can

drop_can

Put_can

Start

detect_basket

Look_for_

Look_for_

Pick_up_can

basket

can

Figure 5.4: Reproduction of the trash collecting FSA.

To start construction an output binding point is placed in the workspace where
the actuator to drive the wheels of the robot will later be attached. Figure 5.5a
shows the Con�guration Editor after the \OBP" button was pressed to bring up the
list of possible output binding points. In this case, the movement binding point was
selected. Figure 5.5b shows the workspace with the binding point in place.

During the design process it was determined that the top level of the trashbot
con�guration is temporally separable and best implemented using state-based coor-
dination. Therefore, an FSA coordination operator will be used as the top level agent
within the robot. The FSA operator is selected and placed in the workspace and then
connected by clicking the left mouse button on the output and input arrows for the
connection. Figure 5.5c shows the workspace after this connection is made.

The Con�guration Editor supports the graphical construction of FSA's. In Fig-
ure 5.5d, the operator has moved into the FSA workspace and started to build the
state diagram. The circles represent the two operating states within this simple FSA.
The rectangle in the center of each circle lists the behavior which will be active when
the robot is in that operating state. The arcs represent transitions between operating
states, with the arrow heads denoting the direction of the transition. The icon near
the center of the arc names the perceptual trigger activating the transition. Fig-
ure 5.6 shows the completed state machine implementing the trash collecting robot.
Compare Figure 5.6 with the state diagram shown in Figure 5.4.

Clicking on states or transitions with the right button brings up the list of as-
semblages or perceptual triggers from which to choose. Figure 5.7a shows the list of
assemblages available for use in states. The operation performed by a state is changed

90

a. Output binding point menu used
to choose base movement binding
point.

b. Iconic representation of the out-
put binding point placed in the
workspace.

c. Iconic representation of FSA co-
ordination operator connected to
drive wheels.

d. A simple two state FSA diagram.

Figure 5.5: Development of the trash collecting con�guration.

91

Figure 5.6: The completed FSA for a trash collecting robot.

using this popup menu. The trigger causing a particular transition is selected using
a similar menu.

Clicking the middle button on an icon brings up the list of parameters for that
particular assemblage or trigger, allowing parameterization. Figure 5.7b shows the
parameter popup window for the Near assemblage. The types of objects to which the
robot will react are selected by checking the box next to the perceptual class. In this
case soda cans are the only object which will cause a trigger. The slider bar is then
used to set how near the robot gets to the object before the transition occurs. Other
assemblages and triggers will be parameterized using similar input mechanisms.

If the available assemblage or trigger choices are not su�cient, the designer can
specify new constructions. These may in turn be state-based assemblages but are
generally cooperative constructions. In this case, we will examine the wander assem-
blage. Notice it is used to both look for cans and home base. The only di�erence
between the two states is the object being searched for, and detection of the target
object is encapsulated in the termination perceptual trigger.

92

a. The menu used to select new behaviors for operating states.

b. Window used to select classes of objects to which the Near behav-
ior is sensitive and the distance at which it triggers a transition.

Figure 5.7: Selecting and parameterizing assemblages.

93

a. The behaviors and coordination operator making up the Wander assemblage.

b. The avoid static obstacles behavior coupled with a perceptual process.

Figure 5.8: The construction of the Wander behavior.

94

Figure 5.8a shows the Wander skill assemblage used in the trashbot con�guration.
This page is reached by shift middle clicking on either Wander state in the FSA. The
large glyph on the right is an instance of the Cooperative coordination operator. This
operator is responsible for creating a single output value for the group which merges
contributions of the constituent behaviors. In the AuRA architecture, this operator
calculates a weighted vector sum of its inputs. The three glyphs on the left of the �gure
are the iconic views of the three behaviors active within the wander assemblage, noise,
probe, and avoid static obstacles. Noise induces randomness into the assemblage to
increase coverage, probe is a free-space seeking behavior which keeps the robot from
wasting large amounts of time in cluttered areas, and avoid static obstacles attempts
to keep the robot a safe distance from objects in the environment. The outputs from
these behaviors are weighted by the factors speci�ed in the Cooperative glyph. In this
case, noise has a weight of 0:8 while the weights for probe and avoid static obstacles
are deferred by pushing them up to the next higher level. This allows these values to
be speci�ed at the FSA level.

Each of these behaviors are library functions that require no further expansion;
however, they consume perceptual inputs that must be speci�ed. In Figure 5.8b
the operator has moved into the avoid static obstacles behavior to parameterize the
motor behavior and connect the object detector input binding point. The sphere
and safety margin parameters set the maximum distance where obstacles still have
an e�ect on the robot and the minimum separation allowed between the robot and
obstacles, respectively. Passing closer than the safety margin to an obstacle may
cause the robot to convert to a \cautious" mode where it slowly moves away from the
o�ending obstacle. This completes de�nition of the trash collecting con�guration.

5.1.3 Datatype validation using a LISP subsystem

It is desirable to perform strict type veri�cation on parameter values entered in
CfgEdit. That ideal is only partially implemented in Version 1.0 of the Mission-

Lab toolset. Parameters which lend themselves to presentation using slider bars,
check-boxes and radio-boxes are easily added by behavior designers. Using these con-
strained input devices allows the editor to implicitly guarantee correctness of the data
entered by users. However, some types of data are textual and require presentation
of an input area allowing users to enter free-form text. Currently, CfgEdit does not
verify such textual inputs.

A mechanism to support validation of text assigned to user-de�ned data types was
developed as part of the Con�guration Description Language. CDL suggests a LISP
subsystem be included in the editor which is used solely to verify correctness of such
textual inputs. When a behavior is added to the CDL libraries, the developer is also

95

responsible for providing a LISP function to verify that a text string is a properly
formed initializer.

This functionality can be added to CfgEdit by including a suitable LISP subsystem
(CfgEdit is written in C++). Such an extension would allow immediate feedback to
users when they enter incorrectly formed initializers. Currently, such errors are not
reported until the con�guration is compiled into an executable. Reporting errors at
this late stage in the development process, even with good error messages, makes it
extremely di�cult for users to decipher the actual problem.

5.1.4 Command Description Language (CMDL)

MissionLab supports an alternative method of specifying mission sequences using
structured English. A mission coordination operator is used in place of an FSA
in the design and the user constructs the mission sequence using a domain-speci�c
language with high-level primitives and mnemonic names. Currently, the mission
language interpreter is resident on the operator console and communicates with the
robots to invoke the correct assemblages during the mission. In future versions the
interpreter may be moved onto the robots to better mesh with our schema-based
control paradigm[3].

UNIT <scouts> (<scouts-1> ROBOT ROBOT)

(<scouts-2> ROBOT ROBOT)

COMMAND LIST:

0. UNIT scouts START AA-AA1 0 20

1. UNIT scouts OCCUPY AA-AA1 FORMATION Column

2. UNIT scouts MOVETO ATK-AP1 FORMATION Column

3. UNIT scouts OCCUPY ATK-AP1 FORMATION Diamond

4. UNIT scouts MOVETO PP-Charlie FORMATION Column

5. UNIT scouts MOVETO PP-Delta1 FORMATION Column

6. UNIT scouts MOVETO AXIS-Gamma1 FORMATION Diamond

7. UNIT scouts-1 MOVETO ATK-BP1 AND

UNIT scouts-2 MOVETO ATK-BP2

8. UNIT scouts-1 OCCUPY ATK-BP1 AND

UNIT scouts-2 OCCUPY ATK-BP2

9. UNIT scouts MOVETO OBJ-Tango FORMATION Wedge

10. UNIT scouts OCCUPY OBJ-Tango FORMATION Diamond

11. UNIT scouts STOP

Figure 5.9: Example Mission Scenario Commands.

96

An example set of CMDL commands is shown in Figure 5.9. The UNIT command
in the preamble (before the line containing COMMAND LIST:) de�nes the unit scouts.
This unit is composed of two sub-units, scouts-1 and scouts-2, each of which is
composed of two generic robotic vehicles called ROBOT. The list of commands (below
COMMAND-LIST:) is a series of steps making up the mission. The preliminary step,
Step 0:

0. UNIT scouts START AA-AA1 0 20

initializes the scouts unit, starting execution of the robot binaries. Each robot
program is also instructed where it is positioned (Assembly Area \AA1"). At this
point, each robot program has no active assemblages.

Figure 5.10: Screen snapshot showing the robot mission speci�ed in Fig-
ure 5.9 with the robot occupying the assembly area. The four
robots are the black rectangles in a horizontal line across the
AA1 rectangle in the lower left.

97

The mission begins with Step 1:

1. UNIT scouts OCCUPY AA-AA1 FORMATION Column

This instructs the unit to occupy the starting location in column formation until
it receives approval to continue. An assemblage is activated that knows how to
\Occupy" and includes behaviors to maintain formations. Once the formation has
been achieved in the correct location, each robot sends messages to the operator
console indicating they have completed the command. The operator console pops up
a \Proceed?" dialog box once all robots are in position, allowing the operator to give
permission for the unit to proceed. Figure 5.10 shows the example scouting mission
speci�ed in Figure 5.9 after executing statement 1.

Figure 5.11: The robots have been released and are moving to position AP1.

Step 2 instructs the robots in unit scouts to move to position \AP1" in column
formation:

2. UNIT scouts MOVETO ATK-AP1 FORMATION Column

As in the previous step, an appropriate assemblage is activated that knows how to
MOVETO the speci�ed location using column formation. Steps 3 through 6 move the
robot through a series of way-points in various formations. The mission is shown
while in mid-execution of statement 2 in Figure 5.11.

Notice that in Step 7,

98

Figure 5.12: The unit has split into two sub-units so the two observation
points may each be occupied.

7. UNIT scouts-1 MOVETO ATK-BP1 AND

UNIT scouts-2 MOVETO ATK-BP2

the unit scouts is divided into two sub-units scouts-1 and scouts-2, each with its
own command. In this case, both sub-units have MOVETO commands, although any
command could have been given. The two robots in sub-unit scouts-1 are moving
towards BP1 and the two robots in scouts-2 are independently moving towards
BP2. Both sub-units must �nish their commands before the step is complete. A
screen snapshot showing the mission executing statement 7 is shown in Figure 5.12.

Once the objective has been achieved (in Step 10), the mission is terminated with
Step 11:

11. UNIT scouts STOP

which instructs the robots the mission is complete and the executables are termi-
nated. Complete de�nition of the command description �le format can be found in
the MissionLab manual[12].

5.2 Hardware Binding

CfgEdit supports automatic binding of con�gurations to robots. When the user clicks
on the bind button, the system analyzes the con�guration, matching output and
input binding points to robot capabilities. It attempts to minimize the number of
robots required to deploy a con�guration and prompts for user input when choices
are required. This vastly simpli�es the binding process and promotes the creation of
generic con�gurations.

Each architecture imposes restrictions on con�gurations. Some support only a
small set of coordination operators or have an impoverished set of behaviors avail-
able for use by the designer while others are expansive in their scope. It may be

99

necessary for designers to consider limits the target architectures will impose during
development of the con�guration to ensure that they can later be successfully bound.

Continuing with the trash collecting example, we will now bind the con�guration.
Clicking on the \Bind" button starts this process. First, a popup menu allows select-
ing the architecture to which the con�guration will be bound. This determines the
code generator and run-time system that will be used. In this case we will choose the
AuRA architecture (the other currently supported choice is the UGV architecture).

Next, the system prompts for selection of a robot to be bound to the assemblage
(Figure 5.13). In this case we choose to bind this con�guration to an MRV-2 Denning
robot. This inserts the robot record above the displayed page, creating our recycling
robot. If multiple robots are required, this robot can be replicated using the copy
facilities in cfgedit. Figure 5.14 shows the resulting con�guration with three robots
speci�ed.

This completes construction of the janitor con�guration. The con�guration is now
ready for the code generators to create executables for each of the three robots. Once
the executables are complete, the con�guration can be deployed on the vehicles and
executed. Although we have not shown every component of the trashbot con�gura-
tion, construction of this representative subset has given an overview of the design
techniques propounded and served to describe usage of the Con�guration Editor.
The next step in the development process is to generate a robot executable and begin
evaluation of the con�guration.

5.3 Code Generation

Code generators are used to convert con�gurations expressed using CDL into forms
suitable for the targeted run-time system. Con�gurations bound to robots using
the AuRA robot architecture are translated into a Con�guration Network Language
(CNL) description which is then compiled into C++ code. Robots supporting the
UGV architecture require that con�gurations be translated into SAUSAGES (a LISP-
based language) for execution.

Figure 5.15 shows a snapshot of the output logging window in CfgEdit. This
window displays the progress as executables are built from con�gurations. Speci�cally,
Figure 5.15 shows a build of a trash collecting con�guration bound to three MRV-2
robots which use the AuRA architecture. The CDL compiler generates three CNL
output �les, one for each robot. The CNL compiler is invoked on each of these �les to
generate C++ code which is compiled into UNIX executables using the GNU C++
compiler (gcc).

100

Figure 5.13: The robot selection menu, presented during binding.

101

Figure 5.14: trashbot con�guration with three robots.

102

Figure 5.15: Logging window showing progress of trashbot con�guration build
(The con�guration was bound to MRV-2 robots). Notice that
three robot executables were generated.

103

5.3.1 Supported Robot Architectures

MissionLab uses the term robot architecture to describe a robot run-time system.
Recall that CDL con�gurations describe when behaviors are instantiated, and how
they are parameterized and coordinated. They do not specify how behavioral prim-
itives are implemented or how run-time communication and scheduling issues are to
be managed. The set of available primitives and the robot operating system which
schedules behavior execution and manages data movement is in the domain of the
robot architecture.

For MissionLab to support a particular robot architecture means it is available as
a target in the binding process. This implies a suitable code generator is present to
convert the CDL descriptions into a form usable by the architecture. Each architec-
ture also has a CDL �le to provide interface descriptions of each available primitive
component to allow its use in the graphic editor CfgEdit. These descriptions are used
to display the choices available to con�guration designers when targeting a speci�c
architecture.

The currently supported architectures are AuRA and UGV. The Con�guration
Network Language is used in the AuRA architecture and the SAUSAGES scripts are
used in the ARPA UGV architecture. They are both data-ow languages which have
similar expressive power. CNL is converted into C++ code with a lightweight thread
scheduler while SAUSAGES is directly interpreted by a LISP function. Both will now
be described.

5.3.2 The Con�guration Network Language (CNL)

When a con�guration is bound to the AuRA architecture, the CDL compiler generates
a Con�guration Network Language (CNL)[51] speci�cation of the con�guration as
its output. CNL is a hybrid data-ow language[43] using large grain parallelism,
where the atomic units are arbitrary C++ functions. CNL adds data-ow extensions
to C++ which eliminate the need for explicit communication code. A compiled
extension to C++ was chosen to allow veri�cation and meaningful error messages
to assist casual C++ programmers in constructing behaviors. The separation of the
code generator from the CDL compiler permits incremental development and testing
of the design tools as well as simplifying retargeting.

The use of communicating processing elements is similar to the Robot Schemas
(RS)[50] architecture, based on the port automata model. The major di�erences
are that RS uses synchronous communication and CNL is asynchronous to support
multiprocessing; and RS is an abstract language while a CNL compiler has been
developed. Both use the notion of functions processing data arriving at input ports to
compute an output value, which is then available for use as inputs in other functions.

104

CNL provides a separation between procedure implementations and speci�cation
of the data-ow graph's topography. CNL encourages this separation by allowing the
procedures to be coded, tested and archived in standard Unix libraries. Instances
of these procedures are speci�ed in a separate step, thereby creating the data-ow
network. The output of the CNL compiler is a C++ �le created by merging the user's
procedures and the compiler's data movement code speci�ed by the node de�nitions.
This output �le can be compiled using any suitable ANSI C++ compiler targeted for
the desired machine architecture. Using a standard programming language for the
procedures simpli�es converting existing code to CNL.

Figure 5.16 presents the CNL procedure de�nition for the avoid static obstacles

behavior used in the trash collecting con�guration. There are three places that C++
code can occur in CNL: Bracketed by an init/iend pair, bracketed by a header/body
pair within a procedure de�nition, or bracketed by a body/pend pair within a pro-
cedure de�nition. Code within init blocks is not speci�c to a particular procedure.
Code within header blocks is emitted before the body loop and therefore executes
once on instantiation. Code within body/pend blocks is surrounded with a while
loop and executes once for each new set of input parameters. The prede�ned output
parameter for the procedure is named output.

Figure 5.17 shows a portion of the CNL code generated from the trashbot con�g-
uration. A CNL con�guration can be viewed as a directed graph, where nodes are
threads of execution and edges indicate data-ow connections between producer nodes
and consumer nodes. Each node in the con�guration is an instantiation of a C++
function, forked as a lightweight thread using the C-Threads package[71] developed
at Georgia Tech. UNIX processes are examples of heavyweight threads which use the
operating system for scheduling. Lightweight threads are generally non-preemptive
and scheduled by code linked into the user's program. All lightweight threads ex-
ecute in the same address space and can share global variables. The advantage of
lightweight threads is that a task switch takes place much faster than between heavy-
weight threads, allowing large scale parallelism. Current robot con�gurations are
using around 100 threads with little overhead, while that many UNIX processes is
not feasible. Code for thread control and communication synchronization is explicitly
generated by the CNL compiler and need not be speci�ed by the user.

5.3.3 SAUSAGES

When the con�guration is bound to the UGV architecture, the SAUSAGES code
generator is used. The System for AUtonomous Speci�cation, Acquisition, Gener-
ation, and Execution of Schemata (SAUSAGES)[27, 26] is a behavior con�guration
speci�cation language as well as run-time executive. At run time, SAUSAGES exe-
cutes the scripts by instantiating behaviors, monitoring for failures, and interacting

105

procedure Vector AVOID STATIC OBSTACLES with

double sphere;

double safety margin;

obs array readings;

header

body

VECTOR CLEAR(output);

for(int i=0; i<readings.size; i++)

f
double c to c dist = len 2d(readings.val[i].center);

double radius = readings.val[i].r + safety margin;

double mag = 0;

if (c to c dist � radius)

f
== if within safety margin generate big vector

mag = INFINITY;

g
else if (c to c dist � radius + sphere)

f
== generate fraction (0...1) how far are in linear zone.

mag = (sphere - (c to c dist - radius)) = sphere;

g
== otherwise, outside obstacle's sphere of inuence, so ignore it

if (mag 6= 0)

f
== create a unit vector along the direction of repulsion

Vector repuls;

repuls.x = -readings.val[i].center.x;

repuls.y = -readings.val[i].center.y;

unit 2d(repuls);

== Set its strength to the magnitude selected

mult 2d(repuls, mag);

== Add it to the running sum

plus 2d(output, repuls);

g
g

pend

Figure 5.16: CNL code for avoid static obstacles behavior.

106

// Define the node named $AN_3582 as an instance of the procedure IS_AN_OBJECT.//

// The procedure requires a single input with the list of objects to check. //

node $AN_3582 is IS_AN_OBJECT with

object_list = $AN_3577;

nend

// Pass only objects of class ``can'' //

node $AN_3577 is FILTER_OBJECTS_BY_CLASS with

remove_these = {false};

classes = {Cans};

full_list = $AN_3573;

nend

// Get list of objects from the sensor //

node $AN_3573 is DETECT_OBJECTS with

max_sensor_range = {0.1};

nend

// Compute the relative location of the object from the robot //

node $AN_3605 is OBJECT_LOCATION with

object = $AN_3600;

nend

// select only the closest object //

node $AN_3600 is CLOSEST_OBJECT with

object_list = $AN_3594;

nend

// Get list of objects from the sensor //

node $AN_3590 is DETECT_OBJECTS with

max_sensor_range = {0.1};

nend

// |Is there one of the objects? //

node $AN_3625 is IS_AN_OBJECT with

object_list = $AN_3620;

nend

Figure 5.17: Portion of CNL code generated for trashbot con�guration. Each
of the node de�nitions instantiates a thread of execution using
the named procedure and input links.

107

with higher-level processes. A SAUSAGES program is a graph structure where the
behaviors are operations which move between nodes in the graph.

SAUSAGES is a LISP-based script language tailored for specifying sequences of
behaviors for large autonomous vehicles. There are currently four available skill as-
semblages; o� road move to goal, follow road, pause, and teleoperate. Due to these
limitations, our trashbot con�guration cannot be mapped onto this architecture. Fig-
ure 5.18 presents SAUSAGES code for a simple con�guration which traverses through
two waypoints, allows the operator to teleoperate the vehicle, and then returns the
robot to the starting area.

5.4 MissionLab Maintenance

The MissionLab system requires that several data �les be kept up-to-date as the
toolset evolves at a site. The �le .cfgeditrc is used to con�gure software function-
ality, user privileges, and locations of library �les on the system. The library �les
are used to describe the primitive behaviors, which architectures are supported, and
what robots are available.

5.4.1 The .cfgeditrc Resource File

Figure 5.19 shows an example .cfgeditrc �le. Each of the executables making up
the MissionLab toolset attempt to load this �le on startup. They begin by looking in
the current directory, then the user's home directory, and �nally search the directories
listed in the path statement. This �le con�gures several operating characteristics of
the system such as user privileges, whether backup �les are created on writes, how
values are presented in the graphic editor, etc. Directories where libraries and source
�les reside is also listed. Architecture speci�c sections are used by the code generators
to con�gure how they generate executables. A section devoted to con�guring the
actual robots allows users to pass architecture-speci�c con�guration information to
the robots on startup.

5.4.2 Adding New AuRA Primitives

The addition of a new CNL primitive such as the one shown in Figure 5.16 requires
some care. First, the behavior itself must be coded in CNL and debugged to verify
that it functions as desired. The source �le containing the CNL primitive is structured
with one procedure per �le and named with the name of the procedure and a .cnl

extension.
For example, the AVOID STATIC OBSTACLES procedure in Figure 5.16 should be

saved in the �le AVOID STATIC OBSTACLES.cnl in a directory with similar cnl �les.

108

(defplan the-plan ()

(sequence

(link user-wait

(plan-id 0)

(position '(1425.0 675.0))

(message "Waiting for proceed message")

)

(link xcountry

(plan-id 1)

(initial-speed 40.0)

(points (vector

'(1425.0 675.0)

'(1050.000000 525.000000)))

)

(link xcountry

(plan-id 2)

(initial-speed 40.0)

(points (vector

'(1050.000000 525.000000)

'(600.000000 525.000000)))

)

(link teleoperate

(plan-id 3)

(initial-speed 40.0)

(start '(600.000000 525.000000))

(end '(600.000000 525.000000))

)

(link xcountry

(plan-id 4)

(initial-speed 40.0)

(points (vector

'(600.000000 525.000000)

'(1350.000000 600.000000)))

)

(link user-wait

(plan-id 5)

(position '(1350.000000 600.000000))

(message "Waiting for proceed message")

)))

Figure 5.18: SAUSAGES code generated by CfgEdit for a simple mission
which moves the robot through two waypoints, allows the oper-
ator to teleoperate the vehicle, and then returns it back to the
starting area.

109

Make backup CDL files from the editor on writes (true or false).

backup_files = True

Show the values of the slider bars instead of the symbolic names

ShowSliderValues = True

Set the capabilities of the user.

user_privileges = Execute, Modify, Edit, Create, Library, RealRobots

List architectures here to restrict primitives shown to only those occurring in all listed.

#restrict_names = UGV

List of comma separated directories and root names of CDL libraries to load.

Will try to load xxx.gen, xxx.AuRA, and xxx.UGV

CDL_libraries = /users/mission/lib/default, /users/mission/lib/agents

Optional: Configuration to load as the empty configuration.

DefaultConfiguration = /users/r/robot/mission/lib/FSA.cdl

Where to find the map overlays

MapOverlays = /users/r/robot/mission/overlays

Directory to write the event logs. Logging is off when this is empty.

EventLogDir = .

*********** CNL Architecture configuration ********************

List of comma and white space separated directories for link libraries.

lib_paths = /users/r/robot/mission/lib

Directories and root names of the # CNL source files and libraries.

Will try to include xxx.inc as the cnl header file and link libxxx.a

The editor will look for yyy.cnl in these locations to show AuRA primitive yyy

CNL_libraries = /users/r/robot/mission/lib/cnl

directories to look in for CNL source files to display in the editor.

CNL_sources = /users/r/robot/mission/src/libcnl

cflags parm passed to C++ compiler

cflags = -g, -I/users/r/robot/mission/include

ldflags parm passed to C++ compiler. CNL_LIBS is replaced with library list

ldflags = -L/users/r/robot/mission/lib, -lcthreads, -lhardware_drivers,

CNL_LIBS, -lhardware_drivers, -lipt, -lg++, -lstdc++, -lm

*********** Real AuRA robot configuration flags ********************

#The list of real AuRA-based robots we know about

robots = ren, stimpy, george

Any misc robot settings that will be dumped to the script file

MiscRobotSettings = "set show-trails on", "set scale-robots on"

Any list of strings attached to the robot name will be appended to the

startup parameters for that robot. The robot names are case sensitive.

ren = "ignore_sensor23 = 1", "ignore_sensor1 = 1", "tty_num= 1"

stimpy = "ignore_sensor0 = 1", "ignore_sensor3 = 1", "tty_num= 0"

george = "robot_type = DRV1", "tty_num= 2"

Figure 5.19: Example .cfgeditrc �le.

110

The CNL compiler is used to compile the procedure into C++ code, which is compiled
into an object �le using a C++ compiler (e.g., gcc). The object �les for each of the
primitives are then archived into a library �le and left in the same directory.

external procedure Vector AVOID STATIC OBSTACLES with

double sphere;

double safety margin;

obs array readings;

pend

Figure 5.20: CNL prototype for avoid static obstacles behavior.

The library should be named libxxx.a where xxx is the descriptive name for
the collection of primitives. A CNL header �le must also exist in the directory with
the name xxx.inc which provides CNL prototypes for each of the procedures in the
library. This allows the separate compilation of CNL procedures while ensuring tight
type-checking between input and output parameters. An example prototype for the
AVOID STATIC OBSTACLES procedure is shown in Figure 5.20. The directory path is
appended to the CNL libraries list in the appropriate .cfgeditrc�le soMissionLab
can �nd the �les. For example, if we make a library of navigation primitives in
the directory /behaviors/navigation and call it nav then the library �le will be
called libnav.a, the include �le nav.inc and the directory path assigned to the
CNL libraries variable will be:

CNL_libraries = /behaviors/navigation/nav

The graphic editor will try to load cnl �les from the /behaviors/navigation di-
rectory when users attempt to display implementations of CNL primitives. Multiple
library speci�cations assigned to variables in the .cfgeditrc �le are separated by
semicolon \;" characters.

5.4.3 Adding New CDL Primitives

The CDL-based tools use library �les to describe the components available to users.
Components can be primitives or assemblages constructed from other components.
The CDL libraries variable in the .cfgeditrc �le lists the CDL libraries to load.
Given the following .cfgeditrc �le fragment

CDL_libraries = /robot/lib/navigation

111

the system will attempt to load the libraries navigation.gen, navigation.AuRA,
and navigation.UGV from the directory /robot/lib.

defAgent displacement AVOID STATIC OBSTACLES(

const double sphere,

const double safety margin,

object locations readings);

Figure 5.21: Generic CDL de�nition for avoid static obstacles behavior.

defAgent[AuRA] binds AVOID STATIC OBSTACLES Vector AVOID STATIC OBSTACLES(

const double sphere = 3.0,

const double safety margin = 0.5,

object locations readings);

Figure 5.22: AuRA speci�c CDL de�nition for avoid static obstacles behav-
ior.

Figure 5.21 shows a fragment of navigation.gen which de�nes a generic version
of the CDL primitive AVOID STATIC OBSTACLES. Figure 5.22 shows a fragment of
navigation.AuRA which de�nes the version of the AVOID STATIC OBSTACLES primi-
tive speci�c to the AuRA architecture. With these two de�nitions in place, users
are free to construct generic and AuRA-based con�gurations using the primitive
AVOID STATIC OBSTACLES behavior.

5.5 MissionLab Command Console for AuRA

MissionLab includes an operator console supporting AuRA-based robots used to ex-
ecute missions using simulated and/or real vehicles. The operator display shows the
simulation environment, the locations of all simulated robots, and the reported posi-
tions of any real robots. Figure 5.23 shows a screen snapshot of the system simulating
a scouting mission.

112

Figure 5.23: Example scenario being executed in MissionLab. The solid cir-
cles represent obstacles, the various control measures shown in
the overlay allow the operator to symbolically specify and con-
strain the mission.

113

The main display area shows the robots in a diamond formation starting to cross
the phase line. The solid black circles represent obstacles within the simulated envi-
ronment. The command interface in the lower right of Figure 5.23 allows the operator
to monitor and control execution of the mission. For more detail on the operation of
MissionLab, see [12].

Figure 5.24: MissionLab with the Mobile Robot Lab overlay loaded.

The overlay �les are constructed using standard text editors. Figure 5.24 shows
MissionLab with an overlay representing the Georgia Tech Mobile Robot Lab. The
robot is shown in its starting location, in the lower left. The overlay �le specifying
this environment is shown in Figure 5.25. The SCENARIO command names the
environment. The SITE command provides a description of the environment. The

114

SCENARIO "example1"

SITE "Robot Lab, MARC 362"

CONTROL MEASURES:

Boundary "MARC 362" 0 0 10.7 0

10.7 6.1 1.7 6.1 1.7 3.4

0 3.4 0 0

Gap Door 10.5 1.8 10.9 1.8 1.5

PP DoorWay 9.0 2.4 0.4

PP Middle 5.0 3.0 0.4

Figure 5.25: The de�nition �le specifying the overlay shown in Figure 5.24.

115

Boundary marks the walls of the Mobile Robot Lab (units in Meters). The Gap
speci�es the door to the lab. Two passage points (PP) (shown as circles in Figure 5.24)
were chosen arbitrarily to use as targets for MOVETO commands in missions. Many
other types of overlay symbols are available and are described in the MissionLab

manual[12].

5.6 AuRA simulator

The MissionLab toolset includes a multiagent simulation system which supports ro-
bots using the AuRA architecture. The simulator is structured in a client/server
arrangement and currently executes in the same process as the operator console.
Each robot (simulated or real) is a separate Unix process which communicates with
the simulation server using the IPT communications package developed at Carnegie-
Mellon University. This allows running robots and the simulation server on di�erent
computers with only the names of the machines required for initialization.

Figure 5.26 shows the Janitor con�guration executing in simulation using the
AuRA run-time architecture. Within the main display area robots, obstacles, and
other features are visible. The cans have all been gathered and returned to the circle
labeled basket. The shaded and solid circles of various sizes represent simulated
obstacles within the arena (vegetation and rocks, respectively). The three robots are
actively gathering trash and the paths they have taken are shown as trails. For more
details on the MissionLab simulation system, see [12].

The simulation system currently models only the vehicle kinematics. The vehicle
maximum speed and steer angle is also limited in some cases. No attempt to intro-
duce dynamics into the simulator has been undertaken. Currently, Denning MRV-2
robots are modeled as holonomic robots. Our HUMMER robot (a traditional car-
type vehicle) is simulated by limiting the maximum steer angle and setting the size
of the vehicle appropriately.

Using the client/server model allows the user to mix simulated and real robots
within a single run. Robot executables driving simulated robots communicate with
the simulation server to request movement of their robot and to get simulated sensor
readings. Executables controlling real robots report their position to the simulator as
they move and request simulated sensor readings of where other robots are located
from the server. This allows the system to report positions of both real and simulated
vehicles to the executables. This capability of mixing simulated and real robots on a
single run allows testing the bene�ts of additional vehicles as well as the scalability
of particular con�gurations without having to acquire additional hardware.

116

Figure 5.26: The trashbot con�guration executing in simulation. The cans
have all been gathered and returned to the circle labeled basket.
The trails show the paths the robots took completing the mis-
sion. The shaded and solid circles of various sizes represent
simulated obstacles within the arena (vegetation and rocks, re-
spectively). The robots treated both classes of obstacles the
same during this mission.

117

5.7 SAUSAGES simulator

A single robot simulation system using the SAUSAGES run-time system was provided
by Jay Gowdy and Carnegie Mellon University. This allowed evaluating SAUSAGES
code generated by CfgEdit on an independent system. Figure 5.27 is a screen snapshot
of the SAUSAGES simulator after execution of a simple mission created with CfgEdit.
The robot does not leave trails in this simulator, although the waypoints are connected
by straight lines to show the projected route.

Figure 5.27: Example screen snapshot of SAUSAGES simulation display.

The simulator is constructed in LISP and the SAUSAGES code is loaded as a LISP
source �le. The simulator then begins executing the plan while simulating movement
of a HUMMER robot. Several types of terrain are available when constructing the en-
vironment, including tar and gravel roads, rivers, and grasslands. There are currently
three available behaviors in the simulator: move to goal, follow road, and teleoperate.

118

5.8 Demonstrations of Functionality

Several demonstrations were performed to highlight important facets and capabili-
ties of the MissionLab toolset. The �rst demonstration in Section 5.8.1 shows how
new components can be automatically added to the library �le from within CfgEdit.
Section 5.8.2 shows how complex assemblages, including FSA coordination, can be
created and archived as library components.

Section 5.8.3 documents creation of a generic con�guration, which is then bound to
a Denning MRV-2 robot and executed using the MissionLab simulator. The mission
is repeated driving a real Denning robot. Finally, the con�guration is re-bound to a
UGV robot and SAUSAGES code generated which is demonstrated using the CMU
SAUSAGES simulator.

A four robot scouting mission was conducted in simulation to highlight the mul-
tiagent capabilities of the MissionLab system. Section 5.8.4 shows the robots moving
through a series of areas in various formations while demonstrating a military-style
scouting mission.

Finally, in Section 5.8.5, two Denning MRV-2 robots were used to demonstrate
the multiagent capabilities of the system while driving real robots. A con�guration
was constructed to cause the robots to move through the Mobile Robot lab in two
di�erent formations.

119

5.8.1 Adding a new component to a library

The Library option on the CfgEdit menu-bar allows manipulating CDL component
libraries from within the editor. The operator can add new components to libraries,
delete components from a library, and import components into the workspace for
modi�cation. The process of adding a new component to a library will be presented
in this section to introduce these library capabilities.

Figure 5.28: A new wander behavior is created which consists of random
motion generated by the Noise behavior and an Avoid Objects

behavior to keep the robot from running into objects.

Figure 5.28 shows a new \Safe" wander behavior which was created by combining
the Noise and Avoid Objects behaviors with a cooperative coordination operator.
To add this new component to a library, the operator moves up a level in the editor
so that the behavior is represented as a single icon. The left mouse button is then
used to select the entire behavior by clicking on this iconic representation. The \Add
Selected Component to Library" option under the library pulldown menu is used to
start the process.

Figure 5.29 shows the editor with the library addition process underway. The
system is asking for a name to give the new component. This name will be used in

120

Figure 5.29: Moving up one level, the safe wander behavior is shown in its
iconic form. The operator has selected the \Add selected to
library" option from the library menu bar. The editor is now
prompting for a name for the new component.

selection dialogs to identify this new behavior when users are selecting new behaviors
for operating states. The string \Safe Wander Behavior" shown in the comment area
of the new behavior's icon will be used as the descriptive comment, presented with
the name. The name must be formatted as a traditional single word identi�er using
C conventions. However, free form text is allowed in the description. In this example
the operator has entered Safe Wander as the name of the new behavior.

121

Figure 5.30: The list of available libraries are presented to allow the user to
select the library to which the new component will be added.

After the name is entered the system prompts for the user to select to which of the
libraries the behavior will be added. Figure 5.30 shows the dialog presented to the
user with the list of libraries which were speci�ed using the CDL libraries variable in
the .cfgeditrc �le. The operator selects the particular library they wish to modify
by clicking on the button to the left of the name and pressing OK. MissionLab now
adds a copy of the component to the internal copy of the library and writes a new
copy of the library �le.

There are generic versions of each library �le and one additional �le for each
supported robot architecture (i.e., AuRA and UGV). The new component is added
to one of these versions based on how it is bound. If the con�guration contained in the
editor is currently unbound (free) components are added to the generic version of the
selected library. If the con�guration is bound to one of the supported architectures
the component is added to the corresponding library �le. Note that it is necessary to
add the generic version of a component before any architecture speci�c versions can
be added.

To complete the demonstration, the editor was restarted with an emptyworkspace.
In Figure 5.31 the operator has pressed the button to add a new agent to the
workspace, causing the selection dialog to be presented with the list of available

122

Figure 5.31: The editor has been restarted to show that the component is
now in the behavior list.

components. The highlighted entry for the new Safe wander behavior shows that
the component was correctly added to the library.

123

Figure 5.32: The new safe wander behavior was selected and placed into an
empty workspace.

In Figure 5.32 the new component was placed in the workspace to allow veri�cation
of its composition. Figure 5.33 shows the detail level of the component, allowing
veri�cation that the de�nition was correctly added to the library. This completes the
demonstration of how components are added to libraries.

124

Figure 5.33: Moving down into the library component, the original de�nition
is displayed.

125

5.8.2 Creating components containing FSA's

Creating new components which use FSA's to generate their behavior is easily ac-
complished. Many times a design has been created to solve a speci�c task and it is
later decided that a portion of it is suitable for inclusion as a generic component. For
example, Figure 5.34 shows an FSA developed to perform a mine cleanup mission.
The task is now to create a generic cleanup component from this con�guration which
can be parameterized as to the object to retrieve and the destination container.

Figure 5.34: This FSA picks up mines and places them into the disposal area.
When all the mines are collected, it returns to home base and
halts.

126

The �rst step is to remove states extraneous to the desired component. Figure 5.35
shows the result of pruning the states in Figure 5.34 which caused the robot to return
to home base after completing the cleanup operation. This leaves a loop which moves
to the nearest mine, picks it up, moves to the nearest disposal area, and places the
mine in the container.

Figure 5.35: This portion of the FSA executes the mine cleanup task.

127

The design in Figure 5.35 is still speci�c to moving mines into disposal areas.
Worse yet, the choice of objects to pick up (and destination containers) is duplicated
in numerous places. To solve the problem of both hardcoded and duplicated ob-
ject choices, we will push up the Mines parameter to the parent record (the iconic
representation of the FSA).

In Figure 5.36 the operator has selected the \Push up input" option from the
Advanced menu bar and then clicked on the MoveTo state. This opens a dialog
box where the list of available parameters are displayed and the user can select the
particular one to push up. In this case there is only one selection available (Objects
with the value of Mines).

Figure 5.36: The user has selected the \Push up input" option from the Ad-
vanced menu bar and clicked on the MoveTo state. The system
is now prompting for the user to select which parameter to push
up into the parent.

128

After a paramter has been selected for pushing up, the system checks to see if
other instances of that parameter occur in the state diagram. In Figure 5.37 the
system has determined there are multiple instances of the Objects parameter having
the value of Mines. A dialog box is presented to the user to allow all of the parameters
with this value or just the one selected to be pushed up.

Figure 5.37: The system has determined there are several other instances of
the Mines parameter and is asking if all should be pushed up.

129

Finally, the user is presented with the option of using a new name for the param-
eter in the parent record. This aliasing allows descriptive names in components and
elimination of name collisions. In Figure 5.38 the user leaves the parameter name as
Objects by pressing Original.

Figure 5.38: Sometimes it is clearer if the parameter has a di�erent name
at the component level than in the de�nition. This dialog box
allows specifying a new name for the pushed up parameter.

130

Figure 5.39 shows the FSA after the Mines parameter has been pushed up. Notice
that in each place the parameter was referenced it now is displayed as [%Objects].
This signi�es that the value of the parameter is deferred to the parameter in the parent
record with the name %Objects. The percent sign \%" is automatically prepended to
parameter names during the push up action and is used byMissionLab to distinguish
deferred parameters from normal usages.

Figure 5.39: The user pushed up all instances of the mine objects parameter.

131

Figure 5.40 shows the iconic representation of the FSA with the new pushed
up %Objects parameter. Notice that it still has the value Mines. The de�nition
is functionally equivalent before and after pushing up the parameter. The location
where the value is entered is the only thing that has changed.

Figure 5.40: The iconic representation of the FSA now includes the
%Objects parameter which determines which class of objects
the behavior picks up.

132

The parameter selecting the container where the mines are to be placed is pushed
up in Figure 5.41. The same process is used to select the parameter to defer as before.

Figure 5.41: The user now pushes up the parameter selecting the container
in which to put the mines.

133

Notice in Figure 5.41 the parameter is also named %Objects. It is renamed to
Containers in Figure 5.42 to eliminate duplication and provide a meaningful param-
eter at the component level.

Figure 5.42: The parameter is aliased to Containers at the component level.

134

The �nal state diagram after the parameters are pushed up is shown in Figure 5.43.
Notice all instances of the Mines and EOD Area parameters have been pushed up. This
FSA diagram now defers selection of these two important criteria to the parent record.

Figure 5.43: The FSA after the two parameters have been pushed up.

135

The iconic representation of the FSA is shown in Figure 5.44. Notice that the
goal of combining the multiple references to the two parameters has been achieved.
There is only one instance of each of the two object classes. There are multiple
links to each parameter from the state diagram. This one to many relationship
provides information hiding and simpli�cation as part of the recursive construction
of components.

Figure 5.44 also shows the operator starting to add the new generic PickupAgent
component to the library. The process of adding components to libraries was docu-
mented in Section 5.8.1.

Figure 5.44: The completed FSA component with the two pushed up pa-
rameters and default values speci�ed. The operator has started
to add the component to the library and given it the name
PickupAgent.

136

Finally, in Figure 5.45, the new component has been used to recreate a simpli�ed
version of the original mine cleanup con�guration. This new con�guration uses the
PickupAgent as a coherent component to provide the operator with a greatly simpl�ed
design over the original in Figure 5.34.

Figure 5.45: The new component has been used to create a simpli�ed version
of the original FSA shown in Figure 5.34. Recall that the pickup
objects state nests the FSA from Figure 5.43.

137

5.8.3 Retargeting a con�guration

Con�gurations properly constrained to use only the available behaviors can be bound
to the UGV architecture. In this case the SAUSAGES code generator is used. There
are currently three available behaviors; move to goal, follow road, and teleoperate.
SAUSAGES is a LISP-based script language tailored for specifying sequences of be-
haviors for large autonomous vehicles.

Figure 5.46: Generic con�guration suitable for binding to either the AuRA
or SAUSAGES architecture. It causes the robot to move
through two waypoints to an area where it is teleoperated, then
returns to the starting area before halting.

Figure 5.46 shows the state transition diagram for a mission constructed within
these limits. The robot moves through two waypoints to an area where it is tele-
operated, then returns to the starting area before halting. First the con�guration is

138

Figure 5.47: The con�guration from Figure 5.46 executing in theMissionLab
simulator. The two circles are landmarks in the map overlay not
used during this mission.

bound to the AuRA architecture and deployed on the MRV-2 robots. Figure 5.47
shows the con�guration executing in the MissionLab simulation system. Figure 5.48
shows the same executable controlling one of our Denning MRV-2 robots. Note that
the same operator console is used to control simulated and real robots, so Figure 5.48
appears very similar to that in Figure 5.47 even though the �rst reects a simulated
execution and the second shows a real robot run. Figures 5.49 and 5.50 show the
robot during the mission.

As a �nal demonstration, the con�guration is unbound and rebound to the UGV
architecture. The code generator now emits LISP-based SAUSAGES code suitable
for use by the SAUSAGES simulator developed at Carnegie-Mellon University. Fig-
ure 5.51 is a screen snapshot of the SAUSAGES simulator after execution of the

139

Figure 5.48: Snapshot of operator console after executing the mission shown
in Figure 5.46 on a real MRV-2 Denning robot. The dark circles
mark obstacle readings during the run in the Mobile Robot Lab.
The same map overlay was used as in the simulated mission.

mission. The robot does not leave trails in this simulator, although the waypoints are
connected by straight lines to show the projected route.

140

Figure 5.49: Photo of robot executing the mission in Figure 5.46 at
start/�nish location near the doorway landmark.

Figure 5.50: Photo of robot executing the mission in Figure 5.46 during the
teleoperation portion. It is currently located near the middle

landmark in the map overlay.

141

Figure 5.51: Snapshot of SAUSAGES simulation display after executing the
mission shown in Figure 5.46. Notice the same general route
was taken by the robot.

142

5.8.4 Simulated Robot Scouting Mission

A four-robot scouting mission has been constructed and evaluated in simulation. A
behavior called MoveInFormation was created which causes the robot to move to
a speci�ed map location while maintaining formation with other robots [6]. The
robots each have an assigned spot in the formation and know the relative locations
of the other robots. Each robot computes where it should be located relative to the
other robots, and the Maintain Formation behavior tries to keep it in position as the
formation moves. The choice of formation can be selected from Line, Wedge, Column,
and Diamond. The separation between robots in the formation is also selectable at
the FSA state level.

Figure 5.52 shows the state transition diagram used in the mission. In this case,
explicit coordinates are used as destinations. Notice the robots begin moving in line
formation. They then switch to column formation to traverse the gap in the forward
lines (passage point). The robots travel along the axis of advance in wedge formation
and �nally occupy the objective in a diamond formation.

Figure 5.53 shows the robots during execution of the scout mission in the Mis-
sionLab simulator. The robots started in the bottom left corner moving up in line
formation, then moved right in column formation, and are now moving to the right
in a wedge formation. Figure 5.54 shows the completed mission with the robots
occupying the objective in a diamond formation.

143

Figure 5.52: The state transition diagram for the scouting mission.

144

Figure 5.53: The mission executing in theMissionLab simulator. The robots
started in the bottom left corner moving up in line formation,
then moved right in column formation, and are now moving to
the right in a wedge formation.

145

Figure 5.54: The completed scout mission with the robots occupying the ob-
jective in a diamond formation.

146

5.8.5 Indoor Navigation with Two Robots

Figure 5.55: MissionLab showing the operator console after execution of a
simple two-robot mission. The robots start on the left edge of
the lab and proceed to the dest1 point in line formation. They
then continue to location dest2 using column formation. They
are shown in their �nal positions, with the trails marking the
path each traversed.

Figure 5.55 shows MissionLab with the overlay representing the Georgia Tech Mobile
Robot Lab loaded. The gap in the upper right represents the door to the laboratory.
The goal circles were positioned arbitrarily to use as targets for the move-to-goal
behavior in the mission. The pair of robots are shown in their �nal positions, after
completion of the mission. The mission starts the robots on the left edge of the room

147

and sends them to point dest1 in line formation. Upon reaching this waypoint, they
convert to column formation and move to point dest2 on the right side of the room.
The trails taken by the robots are shown, as are their �nal positions. Figure 5.56
shows a sequence of photographs of the robots executing this mission.

148

1. Robots in start location 2. Moving towards dest1

3. Robots at location dest1 4. Moving towards dest2

5. Robots nearing location dest2 6. Completed mission

Figure 5.56: Photos of the robots executing the two robot mission.

149

5.9 Availability of MissionLab

Figure 5.57: MissionLab with the UTA extensions for cooperative sensor
pointing. The four robots are scouting an area and cooper-
atively looking for targets. The black wedges radiating from
the robots represent areas currently being swept by the sensors.
The large arrow shows the axis along which the robots are ad-
vancing. The targets the robots are searching for are shown as
shaded circles labeled with the target number.

The MissionLab system is available in both source and binary form at
http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab

and has generated interest in the robotics community. The University of Texas at
Arlington usesMissionLab in their research in cooperative sensor pointing. Figure 5.9
shows a screen snapshot of the MissionLab toolset with the UTA extensions.

150

5.10 The Frame Problem in MissionLab

During the usability experiments reported in Chapter 7 a so-called \race condition"
manifested itself in MissionLab. Upon further investigation, the problem was found
to be related to the general frame problem and raised the question as to how best
to present an asynchronous world to novice robot operators. This section addresses
these issues and suggests possible solutions.

Figure 5.58: An FSA showing the MissionLab race condition. When a mine
is labeled using the MarkObject action, the Detect perceptual
primitive will still register the old form of the object for a small
amount of time due to the asynchronous nature of the simula-
tion. This gets the system stuck in the MoveTo action when the
last object is marked, since there are no more objects to move
towards.

151

Task 4 in Experiment 1 and Experiment 2 asked the participants to program the
robot to map a mine �eld. The robot moved to Brown colored objects, invoked a
Probe action, and then marked the objects as either safe or dangerous by \painting"
them di�erent colors. A solution which displays the problem is shown in Figure 5.10.

When a mine is labeled using the MarkObject action, the Detect perceptual
primitive will still register the old form of the object for a small amount of time due
to the asynchronous nature of the simulation. This corresponds to the relatively large
amount of time required for actuators to make changes in the environment. However,
the MarkObject action does not block until the action is �nished, allowing the system
to re-detect the object just marked and start moving towards it again. Once this old
object changes color, the MoveTo action will swap to the closest remaining unknown
object without any warning to the operator. This logic bug is only apparent to the
user when the last object is marked. Since there are no remaining unknown objects,
the MoveTo action stops generating motion and the robot just sits in place.

Figure 5.59: An FSA correctly avoiding the MissionLab race condition.

152

A solution which correctly handles this problem is shown in Figure 5.10. In this
case the designer has handled the case where the MoveTo action fails due to lack of
perceivable targets.

This problem is symptomatic of the frame problem, where the representation of
the work no longer matches the physical environment. In this case, the designer's
assumption that, once an object is perceived, it will remain visible is violated due
to the asynchronous nature of the simuator. Since the problem would be even more
likely to occur when driving real robots due to the slow dynamics of environmental
changes, it must be addressed.

There are several avenues available for tackling this problem. Unfortunately, this
problem is endemic to robotics and the \correct" choice must focus more on additional
training than any comprehensive support in MissionLab.

1. Increase training. One can argue that this is a problem inherent to robotics and
the designers need to guard sensorimotor behaviors to handle failure conditions.
Figure 5.10 demonstrates such a solution.

2. Provide a termination condition for all actions. The problem in this case is
caused by the lack of a test to block until the MarkObject action has completed.
For example, the MoveTo action is generally terminated by a Near perceptual
trigger. A similar DoneMarking test would allow forming a blocking action
from the non-blocking MarkObject. This solution still requires the designer to
remember to guard the MarkObject action.

3. Use only blocking actions. A more radical change would be to bundle all motor
behaviors with termination perceptual triggers. MoveTo would have an extra
parameter denoting how close to get to the object before terminating.

The best approach seems to be Choice 2. Choice 3 would expand the number
of behaviors and destroy the FSA concept, and Choice 1 is insu�ent by itself. In
support of Choice 2, the con�guration editor could be modi�ed to require that all
motor actions have termination conditions attached to them. This would relieve some
of the cognitive load from designers by allowing the system to remind them that the
MarkObject action is missing a terminating check. This, coupled with additional
training targeted to the frame problem in robotics, should address the issues raised
in the usability experiments.

5.11 Summary

The MissionLab toolset was presented as an implementation based on CDL. The
graphical-based con�guration editor allows the visual construction of con�gurations

153

by users not familiar with standard programming languages. The compilers then
translate these descriptions into executable programs targeted for either the ARPA
UGV or AuRA architectures.

MissionLab uses a coherent graphical interface to allow novice users to rapidly
gain pro�ciency while providing a powerful but easy to use environment for both
novice and expert users. The interface is written to execute on any suitable UNIX
machine. The CDL compiler uses multiple code generators to target disparate run-
time architectures.

The Con�guration Description Language (CDL) is used as the basis of the graph-
ical editor. The uniform representation provided by CDL simpli�es the implementa-
tion and allows the editor to use a recursive presentation of con�gurations.

The Con�guration Network Language (CNL) has been developed to support the
AuRA architecture. CNL programs are collections of nodes (threads of execution)
connected with data ow links. The ARPA UGV architecture using SAUSAGES was
chosen as a second target and the SAUSAGES code generator has been proven using
the simulator provided by CMU.

The tight coupling provided by the inclusion of a simulation system for AuRA-
based robots allows more feedback to the user at run time. The tighter interaction
between editor and run-time console allows users to look at the graphic source for
con�gurations while the robots are executing. The next step will be to provide true
source level debugging by mapping run-time status information back into the editor.

Several demonstrations of capabilities were included to augment the presentation.
These highlighted the retargeting capabilities of the system, the creation of new li-
brary components, and the construction and evaluation of multiagent con�gurations.

154

Chapter 6

Design of Experiments

When presented with a novel artifact it is natural to ponder its purpose and utility.
What is the intended use and how much bene�t does a user get from employing it?
All change exacts a price, and for a new tool to be accepted it must either empower
users to perform tasks heretofore inaccessible, or pronouncedly improve performance
over the current state of the art. With this in mind we turn our attention to devising
metrics which allow rating and comparing the utility and usability of the artifacts
created as part of this research with existing strategies.

The foundation of this research is the Societal Agent theory presented in Chap-
ter 3. Unfortunately, theories take the form of paradigms and design guidelines pro-
viding insight for how one should think about particular classes of problems and are a
bit ethereal for direct experimental evaluation. However, the Con�guration Descrip-
tion Language de�ned in Chapter 4 is a faithful transformation of the theory into a
speci�cation architecture. Therefore, instead of directly testing the Societal Agent
theory, experiments are devised which can be tested using an available implementa-
tion of the architecture (presented in Chapter 5) while still reliably extracting those
features relevant to the underlying theory itself. Clearly this will require that the
experiments be carefully designed and executed so they illuminate the underlying ar-
chitecture and, thus the theory, and not just facets of the particular implementation.
This arms-length analysis may prove less satisfying than grabbing hold of the theory
and wringing answers directly from it, but an experimental evaluation requires an
implementation to run experiments against.

6.1 Establishing Usability Criteria

Usability experiments measure the performance of people completing certain tasks
while using a particular tool. In this document we think of these tools as computer
programs; however, there is no reason that such experiments wouldn't provide insight
into the layout of paper forms, the design of a phone, and nearly all other tasks where
people use tools. In this chapter we will use the term \product" to refer to computer

155

programs presented to people for their use and we will refer to these users as the
\customers", since they are the �nal determinants of the success of the product.

Early in the life of a development e�ort, metrics must be carefully crafted to
capture the utility of the �nal product. These metrics must then be expounded until
the development team understands and accepts them because, without such metrics,
there is little hope they will choose a successful path through the myriad of design
choices. It is important to have the evaluation process grounded in metrics which
allow ranking various possible outcomes at the decision points in the development
cycle. For example, the development sta� believes that expending two person-months
of e�ort rewriting database interface functions will reduce the time required to look up
widgets in the XYZ application by 20%. The question of whether that e�ort is worth
expending is di�cult to answer without speci�c target levels on the user performance.
Therefore, it is very important to list the performance metrics which will impact
acceptance of the product, and to state minimum levels for them, below which the
product will not be accepted. Table 6.1 is an example technique for presenting the
usability metrics from [31].

Table 6.1: An example usability criteria speci�cation table for some inde-
terminate task (After [31], page 223). Notice that Usability

Attributes are vague high-level concepts while the Values to

be Measured are concrete performance metrics. The Current

Level shows the average user performance on existing systems.
The Worst Acceptable Level, the Target Level, and the Best
Possible Level are predictions of the performance of users on
the new system.

Example Usability Speci�cation Table

Worst Best

Usability Value to be Current Acceptable Target Possible

Attribute Measured Level Level Level Level

Novice

performance

Time to perform

action A
Hours 30 minutes 20 minutes 5 minutes

Novice

performance

Time to perform

action B
60 minutes 5 minutes 1 minutes 15 seconds

156

Notice that each line in the table lists a unique tuple combining an attribute
and measurable value husability attribute; value to be measuredi and speci�es
target values for that feature. Using a table such as this, the development team can
focus their e�orts on improving performance in areas that are important, instead of
wasting time on improving insigni�cant aspects. This table also provides criteria to
objectively determine when the development process is complete. Once a product
achieves all of the minimum acceptable values, it can be considered complete. We
now de�ne each of the columns appearing in Table 6.1.

6.1.1 Usability Attributes

The Usability Attributes are high level concepts that are deemed important to
the customers, such as the performance of new users. Consider our XYZ database
example. In this case, a usability attribute might be \The performance of novice
users". This high-level concept will reect things like how easy it is to enter the
required color for the widget, database access times, and other factors. Also, what
constitutes a \novice user" must be carefully de�ned. For example, \A novice user
has never used the product before but has watched the training video".

The careful selection of attributes is necessary to ensure that all important facets
of the human-computer interface are covered. For example, though a lot of attention
is normally placed on improving the performance for users familiar with the system,
all users begin as novices. Therefore, if the system is too painful for new users to
learn, there will be no expert users to consider.

6.1.2 Value to be Measured

The Value to be Measured selects a particular aspect of the attribute for which we
will specify performance �gures. Continuing with the XYZ example, a Value to be

Measured for the \the performance of novice users" attribute might be the \Time
required to look up part numbers".

A particular attribute may have several relevant values which can be used to mea-
sure aspects of it. For example, given an attribute such as \novice user performance"
there are many values which can be measured to illuminate aspects of the attribute.
A small subset includes \time to perform a benchmark task", \time to perform a
particular action", and \number of errors while performing a benchmark task". The
idea is to take a high-level concept like \novice user performance" and develop con-
crete metrics that can be experimentally veri�ed and which provide insight into the
attribute itself. Of course, a particular value may be relevant to multiple usability
attributes.

157

6.1.3 Current Level

The Current Level represents the average performance achieved by the target class
of participants using the current state of the art. In cases where users of the existing
systems are unable to perform the proposed task, a value of not possible can be
entered. It is important to list these values to set the threshold the new product must
compete with. There is little hope for acceptance if a new product is worse than what
the customers are currently using. For our XYZ example, the existing system could
be tested with novice users to determine their average performance for the chosen
Value to be Measured, perhaps 31 seconds on the \Time required to look up part
numbers" task.

6.1.4 Worst Acceptable Level

The worst acceptable level sets the minimums for the design process. Any values
which are, on average, below this threshold require further re�nement before the
product can be considered �nished. These values are normally close to the current
levels since customers won't switch to something clearly worse than what they cur-
rently have. These are the best estimates of the levels below which the customers will
not use the product.

For the XYZ example, marketing may predict that a performance by novices on
the \Time required to look up part numbers" which, on average, exceeds 45 seconds
will not be acceptable to the user community.

6.1.5 Best Possible Level

The upper bound on the level of performance that could reasonably be expected is
called the Best Possible Level. This knowledge is useful to aid understanding of
the signi�cance of the performance values. The value should be set to the highest
level that could reasonably be expected from users of the system. A useful method
to determine these maximums is to base them on the performance of members of
the development team using the system. It is unlikely that a user will ever be as
familiar with the system as its designers and, therefore, their performance is likely to
be less. For our XYZ example, the time required by experienced users would likely
be a good estimate of the upper bound on the performance of novice users. Similarly,
the performance of the design team would be a good model for the upper bound on
the experienced users.

158

6.1.6 Target Level

The target levels de�ne what the designers should be striving towards. These goals
can be set based on market surveys, predicted customer needs, and other relevant
information. Normally this value would be set last, after the Best and Current

values are available to provide guidance. It is important that the development team
has some input into these levels to ensure they are realistic and achievable with the
available level of personnel and technology. It does little good to set targets that are
out of reach.

Considering our XYZ example, assume that the Best Possible Value for the
\Time required to look up part numbers" by novice users is 7 seconds and the current
performance level is 31 seconds. Using this information we would be looking to set the
target level in the 7 to 31 second range. A �nal target value would be selected using
market surveys, feedback from the development sta�, and high-level design priority
information. In this case, perhaps a value of 25 seconds would be deemed appropriate.

6.2 The MissionLab Usability Criteria

The meta-objective of the MissionLab evaluation is to answer the question \Does
basing a toolset on the Societal Agent theory bene�t the users?". This abstract
question is far too vague and broad to support a direct answer. Instead it must be
decomposed into concrete objectives which can be experimentally evaluated. The
following speci�c objectives have been identi�ed as relevant to this issue:

1. Show that it is signi�cantly faster to create robot con�gurations using the Mis-
sionLab toolset than writing the corresponding C code.

2. Show that theMissionLab toolset is well suited to the con�guration design task.

Given these objectives, the following usability criteria were developed to rate the
usability of the MissionLab con�guration editor for specifying robot missions.

1. Time to add a mission step

The time required to add a new step to a mission is an important determiner
in how long it takes to construct missions from task descriptions.

2. Time to specialize a step

The time required to change the behavior of a step in a mission sequence is a
predictor of the time required to modify existing con�gurations.

3. Time to parameterize a step

The time required to change the parameters used by a mission step also impacts
utility of the toolset.

159

4. Time to add a mission transition

The time required to create a new transition between two operating states in a
mission sequence gives an indication of how easily the user is able to manipulate
the con�gurations.

5. Time to specialize a transition

The time required to change the perceptual trigger causing a particular transi-
tion in a mission sequence is a predictor of the time required to modify existing
con�gurations.

6. Time to parameterize a transition

The time required to change the parameters used by a perceptual trigger also
impacts utility of the toolset.

7. Number of compiles required to create a simple configuration

The number of edit/compilation cycles required to create benchmark con�gu-
rations measures the level of understanding of the users.

8. Time to create a simple configuration

The time required to create benchmark con�gurations serves as a yardstick
metric, giving a handle on the overall performance of the test participants using
the toolset.

9. Ability to create a configuration

A binary metric which catalogs the ability of participants to successfully create
con�gurations using the toolset.

10. Creation time using MissionLab versus C

For the participants also constructing a C version of the con�gurations, how do
times required to create the two con�gurations compare?

11. General feeling after use

We want test participants to feel comfortable using the toolset and to enjoy
using it. This metric attempts to determine how successfully that goal was
achieved in practice.

Table 6.2 lists the usability criteria using the tabular form developed earlier. No-
tice that a large portion of the goals for this project deal with the performance of
non-programmers using the system. This reects empowerment of this group as a
primary goal of this research project.

The Current Level values are a priori estimates based on participants using a
traditional programming language. These predictions can be reevaluated using the
data gathered from experiment 2 (presented in Section 6.5). The Worst Acceptable

160

Levels were picked arbitrarily by the author as estimates of the performance levels
below which experienced programmers will avoid using the system. These levels
are intended to be slightly lower than the performance of programmers using the C
language. The system will be acceptable if experienced programmers su�er only a
mild drop in productivity, since the system will also empower non-programmers, as
reected in Attribute 9. For this class of novice roboticists we are looking for a clear
improvement, from not being able to specify missions, to the successful construction
of robot con�gurations. The Best Possible Levels were determined based on the
performance of the developer. These values are likely unapproachable by all but very
experienced users. The Target Levels reect the design goals of the project. These
numbers were selected as targets for the development e�ort to provide a clear bene�t
to users over traditional programming languages.

6.3 Designing Usability Experiments

Once metrics have been speci�ed and the various values selected, it is necessary to
determine how data can be gathered to allow measuring the levels for the metrics.
This is not an easy task and requires careful planning and execution to prevent bias
and noise from swamping the underlying data.

Objective methods for data gathering generally involve test subjects using the
system under controlled conditions[48]. Commonly, the software is instrumented to
gather keystroke and timing information that will allow determining how the user
performed certain tasks. The experiments are best if administered by a third party
observer to remove bias and to keep the developers from interjecting knowledge not
commonly available. This observer is responsible for logging interesting events in a
journal of the experiment. The sessions are also videotaped to provide a method for
closer and repeated examination of interesting details (and as a permanent record in
case of disagreements with participants). Although these sterile test environments
clearly impact participant performance, they do allow objective comparisons between
competing techniques.

Gathering the data using objective methods is clearly preferable, but not always
possible. Certain attributes (i.e., initial impression, user comfort, etc.) are by nature
subjective and best gathered via questionnaires and informal discussions. Of course,
the questions must be carefully crafted to minimize sampling bias. The Question-
naire for User Interface Satisfaction (QUIS)[13] has been developed at the University
of Maryland as a general purpose user interface evaluation tool and has undergone ex-
tensive testing and validation. The QUIS test can provide a starting point to creating
a customized test to extract the desired information.

161

Table 6.2: The MissionLab usability criteria speci�cation table.

MissionLab Usability Speci�cation Table

Worst Best

Usability Value to be Current Acceptable Target Possible

Attribute Measured Level Level Level Level

1.

Novice user

performance

Time to add a mission

step 1 Min 30 sec 10 sec 1 sec

2.

Novice user

performance Time to specialize a step 2 min 1 min 30 sec 3 sec

3.

Novice user

performance

Time to parameterize a

step 1 min 1 min 30 sec 2 sec

4.

Novice user

performance
Time to add a mission

transition 1 min 30 sec 10 sec 2 sec

5.

Novice user

performance
Time to specialize a tran-

sition 2 min 1 min 30 sec 3 sec

6.

Novice user

performance
Time to parameterize a

transition 1 min 1 min 30 sec 2 sec

7.

Novice user

performance

Number of compiles to

create a con�guration 4 5 2 1

8.

Novice user

performance

Time to create a simple

con�guration 20 min 20 min 15 min 5 min

9.

Non-programmer

performance
Ability to create con�gu-

rations No Yes Yes Yes

10.

User

acceptance General feeling after use N/A medium good great

162

We now present three usability experiments which allow evaluation of the at-
tributes in Table 6.2. In Experiment 1 the participants construct a series of con�g-
urations to achieve written mission speci�cations using the graphical con�guration
editor. Experiment 2 repeats the process for the subset of subjects in Experiment 1
comfortable using a traditional programming language. Since participants conduct
Experiment 2 using conventional text editors, it is necessary to exercise care in the
experimental procedures to ensure that as many of the usability attributes as possible
are being measured. Experiment 3 concentrates on evaluating the hardware binding
features of the toolset and many of the usability attributes do not apply.

It is important to note that before conducting experiments such as these involving
human subjects, it is necessary to gain approval at most institutions from an over-
sight organization. At Georgia Tech this is the \Human Subjects Board" and these
experiments were approved for this project, by that board, contingent on participants
reading and signing the informed consent form reproduced in Appendix A.

We now present the development of the experiments; the procedures to be followed
in carrying them out, the nature and type of data generated, and the evaluation
methods to be followed in analyzing the data.

Since Experiments 1 and 2 are intended to provide a direct comparison, partic-
ipants able to program in traditional languages and willing to complete two exper-
iments will be provide the needed comparison. These participants should �rst be
assigned an ordering as to whether they will use the MissionLab toolset (Experiment
1) or the programming language �rst (Experiment 2). There should also be at least
a one day break between performance of the two experiments to reduce fatigue.

6.4 Experiment 1: CfgEdit Mission Speci�cation

6.4.1 Objective

Determine the performance of novice and expert users specifying bench-

mark robot missions using the Con�guration Editor.

There are two target audiences forMissionLab: Non-programmers who are able to
use the toolset, and expert programmers who can successfully utilize both MissionLab

and traditional programming languages. Test participants are to be drawn from both
participant pools for this experiment. This will allow testing both the hypothesis that
skilled programmers can utilize theMissionLab system with little drop in productivity
after minimal training, and that there exists a group of people who can create a
MissionLab con�guration but are unable to construct the corresponding code directly.

To evaluate this research project's military relevance, an attempt should be made
to include a number of ROTC students as test participants. This will allow testing the

163

claim that many will be able to modify a MissionLab con�guration but unable to ma-
nipulate corresponding con�gurations written in traditional programming languages.
If a signi�cant number of the ROTC participants are able to use the MissionLab

toolset, it will explicitly show the utility of this research for the military community.

6.4.2 Experimental Setup

An independent third party observer should conduct and monitor the experiments to
ensure impartiality. The experimental procedures, the benchmark tasks the partici-
pants will implement, and much of the menuing structure of the con�guration editor
was developed in cooperation with Erica Sadun while she was a GRA on this project.

Test Environment

1. A small quiet room where participants can be observed unobtrusively.

2. Videotape equipment to record the session.

3. An X Window-based workstation (SUN SPARC 10).

Desired Test participants

The broadest spectrum of people possible should be run through this experiment.
How these test participants are chosen as well as their numbers have the largest
impact on the signi�cance of the test data. Ideally, a random sample of potential
users large enough to ensure statistical signi�cance should be used as subjects.

Unfortunately, the number of test subjects necessary to ensure statistical signi�-
cance is dependent on the expected variance in the data to be gathered. Therefore,
as a �rst step, the test pool suggested below will provide a starting point to estimate
the experimental parameters. The data gathered from this group cannot be assured
to be statistically signi�cation a priori but, even without those assurances, it should
provide insight into whether the claims are supported at all by experimental evidence.
The data will also allow re�ning these experiments and better selection of the subject
pool for similar studies undertaken by other researchers.

1. 3� 6 ROTC students

2. 3� 6 CS students familiar with C

3. 3� 6 individuals familiar with the MissionLab toolset

4. 3� 6 participants with random skill levels

The time requirement for each participant is 2 hours.

164

Software

1. GNU C compiler version 2:7 or newer

2. MissionLab Toolset version 1:0 with logging enabled

Tasks

1. Deploy a robot to move to a ag, return to home base, and stop

2. Deploy a robot to retrieve mines one by one, returning each to the Explosive
Ordinance Disposal (EOD) area. When all the mines are safely collected, the
robot should return home and stop.

3. Deploy a robot to retrieve the ag while avoiding surveillance. Allow the robot
to move only when the mission commander signals it is safe.

4. Deploy a robot to explore a mine �eld. Each possible mine must be probed. If
it is dangerous mark it as a mine; if it is safe, mark it as a rock. The robot
should return home when all unknown objects are marked.

5. Deploy a robot for sentry duty. Chase and terminate any enemy robots, then
return to guarding home base.

Programming Model

1. All of the con�gurations created by the participants are executed in simulation.
Since we are gathering metrics concerning the development process and not
concentrating on the �nal con�gurations, it is felt that little would be gained
by imposing the additional complexity required to deploy each con�guration on
real robots. (Experiment 3 deals with this issue.) This also allows the simulated
hardware to be idealized to reduce complexity.

2. The simulated robots possess a complete and perfect sensor model, allowing
determination of the identity, color, and relative location of all objects in their
environment with a single sensor reading.

3. The environmental objects are partitioned into four physical classes: Fixed,
movable, containers, and robots. Each object can be any color although, for
these experiments a classi�cation based on color is created and enforced. Mines
are orange, enemy robots are red, ags are purple, EOD areas (containers where
mines can be placed) are green, rocks are black, trees and shrubs are dark green,
home base is a white rectangle, and unknown objects (either a mine or a rock)
are brown.

165

4. When a mine is being carried by a robot or residing within one of the EOD
areas it is not visible to any of the robot's sensors. This includes the robot
carrying the object and any other robots operating within the environment.

5. To simplify the control software, the robots in this study are idealized holonomic
vehicles. This means that they can move in any direction and need not deal
with turning radius issues. The system does not simulate vehicle dynamics;
only the maximum robot velocity is restricted.

These idealizations and simpli�cations result in a straightforward programming
model presented to the test participants. It becomes easier to explain and for them to
understand the requirements without detracting from the validity of the experiments
themselves. Since the modi�cations apply equally to each participant, any resulting
bias is eliminated in the comparisons.

6.4.3 Experimental Procedure

The participants are given oral and written speci�cations for a series of �ve tasks, one
at a time, and instructed to create robot con�gurations which ful�ll those mission
requirements.

1. Participants are to read and sign whatever informed consent form is required
by the testing institute.

2. Participants are given a tutorial introduction to the MissionLab graphical con-
�guration editor. This provides an introductory overview of the MissionLab
toolset and helps the participants become familiar with the use of the system.
A reasonable method is to have the participants construct a simple con�gura-
tion in cooperation with the person monitoring the experiments. An example
task is to cause a robot to move around picking up mines. The observer can
assist the participants in completing this task (or something similar), using it
to demonstrate features of the toolset.

3. Repeat for each of the 5 tasks:

(a) Give the participants the next task description and ask them to construct
a con�guration which achieves it.

(b) At this point, the observer should leave the room and only o�er assistance
when the test participants ask for aid. This policy allows the test partici-
pants to decide for themselves when they have reached a stumbling block,
and keeps the observer from interjecting help when it may not be required.
This also allows all help to be logged and attempts to prevent bias from

166

creeping into the experiments from unequal amounts of help being given
to certain participants.

(c) The test participants will use the con�guration editor to construct a con-
�guration which performs the desired task, compiling and testing their
solutions using the MissionLab compilation facilities and simulation sys-
tem.

(d) When the user-created con�guration correctly completes the task, or the
participants are not �nished within 20 minutes, the testing observer re-
enters the room. At this point any questions are answered and, if the
participants' solutions are incomplete, they should be corrected and miss-
ing portions explained before the next task is introduced.

4. After completing as many of the tasks as possible within 2 hours, the session
concludes with a survey.

6.4.4 Nature and Type of Data Generated

Metrics measuring the performance of each participant are gathered by instrumenting
the MissionLab system, by the experiment observer, via video tape, and through
participant surveys. The results are used to determine how the MissionLab system
performs against the results gathered in Experiment 2, and to evaluate its usability in
general. For both Experiment 1 and Experiment 2, at least the following data values
are generated for each subject completing one of the 5 tasks:

1. Time expended creating each con�guration until �rst compile.

2. Log of the durations of compilations.

3. Log of the length of intervals between compilations.

4. Number of compilations before running the simulator.

5. Number of compilations after �rst simulation until each task is completed.

6. Time required to �nish each task. If the participant fails to complete the task,
the observer estimates their progress towards a solution (0, 1

4
, 1

2
, 3

4
).

6.4.5 Data Analysis Procedures

The logging data gathered while the participants complete each task can be used
to determine values for the usability criteria established in Section 6.2. Figure 6.1

167

// Information to identify event file //

0.000: start Session

0.001: status StartTime "827354547.598"

0.002: status Task "4"

0.002: status Subject "0"

// A new state was added to workspace //

16.278: start PlaceState "State1"

16.931: end PlaceState

// A state was moved to a new location //

19.905: start Move

20.797: end Move

// A transition was added to connect two states //

21.796: start AddTransition Trans1

22.859: status FirstState

23.616: end AddTransition

// State2 was changed to the MoveTo behavior //

58.354: StartModify Agent State2 "Stop"

61.832: EndModify Agent "MoveTo"

// Unknown objects targeted for MoveTo //

64.352: StartModify Parms State2 "MoveTo None"

67.198: EndModify Parms "MoveTo Unknown objects"

// Configuration compiled successfully //

538.415: event StartMake

605.778: event EndMake

// Configuration executed in environment A //

607.246: start Run

610.132: start mlab

615.508: start PickMap

618.448: status PickMap "../World_A.ovl"

618.448: end PickMap

678.612: end mlab

678.730: end Run

// The task was completed. //

824.233: end Session

Figure 6.1: An annotated portion of an event log from one of the usability
experiments. The numbers are the time the event occurred in
seconds, relative to the start of the experiment.

168

presents an annotated portion of an event log generated automatically by the Mis-

sionLab system while a user constructs a con�guration. The log captures the time
and duration of events such as adding states and transitions, selecting new tasks
and triggers, compiling the con�guration, and running the simulator. Gathering logs
such as these during the usability experiments allows the determination of average
values for the Values to be Measured metrics in the usability speci�cation table.
This includes the time required to place states and transitions, specialize states and
transitions, and change their parameters.

Analysis of the logs will involve parsing them to extract the relevant data points.
For example, the time to specialize a step occurs in Figure 6.1 from time 58.354 to
time 61.832 in the log. This interval started when the user clicked the right mouse
button on state 2 to choose a new task. The user selected MoveTo from the popup
menu of tasks as the new task to be performed while this state is active, ending the
event.

The total time to complete each task is also available from the logs. This will give a
direct measure of the \Time to create a simple con�guration" Value to be Measured

and allow comparisons between Experiment 1 and Experiment 2 performance. The
\User Acceptance" Usability Attributewill be extracted from the post-experiment
surveys.

A statistical analysis of the variance in the measured parameters is necessary to
determine the signi�cance of the data gathered. Computing this variance will allow
researchers to understand to what extent the data is predictive for future research.
Comparisons between Experiment 1 and Experiment 2 should be made as paired
samples when the same person performs both experiments since the performance of
individual subjects likely has more variability than for the same person.

6.5 Experiment 2: Mission Speci�cation using C

6.5.1 Objective

Determine the performance of participants on tasks similar to Experiment

1 when using a traditional programming language.

This experiment is intended to provide data allowing a direct comparison to the
data gathered in Experiment 1. Ideally, the same subject pool should perform both
this experiment and Experiment 1 in a random order. There should also be at least
a one day break between the two experiments. Of course, participants who are not
programmers will be unable to perform this experiment. Given the goal of duplicating
as closely as possible conditions in Experiment 1, the procedures and tasks are the
same as in Experiment 1 except for di�erences noted below.

169

6.5.2 Experimental Setup

Same as Experiment 1.

Test Environment

Same as Experiment 1.

Desired Test Participants

Same as Experiment 1, except for the additional restriction that they need to be
uent in the C programming language.

Software

1. GNU C compiler version 2:7 or newer

2. Current versions of vi and emacs editors

3. MissionLab simulation system Version 1:0

Programming Model

Same as Experiment 1.

6.5.3 Experimental Procedure

Same as Experiment 1, except that the tutorial also presents a library of behaviors
and perceptual triggers that can be called from a traditional programming language.
Instead of presenting the graphical editor, the mechanics of editing, compiling, and
running programs must be presented.

The participants should be given the exact same task descriptions as Experiment
1 and asked to construct con�gurations by hand to achieve them. Test participants
should be allowed to use their favorite text editor to construct the con�gurations, and
they should evaluate their solutions using the same MissionLab simulation system as
in Experiment 1.

An equivalent set of motor behaviors and perceptual triggers must be provided
as callable functions. E�ectively, the subject's job is to construct by hand the FSA
that CfgEdit generates from the graphical descriptions. This is intended to give
programmers every advantage in reproducing the MissionLab capabilities. Starting
them out with less support would force them to take far longer to create a solution.

170

6.5.4 Nature and Type of Data Generated

Metrics measuring the performance of each participant are gathered by instrumenting
the build and run scripts, by the experiment observer, via videotape, and through
participant surveys. There are no event logging capabilities available during the edit-
ing process as in Experiment 1. Therefore, the data gathered during this experiment
needs to center on logging when they start and stop editing, compiling, and running
their con�gurations. As a minimum, the following data values are generated:

1. Time expended creating each con�guration until �rst compile.

2. Log of durations of compilations.

3. Log of intervals between compilations.

4. Number of compilations before running the simulator.

5. Number of compilations after �rst simulation until each task is completed.

6. Time required to complete each task. If the participant fails to complete the
task, the observer will estimate their progress towards a solution (0, 1

4
, 1

2
, 3

4
).

6.5.5 Data Analysis Procedures

The data gathered during this experiment will be used to compare the performance
of subjects using the C programming language to their performance using the Mis-
sionLab toolset. The same evaluation techniques are used here as are used on the
data gathered in Experiment 1.

6.6 Experiment 3: Con�guration Synthesis

6.6.1 Objective

Show the MissionLab toolset is well suited to the con�guration design

task.

The �nal experiment is intended to demonstrate the multi-architecture support in
theMissionLab toolset. One of the primary goals ofMissionLab is to provide a mission
speci�cation tool which improves the design process. Reductions in development time
and improved design robustness should be realized from the system's support for code
reuse, the integrated simulation environment, and the ability to retarget existing
con�gurations to di�erent implementation architectures and physical hardware.

171

Existing technologies do not support explicit binding and retargeting of con�gura-
tions to individual robots, so no direct comparison is possible. MissionLab is breaking
new ground at this point and a rigorous statistical analysis is not needed. Therefore,
the experiment will concentrate on exercising the capabilities of the MissionLab sys-
tem for these tasks. Data gathered during the experiments will provide insights into
the strengths and weaknesses of the system.

In this experiment the test participants create, from scratch, a con�guration using
the MissionLab toolset The mission is for a single robot to move through a series of
waypoints to a goal, where it allows the operator to control it using teleoperation
before sending it on to its ultimate objective. A generic con�guration is constructed,
then bound to the UGV architecture and the corresponding SAUSAGES code is
generated. The SAUSAGES simulation system from CMU is used to evaluate the
results. The same con�guration is then unbound and subsequently rebound to the
AuRA architecture. The code generated in this fashion is tested on the MissionLab
simulation system and also on a physical robot.

6.6.2 Experimental Setup

An independent third party observer conducts, monitors, and evaluates the experi-
ment to ensure impartiality.

Test Environment

1. A suitable location where the con�guration can be evaluated on an actual robot.

2. An X Window-based workstation which runs theMissionLab toolset reasonably
quickly (SUN SPARC 5).

3. A Mobile robot capable of being controlled by the MissionLab toolset.

Desired Test Participants

Since this experiment has a much narrower focus than the previous two, a smaller pool
of test subjects should still provide interesting results. The suggested subject pool
below will provide information which can be used to shape subsequent experiments
to further analyze this new domain.

1. 3� 6 individuals familiar with the MissionLab toolset

2. 3� 6 individuals with random skill sets

The time requirement for each participant is 3 hours.

172

Software

1. GNU C compiler version 2:7 or newer

2. MissionLab Toolset version 1:0 with logging enabled

3. The CMU SAUSAGES simulation system

Programming Model

1. The con�gurations created by the participants will be executed using the CMU
SAUSAGES simulation system, the MissionLab simulation system, and a real
mobile robot (Denning MRV-2).

2. For this test, localization error accumulated by the robots can be ignored.

6.6.3 Experimental Procedure

This experiment is intended to test the utility of the MissionLab toolset for the
design process. The participants begin with an empty con�guration and the library
of standard behavioral primitives. They are instructed to create a con�guration
consisting of a single robot which performs a simple scouting mission.

1. Each test participant creates a generic single robot con�guration where the
robot moves through a sequence of waypoints, waits for clearance from the
mission commander, and returns. The observer is allowed to answer questions
asked by the participants during this experiment.

2. Each subject �rst binds their con�guration to the AuRA architecture, then
compiles and runs it using the MissionLab simulation system to verify its cor-
rectness.

3. If a participant is unable to complete this step in one hour, the experiment
stops.

4. The participants deploy their AuRA robot executables on a suitable robot and
evaluate its performance. Any required modi�cations from the simulation to
the actual robots are carefully noted.

5. If a participant is unable to complete this step in 30 minutes, the experiment
stops.

6. The test participants re-bind the con�guration to target the SAUSAGES archi-
tecture. The resulting code is evaluated using the CMU SAUSAGES simulation
system.

173

7. If a participant is unable to complete this step in 30 minutes, the experiment
stops.

8. When the con�guration correctly executes in all three modes, the experiment
is complete. If the participants are not �nished within a total of 3 hours, the
task is interrupted and a failure recorded.

6.6.4 Nature and Type of Data Generated

Metrics measuring the performance of each participant are required to allow deter-
mining how the MissionLab system is used during design. Since the capabilities
demonstrated in this experiment surpass those of existing techniques, little compari-
son is possible. Therefore, only high level data concerning length of time to complete
the tasks is gathered.

6.6.5 Data Analysis Procedures

Using the event logs the following features will be analyzed:

1. Number of compilations to complete each task.

2. Number of runs required to complete each step.

3. Changes required in the con�guration between target architectures.

4. Total time required to complete the tasks.

5. Help required during the experiment.

The number of simulation runs required provides a measure of the comprehension
supported by the con�guration. When a participant runs the con�guration, they want
to see its performance. If participants do not require many runs to complete a task
it would indicate that the editor allows them to understand what the con�guration
will do before it is actually executed.

6.7 Summary

This chapter introduces the process of usability testing for software systems. Further,
it de�nes speci�c usability criteria which can be used to evaluate the utility of robot
programming toolsets in general, and theMissionLab system in particular. A usability
criteria speci�cation table was presented which established target values for each of
the relevant metrics when using the MissionLab toolset.

174

Three experiments were developed to allow establishing values for each of the
usability criteria by conducting usability studies with groups of test participants.
Experiment 1 requires each participant to use the graphical editor to create con�gu-
rations to achieve missions described in each of the �ve task descriptions. Statistics
gathered during this experiment via event logs and survey questionnaires will estab-
lish values for the usability criteria. Experiment 2 repeats the same tasks, but requires
participants to code solutions using the traditional C programming language. This
allows a direct comparison to be made between the two methodologies. Experiment 3
asks participants to build a con�guration from scratch to perform a navigation task.
This con�guration is to be bound to an MRV-2 mobile robot and the executables
evaluated both in simulation and on a real Denning robot. After rebinding the con-
�guration to a UGV robot, the SAUSAGES output should be evaluated using the
CMU simulator. This task evaluates the utility of the retargetability of MissionLab.

175

176

Chapter 7

Experimental Evaluation

With an implementation in hand and usability criteria established, we now turn
to evaluating the MissionLab toolset using the procedures presented in Chapter 6.
This chapter will present the results of performing the three experiments using the
MissionLab toolset. The results will be evaluated using the procedures presented in
Chapter 6.

During these experiments the con�gurations created with the MissionLab system
will be subjectively evaluated as to their quality during the testing process. It is
important to show that the con�gurations created with MissionLab are of acceptable
quality, although they may be ine�cient with respect to con�gurations hand-crafted
by experts using other tools. The con�guration editor encourages users to follow
the behavior-based paradigm using data-ow style computation. Clearly, there are
good points and bad points to every architecture and this one will be no exception.
This style of structuring robot control software has proven fruitful in many other
robot architectures[9, 3, 14] and it is expected the con�gurations created will be of
acceptable quality, both in terms of resource requirements and run-time performance.
However, there certainly exist some htask; environment; roboti tuples where expert
roboticists could improve performance by hand-crafting solutions following di�ering
paradigms. However, we intend to show that this toolset in the hands of people who
are not expert roboticists can be used to create good con�gurations. In this case
\good" means con�gurations of su�cient quality that they will perform the required
tasks.

The MissionLab toolset is an integrated development environment which includes
a multi-agent simulator and run-time operator console. However, we expect to show
that the majority of the development time bene�ts of the system arise from use of
the visual con�guration editor and are directly attributable to the underlying Soci-
etal Agent architecture. If this is supported by experiments, it provides concrete
support for the claims made for the architecture and highlight potential bene�ts for
its application in other domains.

If a signi�cant number of participants perform better on Experiment 1 than 2
it will directly show the bene�ts of using the MissionLab toolset over traditional

177

programming languages. Such speedups are anticipated to arise from a combination
of two features of the system: A reduction in the depth of understanding required to
successfully create a con�guration, and an increase in the rate at which a comparable
level of comprehension can be reached.

It is predicted that using the con�guration editor will allow the participants to
more tightly focus their attention on relevant features of the con�guration due to the
agent-based recursive presentation. This support for information hiding allows su�-
cient details to be ignored (which must be dealt with in traditional implementations)
to produce a signi�cant speedup by reducing both the scope and depth of compre-
hension required, and thus reduces the time required for successfully completing the
tasks.

It is also suggested that the graphical editor increases the rate at which compre-
hension of the available primitives may take place. The use of iconic representations
for complex computational objects presents a high-level view to the user while still
providing whatever depth of presentation the user requires through simple mouse
clicks. Based on these presentation features, the same depth of detail can be ex-
tracted more rapidly from a con�guration written using the MissionLab system than
from a traditional implementation.

Experiment 3 evaluates the MissionLab support for hardware binding and associ-
ated run-time architectures. A single generic con�guration is used to drive a mobile
robot, a simulated AuRA-based robot, and a simulated SAUSAGES-based robot (us-
ing the CMU SAUSAGES simulator).

The experiments are presented in Sections 7.1, 7.2 and 7.3. Each section begins
by describing how the experiment was conducted. Next, the data generated dur-
ing the experiment is presented in relation to the usability values to be measured

de�ned in Chapter 6 with some additional data developed to support further charac-
terization of the MissionLab toolset. Finally, an analysis to determine values for the
metrics concludes each section. Section 7.4 summarizes the experimental results and
concludes the chapter.

7.1 Experiment 1: CfgEdit Mission Speci�cation

7.1.1 Objective

The objective of experiment 1 is to determine the performance of novice and expert
users specifying benchmark robot missions using the Con�guration Editor. Since
non-programmers are an intended target audience for MissionLab, a goal of this ex-
periment is to ascertain if non-programmers are able to use the toolset and, if so,
to measure their performance. Participants comfortable using traditional program-
ming languages are included to gather performance data related to this class of users.

178

This data will also be compared to data gathered during experiment 2 to evaluate if
experienced programmers can also bene�t from the toolset. This will allow testing
both the hypothesis that skilled programmers can utilize theMissionLab system with
little drop in productivity after minimal training, and that there exists a group of
people who can create a MissionLab con�guration but are unable to construct the
corresponding code directly.

7.1.2 Experimental Setup

Test Environment

The tests were conducted in the Georgia Tech Usability Lab. A SPARC 10 worksta-
tion was moved into the lab for use in these experiments by the lab coordinator, Randy
Carpenter. The lab is out�tted with one-way mirrors and video cameras which allow
monitoring and recording the experiments from outside the room. Darrin Bentivegna
conducted the experiments to ensure consistency and impartiality. All experiments
were videotaped, and logging data was gathered both by Darrin and automatically
through the MissionLab software.

Test Participants

Twelve people participated in this experiment and are identi�ed with a numeric code
ranging from 1 to 12. Participants were solicited via an E-mail announcement to
all Georgia Tech College of Computing students and personnel. About 1=2 of the
participants were paid subjects. The money was used as an incentive to attract
people who might not otherwise volunteer.

To evaluate this research project's military relevance several attempts were made
to include ROTC students as test participants. This included a short presentation
given to the Georgia Tech Army ROTC students encouraging them to try the exper-
iments. However, we were only able to attract one ROTC student, so no conclusions
can be drawn in that area.

The skill set of the participants was as follows:

� 1 ROTC student:
Participant 12.

� 3 people familiar with the MissionLab toolset:
Participants 2, 5, and 6.

� 4 people with no programming experience:
Participants 1, 3, 7, 10, and 12 (Note that 12 is also the ROTC student).

179

� 4 people with programming skills, but no MissionLab experience:
Participants 4, 8, 9, and 11.

Software

The tests were conducted using MissionLab Version 1.0 with logging enabled.

Programming Model

The programming model presented in Section 6.4.2 was used in this experiment.

7.1.3 Experimental Procedure

The experimental procedures presented in Section 6.4.3 were followed for this exper-
iment. The scripts and reference material used are reproduced in Appendix A.

7.1.4 Raw Data Generated

Figure 7.1 shows an annotated portion of an event log generated automatically by
theMissionLab system while a user constructed a con�guration. The logs can be used
to reconstruct the number and duration of many types of events occurring during the
experiments. Events include adding states and transitions, selecting new agents for
tasks and triggers, parameterizing those agents, and compilation and execution of the
con�gurations. For example, the time to specialize a step (Modify Agent) occurs in
Figure 7.1 from time 58.354 to time 61.832 in the log. This interval started when
the user clicked the right mouse button on state 2 to choose a new task. The user
selected MoveTo from the popup menu of tasks as the new task to be performed while
this state is active, ending the event. Each of these events is described in the next
subsection.

A parsing tool was developed to extract desired information from the logs. It uses
the information of how the various events are denoted in the log �les to generate
statistics related to the named event type. The raw data measuring usage of the
con�guration editor was extracted using this tool.

7.1.5 Overview of Experimental Results

This experiment required participants to construct solutions, similar to the one shown
in Figure 7.2, for each of �ve tasks. The MissionLab system logged various events
while the participants worked to allow establishing values for the various usability
criteria.

180

// Information to identify event file //

0.000: start Session

0.001: status StartTime "827354547.598"

0.002: status Task "4"

0.002: status Subject "0"

// A new state was added to workspace //

16.278: start PlaceState "State1"

16.931: end PlaceState

// A state was moved to a new location //

19.905: start Move

20.797: end Move

// A transition was added to connect two states //

21.796: start AddTransition Trans1

22.859: status FirstState

23.616: end AddTransition

// State2 was changed to the MoveTo behavior //

58.354: StartModify Agent State2 "Stop"

61.832: EndModify Agent "MoveTo"

// Unknown objects targeted for MoveTo //

64.352: StartModify Parms State2 "MoveTo None"

67.198: EndModify Parms "MoveTo Unknown objects"

// Transition 1 was changed to Detect trigger //

276.181: StartModify Agent Trans1 "FirstTime"

280.518: EndModify Agent "Detect"

// Transition 1 was changed to detect Mines //

340.983: StartModify Parms Trans1 "Detect None"

343.992: EndModify Parms "Detect Mines"

// Configuration compiled successfully //

538.415: event StartMake

602.616: event GoodMake

605.778: event EndMake

// The Configuration was executed //

607.246: start Run

678.730: end Run

// The task was completed. //

824.233: end Session

Figure 7.1: An annotated portion of a MissionLab event log. Comments are
enclosed in // // brackets. The numbers are the time the event
occurred (in seconds) after the start of the experiment.

181

Figure 7.2: A representative task solution for Experiment 1.

Constructing a histogram of the duration of actions allowed visualizing the vari-
ability in the data. Using these histograms it was noted that choosing a new behavior
for a mission step and a new trigger for a transition both exhibited markedly greater
variability than the other actions. This variability suggests that users had di�culty
choosing new behaviors and triggers. The current method for selecting behaviors and
triggers presents an alphabetized list of choices from which users can pick. These
results suggest a di�erent method is required, such as a functional grouping.

In contrast, the parameterize step action is very uniform. This suggests that
users are able to consistently choose new parameters for behaviors and the current
methods using push buttons and slider bars to parameterize behaviors are working
well.

The actual values for the usability criteria were estimated using the average du-
rations measured during the experiment. Figure 7.3 presents these results in tabular
form. Notice that all times were less than 25% of predicted values. This demon-
strates that the system is quite easy for novices to use to construct and evaluate
robot missions.

182

Novice User Performance

Target Measured
Value to be Measured Level Value

Time to add a mission step 10 sec 2.2 sec

Time to specialize a step 30 sec 6.2 sec

Time to parameterize a step 30 sec 4.1 sec

Time to add a mission transition 10 sec 2.6 sec

Time to specialize a transition 30 sec 4.9 sec

Time to parameterize a transition 30 sec 4.0 sec

Number of compiles to create con�guration 2 2.0

Time to create a simple con�guration 15 min 7.4 min

Figure 7.3: Experiment 1 established values for the usability criteria

183

Figure 7.4 compares the time taken by non-programmers and experts to construct
solutions for each task. Notice that two of the �ve non-programmers were able to
perform close to expert level with only 20 minutes of training. A third was able to
complete two of the tasks. The remaining two participants were only familiar with
computers in an o�ce environment and struggled with the system. These results sug-
gest that people with an engineering background are able to use the system regardless
of their ability to program in traditional languages such as C.

Seconds to Complete each Task

P Task 1 Task 2 Task 3 Task 4 Task 5 Avg

1 1

4

1

2
| | | |

3 3
4

1
2

| | | |

7 538 570 569 760 399 567
10 234 714 616 557 568 538
12 1

2
424 3

4
551 | 487�

2 329 3

4
408 669 | 469�

4 329 394 522 480 726 490
5 349 494 525 377 441 437
6 319 498 663 551 458 498
8 475 220 283 362 311 330
9 189 520 342 379 215 329
11 234 270 372 332 440 330

Figure 7.4: The top group lists the performance of non-programmers on
Experiment 1 and the lower group represents the expert users.
The times are seconds required to generate a solution. Fractional
values represent partial completion of the task. Notice that 2 of
the 5 non-programmers did quite well and a third was able to
solve two tasks correctly.

184

7.1.6 Detailed Experimental Results

The usability criteria established in Figure 6.2 were:

1. Time to add a mission step

2. Time to specialize a step

3. Time to parameterize a step

4. Time to add a mission transition

5. Time to specialize a transition

6. Time to parameterize a transition

7. Number of compiles required to create a simple configuration

8. Time to create a simple configuration

9. Ability to create configurations

10. General feeling after use

Each of these criteria will now be evaluated based on the data generated in experi-
ment 1.

185

Time to add a mission step

Adding steps to a mission is a basic construction task necessary to encode missions.
The time required to add a new state gives an indication of how di�cult it is for
users to build con�gurations using the graphical editor. The action of adding a step
to the mission begins when the user clicks the left mouse button on the Add State

button. This time is marked in the event logs by a start PlaceState event. The
action concludes when the user clicks the left mouse button in the workspace to place
the new state. This ending time is marked in the event logs with an end PlaceState

event. Each participant generated a varying number of these actions while completing
the �ve tasks based on how many mis-steps and subsequent deletions they made.

Figure 7.5 shows the durations of all the Time to add a mission step actions
generated during the experiment. The table is structured with column P, the partic-
ipant's ID number and column T, the task number. Due to time constraints, some
participants didn't complete all �ve tasks and the rows for the missing data are not
included. The times are presented in chronological order with a particular partici-
pant's times read left to right and top to bottom. For example, Participant 12's �rst
time was 1:1 (on task 1) and �nal time was 0:4 (on task 4).

Notice that the number of events in each row varies. The mission requirements
for each task described only the desired behavior of the robot. No hints were given
as to how best to structure the solution to achieve a solution. The large variability in
the number of events is demonstrative of the di�ering approaches taken by the test
subjects in generating their solutions. Although the number of states and transitions
used in solutions varied somewhat from person to person and task to task, even when
the �nal solutions were similar, advanced users tended to use fewer actions than
novices to generate the solution.

To better visualize the raw data, Figure 7.6 graphs the times from Figure 7.5
with logs from the di�erent tasks appended temporally into a single graph for each
participant. Each of the 12 participants' graphs are stacked on top of the other and
separated by horizontal lines. The data for the participants is grouped by skill set.
Participants 1, 3, 7, 10, and 12 had little or no programming experience. Participants
4, 8, 9, and 11 had good programming skills, but no experience with the MissionLab
toolset. Finally, participants 2, 5, and 6 were both good programmers and had
previous experience using MissionLab.

The vertical axis in Figure 7.6 represents the time, in seconds, the participant took
to add a state to the con�guration. The horizontal lines mark the zero point and the
tick marks are 5 seconds apart. The vertical distance between graphs represents 20
seconds duration. If desired, the exact duration of an event can be determined from
Figure 7.5.

One would expect to look at these graphs and see faster (lower) times as the
users gain experience with the system. Users should also exhibit less variability as

186

they become more pro�cient with using the editor. The horizontal span of the graphs
represents about an hour (the duration of the sessions) so the users had reasonable ex-
posure to the graphic editor. Looking at Figure 7.6 some users do show this speed-up
and reduction in variability, with Participant 7 being the most pronounced. It is also
easy to distinguish between novice and experienced computer users, with Participants
7 and 5 being examples of each, respectively.

The distribution graph shown in Figure 7.7 was constructed from the data in Fig-
ure 7.5 to aid in visualizing the consistency of the data. The horizontal axis denotes
the event duration in seconds with a resolution of 1=2 second. The vertical axis de-
notes the number of \Add Step" events occurring in Experiment 1 with that duration.
Notice the well-de�ned peak at 1 second duration. The data has a Mode[69] (the most
common value) of 1 second and appears to have a nearly normal distribution. Based
on this graph, the duration of the add mission steps action for experienced users will
likely be near 1 second.

The average value for the Time to add a mission step action will be used as
the measured value for novice user performance. Based on the 312 data points in Fig-
ure 7.5, the average value is 2.20 seconds and the standard deviation is 1.87 seconds.
This is a very good time for performing this action. The small standard deviation
and limited number of outliers suggests that this action is easily performed with lit-
tle room for confusion. This is to be expected since it only requires users to click
on the new state button and again in the workspace. A target value of 10 seconds
had been established and times faster than 30 seconds were considered adequate for
novice users. It is estimated that it takes about a minute for a programmer to edit a
C �le and add a new step to a mission (probably by adding a new case to a switch
statement), so there is a large improvement available to users of MissionLab.

187

P T Seconds

1 1 2.3 4.2 1.9 5.1 2.7 5.2 2.7 1.2 5.2 2.6 1.1

1 2 2.8 0.9 1.9 1.6

2 1 1.7 3.3 1.8

2 2 2.8 4.3 3.9 3.7 3.4 1.7

2 3 2.5 2.5 3.4 4.1 3.6 4.2

2 4 0.6 2.8 4.0 7.4 2.0 5.0 2.5

3 1 2.2 1.6 1.4

3 2 2.1 2.5 1.9 1.2 0.9 1.0 1.1 1.0 1.5 1.2 1.0

4 1 2.8 1.5 2.0

4 2 3.0 3.2 5.3 6.3 3.5 2.0

4 3 1.0 2.6 2.1 2.2 3.9 5.5

4 4 1.3 3.5 3.6 4.0 1.6 8.3

4 5 2.8 2.9 1.6 0.6

5 1 1.7 1.5 0.8

5 2 1.2 1.2 0.6 2.1 1.3 0.9 1.4 0.7

5 3 0.9 1.7 1.4 1.0 0.8 1.1 1.0 0.8

5 4 1.2 0.7 1.2 0.8 0.4 2.0

5 5 0.6 0.9 0.9 2.6

6 1 1.4 1.4 2.3 1.4

6 2 5.1 2.5 1.9 4.9 1.4 1.3

6 3 0.9 0.9 0.8 1.8 1.8 1.4 1.4

6 4 1.0 1.2 2.6 1.3 2.3 0.8

6 5 1.2 2.0 1.4 2.4 0.9

7 1 6.3 4.2 1.6 1.6

7 2 4.9 3.5 3.0 6.6 1.5 1.4

7 3 14.5 3.1 2.5 3.0 1.7

7 4 8.2 2.4 4.2 2.6 2.0 1.2

7 5 1.2 2.1 2.3 2.4 0.9

8 1 2.2 2.6 2.7 1.9 1.4

8 2 5.5 1.6 6.4 4.1 1.5 1.4

8 3 1.6 0.8 3.0 2.1 3.0

8 4 1.3 1.9 6.2 1.7 6.6 0.9 1.2

8 5 1.3 1.7 1.8 1.2

9 1 2.5 2.4 1.9 2.6

9 2 1.1 8.8 2.3 3.0 2.3 1.1 2.6 1.2

9 3 1.4 1.3 1.8 1.5 1.8 2.3

9 4 1.0 0.8 0.8 1.3 0.9 0.8 1.1

9 5 1.1 1.2 0.9 1.2

10 1 5.5 7.2 1.9

10 2 2.2 6.4 2.1 0.9 0.9 1.9 1.8

10 3 5.1 1.9 2.1 1.3 1.9 1.2 1.2 1.0

10 4 0.7 17.1 1.7 1.3 1.6 1.5 1.2

10 5 1.6 1.0 4.0 2.9 3.3 1.4

11 1 1.3 0.7 0.9

11 2 1.5 4.5 1.3 1.1 2.2 0.8

11 3 1.1 0.9 3.1 1.6 1.6 1.3

11 4 1.3 1.6 1.0 0.9 1.0 1.9 1.4

11 5 0.9 0.7 3.1 0.8 3.3

12 1 1.1 1.8 1.8 7.1 1.1 1.0

12 2 1.3 1.2 1.4 2.0 1.7 2.0 1.6 1.4 0.7

12 3 0.9 1.3 0.8 1.0 0.9 0.6 0.4 1.1 1.2 1.4 3.3 0.8 0.9 3.1 1.0 1.1 0.7

12 4 0.6 1.1 1.7 1.1 1.0 0.5 0.4

Figure 7.5: Time to add a mission step

Time in seconds taken by participants to add steps to a mis-
sion. Column \P" is the participant and \T" is the task. The
number of actions varied based on how users proceeded in the
development. Tasks not attempted due to lack of time are not
included.

188

6

Had used Mlab

5

2

11

Programmers

9

8

4

12

Non-programmers

10

7

3

Participant ID 1

Add_Mission_Step Events

 0 Seconds
 5
10
15
20

Figure 7.6: Time to add a mission step

The data from Figure 7.5 graphed to aid in visualizing trends.
The height of each circle marks how long in seconds it took a
user to add a step to the mission. Notice that the users tend to
get faster and more consistent with experience. The large spikes
mark instances where users took longer to decide where to place
a state.

189

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
um

be
r

of
 O

cc
ur

re
nc

es

Seconds

Distribution of Times to Add Mission Steps

Figure 7.7: Distribution of the time required to add mission steps. The dura-
tions from Figure 7.5 were rounded to 1=2 second and the number
of occurrences of each duration plotted. This graph helps visu-
alize how consistently users performed this action. The small
standard deviation and limited number of outliers suggests that
this action is easily performed with little room for confusion.
This is to be expected since it only requires users to click on the
new state button and again in the workspace.

190

Time to specialize a step

When a new step is added to a mission it defaults to the Stop behavior. Usually
this is not the desired behavior and the step must be specialized by selecting the
correct behavior from a popup menu. The Time to specialize a step attribute
measures the time it takes for a user to complete this specialization task. This action
is measured from the time the user clicks the middle mouse button on the state until
the left mouse button is clicked on the OK button in the popup window. These points
are denoted in the event logs with the StartModify Agent and EndModify Agent

events.
Figure 7.8 lists the length of time taken by each participant to specialize steps.

Notice how much larger the times are and the increased variability compared to the
previous action. Figure 7.9 shows this data graphically using the same stacked format
as Figure 7.6 to allow better visualization. The vertical scale of the graphs has been
expanded to 40 seconds due to the increased variability in this data. Notice how easy
it is to discern between experienced and novice users.

Figure 7.10 shows the distribution of this data. Notice that the horizontal reso-
lution of this graph has been reduced to 1 second due to the dispersion of the data.
The peak in this graph resembles a normal distribution with a Mode of 3 seconds.
This suggests that expert users require about 3 seconds to choose a new behavior
for a step. The measured value for the Time to specialize a step attribute for
novice users is computed as the average of the 260 data points. This works out to
6:15 seconds with a very high standard deviation of 5.86 seconds. The 30 second
target value was easily surpassed by these novice users. The estimated time for a
programmer to modify a C �le to invoke a di�erent behavior was 2 minutes, showing
the bene�ts MissionLab users gain.

The long right-hand tail on the distribution graph as well as the variability in
Figure 7.9 show a signi�cant di�erence in performance between novice and expert
users on completing this action. Looking at Figure 7.9, Participants 5 and 6 did quite
well on this task and generated times consistently in the 5 second range. Compare
those records with Participants 7, 10, 11, and 12 who exhibit far greater variability
and numerous times in the 20 and 30 second ranges. These long periods are times
when the users were confused about which behavior to select. to be useful to people
unfamiliar with robotics. of the behaviors were inadequate. The �rst will be improved
by experience using robots and specifying missions and is not directly related to the
MissionLab toolset. However, unclear behavioral descriptions is a facet ofMissionLab
and the test data suggests they require reworking to be useful to people unfamiliar
with robotics.

191

P T Seconds

1 1 6.7 6.8 3.5 3.9 4.1 3.2 11.0 2.7 5.4 2.2 2.7 4.6 10.0

1 2 4.3 3.7 4.5 20.0 12.8 39.2

2 1 34.0 7.4 10.4

2 2 16.9 2.9 3.4 3.5 14.1

2 3 3.0 2.8 4.0

2 4 2.8 3.2 7.2 5.0 2.7

3 1 24.8 10.1

3 2 9.5 15.2 7.7 4.4 4.2 3.8 5.5 3.8 3.3 4.7

2.8 4.6 3.0 4.2 4.7 3.3 5.4

4 1 3.3 3.3

4 2 4.0 3.7 12.8 5.8 5.7

4 3 3.6 30.5 4.7 2.8 5.0 5.7

4 4 3.5 6.7 3.8 3.0 3.3

4 5 5.0 6.9 4.7 4.4 3.0

5 1 4.6 6.0

5 2 3.0 2.8 2.2 9.2 3.5 3.8

5 3 3.7 4.9 2.3 2.6

5 4 5.9 1.9 3.1 2.4 2.9

5 5 8.6 4.2 4.7

6 1 8.2 4.8 3.9

6 2 4.5 3.9 2.6 4.9 5.7 7.8

6 3 2.6 2.8 2.2

6 4 4.9 4.0 4.1 3.2 5.1

6 5 6.9 4.4 5.9 4.4 2.8

7 1 18.4 4.6

7 2 20.8 4.3 3.8 5.7 17.8

7 3 6.1 4.2 7.6

7 4 9.7 5.5 9.7 6.6 12.9

7 5 4.7 5.2 6.1 4.5

8 1 5.8 4.5 3.5 3.2

8 2 4.3 2.6 5.2 3.9 3.2

8 3 4.4 3.1 10.0

8 4 3.4 4.9 4.5 2.4 2.8

8 5 3.9 2.8 5.8

9 1 4.4 2.4

9 2 3.4 2.5 3.0 4.4 2.7

9 3 4.9 3.1 2.6 3.1

9 4 2.4 3.2 4.7 3.0 2.8

9 5 3.7 15.5 3.1 3.3

10 1 4.1 11.4

10 2 17.8 5.0 3.4 5.5 3.9 38.0 3.5 32.3

10 3 3.6 2.6 4.1 18.8

10 4 3.5 5.1 3.3 3.2 6.7 2.7 6.9 7.0 6.2

10 5 2.9 2.5 3.5 3.2 3.4

11 1 8.7 5.5 8.0

11 2 8.3 9.9 5.9 12.6 2.9

11 3 12.6 5.3 2.5

11 4 2.5 24.8 5.0 6.8 2.8

11 5 31.1 5.2 2.9 4.1 2.4

12 1 5.2 6.5 17.3 3.2 2.9 3.7

12 2 6.1 4.3 2.7 10.2 2.3

12 3 2.3 2.1 1.8 11.5 2.9 4.4 2.2 2.3 4.6

12 4 2.6 2.7 7.3 8.5 19.2 4.2 7.7 5.2 3.4 6.7 3.0 4.3 2.9

Figure 7.8: Time to specialize a step

Notice that there is more variability in this data than was appar-
ent in the data related to adding new mission steps.

192

6

Had used Mlab

5

2

11

Programmers

9

8

4

12

Non-programmers

10

7

3

Participant ID 1

Specialize_Step Events

 0 Seconds
10
20
30
40

Figure 7.9: Time to specialize a step

The vertical scale has been changed to 40 seconds on this graph
due to the increased variability compared to Figure 7.6. Notice
that there is an apparent di�erence in performance between ex-
perienced and novice users.

193

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

N
um

be
r

of
 O

cc
ur

re
nc

es

Seconds

Distribution of Times to Specialize Steps

Figure 7.10: Distribution of the time required to specialize mission steps.
The Mode occurs at 3 seconds, suggesting that users will be
able choose new behaviors for steps in about 3 seconds after
they have gained experience with the toolset. The large right-
hand tail suggests that some users are having di�culty choosing
behaviors. Steps to simplify this process warrant attention in
future studies.

194

Time to parameterize a step

Most behaviors (steps) that can be performed use parameters to further re�ne their
performance. The parameters are modi�ed by opening a popup window and moving
slider bars and setting radio buttons to tune the operating characteristics. The Time
to parameterize a step attribute measures the time it takes users to modify mis-
sion step parameters in this fashion. The action is started by clicking the right mouse
button on the state and ended by clicking the left mouse button on the OK button
in the popup window. This duration is represented in the event logs as the time
between StartModify Parms State* and EndModify Parms events (where State*

denotes the state being modi�ed: State1, State2, etc.)
Figure 7.11 shows how long each participant took to parameterize mission steps.

Figure 7.12 graphically presents this data to allow visualizing trends in performance.
Notice that these times are relatively consistent except for a few large outliers. Also
notice that the spikes appear to be about the same duration.

Figure 7.13 is a distribution graph of the data provided to further characterize
the users' performance on this experiment. The Mode (primary peak) at 3 seconds
is very well de�ned and represents the normal performance of this action. However,
there appears to be a second, much weaker, peak at 10 seconds and perhaps a third
centered at 14 seconds. The task of parameterizing behaviors requires interaction with
di�erent types of interface widgets including slider bars and radio buttons. One could
posit that the main peak represents interaction with radio buttons and the smaller
peaks reect the extra time required to correctly position slider bars. Unfortunately
the event logs are not of su�cient detail to verify such a speculation from the existing
data, and the extra peaks may simply reect noise in the data.

In any case, the average of all the 225 data points gives a value of 4.12 seconds for
the Time to parameterize a step attribute with a standard deviation of 2.12 sec-
onds. This is much better than the target value of 30 seconds and the estimated
1 minute it takes programmers to modify a C function's parameters. Notice that
this data is more consistent than that for specializing a step. This con�rms that the
methods for setting parameters are easy to understand, while the process of picking
new behaviors for states may require further re�nement.

195

P T Seconds

1 1 5.6 9.8 5.3 5.1 7.8

1 2 10.3 5.0 4.5 4.1

2 1 5.6 13.7 4.0

2 2 4.8 3.7 4.0 4.4

2 3 5.6 4.8 6.3

2 4 2.9 10.4 4.4 5.6

3 1 8.7 4.9 4.5

3 2 3.5 2.6 3.2 2.4 5.7 3.4 3.2 6.0 3.1 3.0 2.5 5.3 3.2 3.0

4 1 5.9 4.7

4 2 3.8 2.0 3.5 4.9

4 3 2.6 2.2 2.7 3.8

4 4 5.3 4.4 3.5 2.3

4 5 2.9 3.4 2.5 3.5 4.2 3.3

5 1 4.2 4.4 1.7 5.3

5 2 2.5 2.5 2.6 2.3 2.7

5 3 2.2 1.7 2.8 1.8

5 4 4.3 4.1 3.2 2.5

5 5 2.3 2.1

6 1 3.5 3.1 4.2

6 2 5.1 3.6 4.2 4.3

6 3 2.2 3.0 6.9 3.5 5.1 2.3 9.1

6 4 2.8 4.4 3.0 3.7

6 5 3.1 3.9 2.5 3.9

7 1 7.3 4.2

7 2 4.0 2.7 4.1 3.7

7 3 3.3 3.1 3.8

7 4 4.2 6.5 4.1 4.4

7 5 15.1 4.3 4.4

8 1 3.7 3.8 3.0 4.4 4.6 2.2 5.4 5.1

8 2 5.6 2.0 3.2 2.4

8 3 2.6 3.9 2.5

8 4 3.1 2.6 3.1 3.3 2.3 11.0

8 5 2.9 3.5 5.6 2.0

9 1 3.2 6.3

9 2 3.9 5.4 3.5 3.2

9 3 2.3 2.6 10.1

9 4 2.8 6.7 3.8 3.4 3.5 6.1

9 5 3.3 2.7 3.2

10 1 8.1 4.2

10 2 3.0 9.0 2.8 4.8 4.8 6.5 4.9

10 3 3.2 3.1 3.1 4.5 4.5 4.4 2.6 3.3

10 4 2.8 3.3 6.4 3.3

10 5 2.2 4.2

11 1 3.6 3.3

11 2 2.6 2.4 3.8 2.7

11 3 1.7 4.2 11.2

11 4 4.3 10.0 3.5 3.4 5.3

11 5 13.7 2.8 4.5 2.6 2.4

12 1 3.4 2.5 2.6 2.1 5.2

12 2 2.6 2.3 3.2 2.7

12 3 5.3 2.2 3.0 2.4 2.1 3.1 3.3 2.6 2.8

12 4 3.0 2.9 3.0 5.0 3.0

Figure 7.11: Time to parameterize a step

This data is the basis of the graphs in Figures 7.12 and 7.13.
Notice the data appears consistently less than 5 seconds with
one or two spikes per participant.

196

6

Had used Mlab

5

2

11

Programmers

9

8

4

12

Non-programmers

10

7

3

Participant ID 1

Parameterize_Step Events

 0 Seconds
 5
10
15
20

Figure 7.12: Time to parameterize a step

The times required by users to parameterize mission steps are
graphed to highlight trends in the data. The vertical scale is 20
seconds for this graph. The data is relatively consistent with
several large spikes. The spikes don't appear symptomatic of
any de�ciencies inMissionLab and suggest that di�erent aspects
of the parameterization task require di�ering amounts of time.

197

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 O

cc
ur

re
nc

es

Seconds

Distribution of Times to Parameterize Steps

Figure 7.13: Distribution of the time required to parameterize mission steps.
The horizontal resolution of the graph is 1 second. Notice the
well de�ned peak at 3 seconds. Users will likely achieve this pace
with experience. There appear to be smaller peaks centered at
10 and 14 seconds, possibly reecting di�ering interface widgets
used to parameterize di�erent behaviors.

198

Time to add a mission transition

When more than one operating state is established in a mission it is necessary to
de�ne when and where transitions will occur between states. The Time to add a

mission transition attribute measures how long it takes users to add a new tran-
sition between states. This action starts when the user clicks the left mouse button
on the Add Transition button. The left mouse button is then pressed down with
the cursor over the source state (status FirstState event) and released with the
cursor over the destination state to end the action. The duration of this action is
extracted from the event logs as the time between AddTransition Trans* and end

AddTransition events (where Trans* is the transition identi�er: Trans1, Trans2,
etc.).

Figure 7.14 lists the duration of these actions for each of the participants and
Figure 7.15 shows this data graphically for easier visualization. The data appears
consistent with few outliers. Adding new transitions to the workspace is a rather
simple task that requires little deliberative e�ort. The small variability in the data
likely reects the users' inexperience with moving the mouse rather than any aspect
of the toolset.

Figure 7.16 is a distribution graph of the data. The well-de�ned Mode occurs
at 2 seconds and suggests the likely performance for experienced users. Averaging
the 463 data points used in Figure 7.15 gives a value of 2.60 seconds for the Time

to add a mission transition attribute. The standard deviation of 1.47 seconds
is reasonably small. This very good performance exceeds the target level of 10 sec-
onds established for the experiment and the estimated 1 minute required to add the
corresponding transition to a C program.

199

P T Seconds

1 1 10.2 1.7 4.7 1.8 4.9 5.2 7.0 4.3 3.9 3.5 2.9 3.0 2.2 1.8 2.0

1 2 3.9 3.4

2 1 4.4 2.4 7.5 4.0

2 2 3.1 3.0 3.4 4.6 6.5 2.6 4.6 3.0 2.4 1.8

2 3 2.9 2.4 1.1 9.8 2.0 5.0 2.7 2.3 3.6 2.3

2 4 1.3 1.7 1.7 2.2 2.7 2.3 2.9 2.5 2.7 2.9 2.0 2.0

3 1 3.0 3.4 2.0 2.2

3 2 2.6 2.0 2.5 2.4 3.6 1.9 1.8 4.5 2.9 1.3 2.2 2.7 2.4 3.4 4.6 3.4

4 1 1.9 2.2 1.9

4 2 2.0 2.1 2.6 1.9 4.2 2.5 2.1

4 3 2.0 2.1 5.9 1.7 2.2 2.3 1.9 3.0 2.6

4 4 1.5 2.1 1.4 1.8 1.8 2.4 2.5 2.1

4 5 1.9 1.9 2.3 2.1 4.2 1.8

5 1 2.0 2.2 3.8 1.8 2.6 2.8

5 2 1.4 1.8 2.3 1.0 2.0 3.5 2.1 1.5 8.4 2.2

5 3 5.4 1.8 2.8 3.2 2.0 4.6 2.0 3.1 1.8 1.5 2.7 1.7 2.7

5 4 1.3 2.3 2.6 1.8 2.1 2.7 1.8 2.0

5 5 1.3 1.5 1.4 2.7 2.0 1.8

6 1 3.0 2.4 2.3 2.2

6 2 1.7 1.4 1.9 2.0 1.8 1.8 2.1 1.4 1.9

6 3 1.5 1.9 2.2 1.8 10.1 3.0 3.2 1.5 1.3 2.0 2.8 1.7 2.4

6 4 1.9 2.9 1.6 2.3 1.5 2.0 3.1 2.7 2.6 2.0 2.3

6 5 1.0 1.3 2.0 2.0 2.0 1.7 2.6 2.4

7 1 4.2 5.2 5.8 2.5 2.7

7 2 2.6 2.9 1.9 3.9 2.9 2.2 4.9 2.4

7 3 6.8 2.0 2.4 2.1 6.2 3.9 4.4 4.9

7 4 2.1 2.8 3.4 3.4 3.3 3.2 3.2 2.8 3.9 3.5

7 5 2.1 2.0 2.8 4.8 3.1 1.9

8 1 2.4 2.5 1.1 2.0 2.1 2.5 2.1 0.9 2.0 2.3 2.0

8 2 1.9 1.4 1.4 1.4 3.0 1.9 1.8

8 3 6.0 1.8 1.2 1.4 1.6 1.7 2.8 2.2 2.2

8 4 0.8 1.5 2.0 2.6 2.1 2.4 1.7 2.1 2.1 1.5 1.7 1.7

8 5 1.5 1.6 1.8 7.2 1.8 1.5 4.6 8.0 1.5

9 1 2.6 1.5 3.9 2.6 3.4

9 2 1.5 4.8 3.2 5.5 4.0 3.5 4.2 2.8 1.4 2.6 4.0

9 3 2.3 3.4 2.5 2.8 3.9 2.8 2.9 3.0 3.6

9 4 1.6 1.3 1.7 1.7 1.7 1.7 2.1 1.5 1.0 2.1 2.0 1.2 1.9 2.8

9 5 2.0 1.9 1.9 1.8 1.8

10 1 1.7 2.9 2.9

10 2 2.5 5.5 2.6 3.9 1.9 3.2 2.0 2.3

10 3 2.2 1.6 8.9 2.5 2.0 4.7 3.3 1.8 2.3 1.9 7.3

10 4 1.8 2.0 3.3 1.7 1.6 2.2 1.7 2.0 3.1 2.5 4.7 2.0

10 5 1.4 1.6 1.9 2.7 2.0 2.2 4.8 4.1

11 1 0.8 1.8 1.8 1.9

11 2 1.2 1.9 0.8 1.7 2.1 2.4 1.7 2.0

11 3 1.1 1.6 2.1 2.4 1.6 1.7 1.4 1.8 2.2

11 4 1.1 1.3 1.4 1.2 1.6 1.7 2.8 1.8 1.9

11 5 1.2 1.4 1.5 2.1 1.7 2.8 4.4 1.9 2.0

12 1 4.2 1.7 2.4 1.5 2.0 3.9 2.2 1.9 2.2

12 2 1.8 1.7 2.1 2.2 2.0 3.2 3.2 1.8 1.6 2.5 3.2

12 3 1.7 2.3 2.1 1.7 2.3 1.5 2.3 2.0 3.3 11.4 3.1 1.9 1.7 1.5 1.8

1.5 4.4 2.5 1.7 2.4 2.2 2.9 2.1 2.0 4.4 2.1 2.8 2.4

12 4 1.7 1.5 2.7 2.0 12.7 2.2 2.9 2.1 1.8 2.0 1.5

Figure 7.14: Time to add a mission transition

Supporting data for Figures 7.15 and 7.16. Notice the data is
very consistent.

200

6

Had used Mlab

5

2

11

Programmers

9

8

4

12

Non-programmers

10

7

3

Participant ID 1

Add_Mission_Transition Events

 0 Seconds
 5
10
15
20

Figure 7.15: Time to add a mission transition

The vertical resolution for this graph is 20 seconds. Notice the
data is very consistent. Users normally know where they want
to connect transitions before they begin the action, so the actual
placement is nearly automatic.

201

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 O

cc
ur

re
nc

es

Seconds

Distribution of Times to Add Mission Transitions

Figure 7.16: Distribution of the time required to add mission transitions.
The horizontal resolution is 1=2 second. Notice that the well
de�ned peak appears to match a normal distribution. This is
expected since the user doesn't need to make choices during the
action. The short right-hand tail further suggests there is little
confusion in adding new transitions.

202

Time to specialize a transition

When transitions are �rst added to a con�guration they default to the FirstTime

trigger. This causes the transition to be taken the �rst time after the source state
executes. Usually this is not the desired behavior and the operator will specialize the
transition by choosing a di�erent trigger. The Time to specialize a transition

attribute measures how long this procedure takes. This action is measured from the
time the user clicks the middle mouse button on the transition and ends when the
left mouse button is clicked on the OK button in the popup window. This duration is
represented in the event logs as the time between StartModify Agent Trans* and
EndModify Agent events.

Figure 7.17 lists the length of time participants took to specialize transitions
during the experiment and Figure 7.18 shows the same data graphically. Figure 7.19
is a distribution graph of the data. The graph's Mode occurs at 3 seconds. The very
long right-hand tail on the graph raises the average value for the Time to specialize

a transition attribute to 4.93 seconds with a standard deviation of 4.95 seconds
computed over the 398 data points.

This performance is better than the 30 second target value and the 2 minutes a
programmer is expected to require to change the trigger causing a transition in a C
program. However, the large amount of variability in this data indicates that the
process of picking a new trigger for a transition su�ers from the same problems as
specializing a state. Some of the large values occur at the beginning of a session
and the start of a new task, suggesting that users were still designing their solution
and that these spikes are unrelated to MissionLab. Further study is warranted to
determine if the information needed to choose a behavior can be better presented to
the operators, based on the remaining variability.

203

P T Seconds

1 1 22.6 3.3 4.8

1 2 11.1

2 1 8.0 4.4

2 2 9.4 3.8 3.9 4.4 4.4 3.2

2 3 6.6 2.9 2.5 2.8 4.6 2.5 4.9

2 4 2.5 8.8 2.7 3.0 2.6 2.7 2.3 2.9 3.2

3 1 43.3 5.5 6.2 2.9 2.4 3.0 7.6 7.2 18.8 2.6 5.2 4.1

3 2 6.0 4.4 16.6 3.1 3.4 3.2 3.7 5.1 3.3 3.3 2.7 4.8 2.8 3.3 5.3

2.1 2.8 2.5 3.2 9.9 6.3

4 1 10.3 5.6

4 2 3.7 5.2 7.2 5.8 3.7

4 3 7.7 3.1 3.2 2.5 5.5 8.1 2.4

4 4 7.4 8.4 3.4 3.2 3.4

4 5 17.0 2.2 4.0 6.2 3.9 3.2 2.9

5 1 37.3 3.3 3.4 2.5

5 2 2.7 2.0 26.4 3.4 2.9 9.8 2.2

5 3 3.6 2.5 2.4 5.2 2.1 2.2 2.4 2.6 2.6

5 4 2.2 2.0 2.7 2.8 2.4 3.6 2.7

5 5 4.3 4.1 4.3 2.8

6 1 13.8 12.2 4.4 7.3 5.3

6 2 3.6 3.3 3.1 15.5 2.5 7.0 5.9

6 3 3.7 3.9 2.6 4.5 5.9 9.0 6.2 12.7 2.7 2.6 4.1 3.1 2.8

6 4 2.8 2.7 4.6 3.1 3.2 3.1 5.2 4.2 3.7 3.6 3.2

6 5 6.2 6.1 4.3 3.5 3.6 2.3 7.4 4.0

7 1 40.8 33.9 5.9

7 2 9.1 4.8 8.4 7.0 3.2 3.2 4.1

7 3 7.6 2.8 2.7 6.6 3.7 4.9 10.6 3.1

7 4 4.4 6.2 3.5 10.2 3.1 3.4 4.1 3.6 5.7 3.2 4.9 4.7

7 5 4.6 24.8 2.7 4.2 2.6

8 1 6.0 11.2 4.3 2.8 11.8 2.8 2.4 3.9

8 2 1.9 2.3 3.1 1.8 2.3

8 3 5.0 2.8 5.5 3.6 2.7 2.4 2.0 2.3 4.6 2.3

8 4 3.3 2.2 3.0 3.4 2.2 2.8 4.0 2.2 2.7 3.3

8 5 2.9 2.7 4.5 3.2 11.0 3.9 3.8 4.4 2.5 2.7

9 1 7.2 7.2

9 2 3.4 3.6 5.3 2.4 3.2

9 3 2.8 2.1 2.7 3.4 3.2 5.0

9 4 2.4 2.0 2.5 6.7 4.3 4.4 2.0 2.7

9 5 4.4 4.7 2.4 3.3

10 1 14.5 11.7

10 2 2.6 17.4 3.3 7.1 11.7 5.6 3.8 2.9 2.5 3.8

10 3 5.4 3.1 4.7 7.0 4.7 2.5 4.0 2.8 2.5 2.7 2.9

10 4 5.1 2.4 7.8 2.4 2.0 3.0 2.8 3.0 3.7 3.0 3.2

10 5 9.9 3.5 14.4 2.1 4.5 2.6

11 1 13.0 2.0 17.4

11 2 2.9 3.3 4.0 10.3 4.5

11 3 2.9 1.7 3.3 3.4 2.6 2.3

11 4 2.0 2.7 3.1 3.5 4.0 3.0

11 5 4.8 11.1 3.8 3.1 2.7

12 1 25.0 3.9 3.0 3.1 6.7 6.7 4.4 3.3 7.4 2.1 6.7 16.3 3.1 3.0 3.1

12 2 2.5 2.9 4.6 6.1 16.0 2.4 3.8 2.4 2.0 2.3 3.3

12 3 2.5 6.3 2.0 2.8 2.3 2.6 3.5 3.2 3.2 2.4 2.4 2.7 2.0 2.3 2.7 3.2

3.7 2.0 2.9 2.1 2.0 2.7 2.7 2.5 2.4 2.3 2.2 2.2 2.2 2.8 2.9

12 4 2.2 5.5 2.4 2.5 2.5 2.6 2.9 2.0 1.9 4.5 2.1

Figure 7.17: Time to specialize a transition

The large values occurring at the beginning of tasks can be
explained, but the remaining variability indicates users had dif-
�culty choosing the correct triggers.

204

6

Had used Mlab

5

2

11

Programmers

9

8

4

12

Non-programmers

10

7

3

Participant ID 1

Specialize_Transition Events

 0 Seconds
10
20
30
40

Figure 7.18: Time to specialize a transition

Graphical representation of the time required to specialize a
transition in a mission. The vertical resolution is 40 seconds.

205

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

N
um

be
r

of
 O

cc
ur

re
nc

es

Seconds

Distribution of Times to Specialize Transitions

Figure 7.19: Distribution of the time required to specialize transitions for
all of the participants. The horizontal resolution is 1 second.
The huge right-hand tail indicates that choosing new triggers
su�ers from the same confusion as specializing states. Both use
a similar mechanism which appears insu�cient for novice users.

206

Time to parameterize a transition

The user can set parameters for triggers to constrain when the trigger will cause
a transition. They are modi�ed using the same procedure as parameters on states
(a popup window). The Time to parameterize a transition attribute measures
how long it takes users to change these parameters. This action is started by clicking
the right mouse button on the transition and ended when the left mouse button
is clicked on the OK button in the popup window. The duration of the action is
represented in the event logs as the time between StartModify Parms Trans* and
EndModify Parms events.

Figure 7.20 lists the duration of these actions during the experiment and Fig-
ure 7.21 graphically displays the data. Figure 7.22 is a distribution graph of the
data. The Mode occurring at 3 seconds indicates the performance by experienced
users. The average value of the 397 data points for the Time to parameterize a

transition attribute is 4.01 seconds. This exceeds the target value of 30 seconds
and the predicted 1 minute required to change parameters in a C program. The
standard deviation is high at 2.89 seconds, suggesting users are having di�culty per-
forming this action. There is some evidence of multiple peaks in Figure 7.22 and
one could make the same case for disparate controls as was made for parameterizing
steps (Figure 7.13). However, it appears that users are also having di�culty choosing
parameters for transitions based on the larger magnitude of the spikes.

207

P T Seconds

1 1 9.1 14.9 15.5 11.7

1 2 5.3 8.8 6.3

2 1 6.4 5.0

2 2 6.1 2.8 9.1 7.4 3.3 5.6

2 3 6.0 2.5 2.1 4.8 2.5 2.2 5.4

2 4 4.5 35.3 2.6 2.3 2.2 2.3 2.6 4.7 5.0 5.1

3 1 3.7 5.4 4.3 3.3 3.0 3.6 2.3 13.8 4.1

3 2 4.4 2.8 3.0 1.7 3.0 2.9 4.9 4.1 3.0 3.0 3.4 3.0 2.8 3.4 3.2

3.3 4.4

4 1 3.2 4.7

4 2 3.2 3.1 2.6 3.0 4.2

4 3 4.9 2.7 1.9 2.6 2.7 2.9 3.5

4 4 5.6 7.9 6.3 3.0 4.5 3.9 5.4

4 5 5.8 3.2 3.9 3.0 6.3 3.7 4.0 5.2 5.3 3.1

5 1 2.7 3.4 2.4 3.4

5 2 2.3 2.3 2.3 2.3 2.5 2.9

5 3 4.1 2.1 1.8 2.2 2.2 2.3 3.2 2.3 2.2

5 4 2.3 1.8 3.6 1.7 2.1 1.6 2.7

5 5 2.9 2.4 1.9 2.1 2.9

6 1 9.7 3.8 3.0 3.2

6 2 3.3 3.3 4.3 2.6 3.3 3.3 6.9

6 3 2.9 4.1 10.0 2.7 2.7 11.2 2.7 3.3 3.0 2.6 5.4 4.9

6 4 3.7 2.7 2.8 3.5 3.8 3.8 3.3 2.6 3.5 2.6

6 5 3.3 2.7 2.5 5.2 2.3 5.8 5.4 8.5

7 1 3.9 3.9 3.1

7 2 5.5 3.1 6.3 3.7 5.3 5.8 3.7

7 3 6.8 3.6 9.1 3.5 3.7 3.5 4.4

7 4 2.6 20.2 4.1 2.8 5.2 2.7 3.3 4.2 3.1 3.3 17.3 8.3 6.7

7 5 3.4 3.5 7.7 9.6 3.3 5.0

8 1 2.6 3.4 3.3 4.9 5.2 3.9 3.0 3.2 3.0 3.0

8 2 2.6 5.4 3.7 4.7 4.4

8 3 6.8 2.2 2.0 3.0 2.8 2.2 3.3 2.5

8 4 2.7 2.8 2.5 2.4 2.5 4.2 2.8 2.5 2.1 4.5

8 5 2.8 3.4 3.5 2.4 3.5 3.2 2.2 4.7 3.5 3.8 10.5

9 1 5.3 3.0

9 2 3.7 2.1 2.3 4.1 5.5

9 3 3.6 2.3 7.0 3.7 2.6 4.4

9 4 3.6 2.4 2.3 1.9 3.3 3.1 6.7 3.1

9 5 3.0 3.3 2.1 3.7 6.9

10 1 8.0 6.4

10 2 4.5 2.8 3.1 3.8 4.3 13.4 6.0

10 3 3.3 3.6 3.1 7.5 5.2 2.9 4.4 11.9 2.9 5.0

10 4 3.7 3.4 3.6 2.4 3.4 2.6 2.8 2.6 2.5 2.7 2.8

10 5 4.0 3.7 7.0 3.8 3.3 3.3 2.8 3.1 2.3

11 1 4.9 4.8

11 2 2.9 2.4 2.2 2.4 3.0

11 3 3.1 1.9 3.0 5.1 2.6 2.3

11 4 2.0 3.0 2.7 2.3 3.4 6.1

11 5 2.4 5.4 8.4 3.4 2.7

12 1 7.7 2.8 3.0 3.3 2.5 5.4 3.0 2.1 2.1 2.8 2.5 2.5 2.7 2.8 2.3

12 2 3.7 5.0 3.3 2.1 3.4 4.7 2.3 2.8 2.9 2.2 1.4 2.6

12 3 17.3 11.3 2.1 1.9 2.0 2.5 2.5 2.5 3.9 2.2 3.4 2.4 1.9 2.0 5.3

1.9 1.9 3.8 1.8 2.8 3.3 1.8 3.3 2.3 4.8 3.1 2.8 2.3 2.6 4.7

12 4 2.1 2.9 2.3 1.8 2.3 2.3 2.3 3.5 2.1 3.5

Figure 7.20: Time to parameterize a transition

Raw data for Figures 7.21 and 7.22.

208

6

Had used Mlab

5

2

11

Programmers

9

8

4

12

Non-programmers

10

7

3

Participant ID 1

Parameterize_Transition Events

 0 Seconds
 5
10
15
20

Figure 7.21: Time to parameterize a transition

Graphical representation of the time required to parameterize a
mission transition (same data as Figure 7.20). The vertical axis
represents the duration of the event and the horizontal lines are
20 seconds apart. Notice the large amount of variability present
in all logs, including the experienced users.

209

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

N
um

be
r

of
 O

cc
ur

re
nc

es

Seconds

Distribution of Times to Parameterize Transitions

Figure 7.22: Distribution of the time required to change parameters for mis-
sion triggers. The number of seconds required is listed on the
horizontal axis and the number of occurrences of events with
that duration is shown on the vertical axis. The huge right-
hand tail suggests participants had di�culty performing this
action. The evidence for multiple peaks isn't as strong as in
parameterizing steps.

210

Number of Compilations

The number of compilations each participant made before completing the task is an
indication of the di�culty they had in creating a correct con�guration. A compilation
action is started by clicking the left mouse button on the Output button in the editor
and is marked in the logs with a Start Make event.

Number of Compilations

Participant Task 1 Task 2 Task 3 Task 4 Task 5

1 � � | | |

3 � � | | |

7 5 2 1 2 1

10 1 2 1 1 1

12 � 2 � 3 |

4 1 1 1 4 9

8 7 1 3 3 2

9 1 2 1 2 2

11 2 2 1 1 2

2 1 � 1 4 |

5 1 1 2 1 2

6 1 1 1 1 4

Figure 7.23: Number of compiles to create a con�guration. A dash (|)
indicates there wasn't time to work on that task. An asterisk
(�) indicates that task wasn't completed. The top group of
participants are the non-programmers, the middle group were
good programmers, and the bottom group were programmers
who had previously used MissionLab.

Figure 7.23 lists the number of compilations each participant made before com-
pleting the tasks. A dash (|) indicates there wasn't time to work on that task and
an asterisk (�) indicates the task wasn't completed. Figure 7.24 is a distribution
graph of the data. Note that data from 7 tasks has been excluded because they were
not �nished and data from 8 tasks is lacking because they were not attempted due
to lack of time. The Mode in the graph occurs at 1 compilation per task which, of
course, is the minimum. The average value for the Number of compiles to create

a configuration attribute computed over the 45 data points is 2.02 with a stan-
dard deviation of 1.66 compiles. This matches the target value of 2 compiles per task

211

and surpasses the predicted 4 compiles required for C programmers. Notice only a
handful of the sessions required more than 2 compilations. This a satisfying result.
The editor appears to allow even novice users to visualize how the con�guration will
execute before compiling and running it.

Participants 1 and 3 were unable to complete any of the tasks, although they did
make substantial progress. These two were administrative people who only used com-
puters in an o�ce environment. They both struggled with the di�erences between the
Motif-based interface used on the SUN workstation compared to their desk-top Mac-
intosh systems. One person didn't understand the concept of building a loop to repeat
a task. MissionLab users with similar backgrounds will require signi�cantly longer
training which also includes an introduction to programming techniques relevant to
MissionLab.

212

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9

N
um

be
r

of
 O

cc
ur

re
nc

es

Number of Compilations Required

Distribution of Number of Compilations

Figure 7.24: Distribution of the number of compilations required to com-
plete each task. Notice that only a handful of sessions required
more than 2 compilations. This a satisfying result. The editor
appears to allow even novice users to visualize how the con�g-
uration will execute before compiling and running it.

213

Time to create a simple con�guration

The most important metric is how long it takes users to construct a con�guration
which performs the required task. For this experiment, that meant creating a con�gu-
ration for each task and showing successful execution of the solution in two simulated
environments.

The Time spent editing will be used as an approximation of this metric. There
is su�cient variability in compilation and execution times to dominate variations in
the total edit time. There was no consistency in execution times since the simulation
system ran until the users manually exited. Compilations took about 45 seconds,
but took as much as a minute longer when the network was slow, introducing more
variability. Thus, the time spent editing will be computed as the total time for the
experiment less the time spent compiling and running the con�gurations. The Time
spent editing was computed from the log �les as follows: The session lasted from
the start Session until the end Session events. The time between start Run and
end Run events, the time between event StartMake and event EndMake events, and
the time after the �nal end Run event were all subtracted from the total to get the
time spent editing the con�gurations.

Figure 7.25 lists the time participants spent using CfgEdit for each of the tasks in
experiment 1. A dash (|) indicates there wasn't time to work on that task. A fraction
represents an estimate of how close the participant was to a solution when they were
interrupted by the experiment observer due to lack of time, asking for assistance, or
being obviously stuck. These times are shown graphically in Figure 7.26. Only those
tasks which were successfully completed are graphed. Tasks the participant did not
�nish or even attempt due to lack of time are not included.

Figure 7.27 is a distribution graph of the data. The Mode in the graph occurs
at 400 seconds. The average value for the Time to create a configuration is
444 seconds. This was computed from the data in Figure 7.25. The standard deviation
is 145.3 seconds computed over the 45 data points. The 444 seconds (7.4 minutes) is
half of the target value of 15 minutes to create the tasks and better still than the 20
minutes allotted for C programmers.

214

Seconds

Participant Task 1 Task 2 Task 3 Task 4 Task 5

1 1

4

1

2
| | |

3 3

4

1

2
| | |

7 538 570 569 7602 399

10 234 714 616 5572 568

12 1

2
424 3

4
5512 |

4 329 394 522 480 726

8 475 220 283 362 311

9 189 520 342 379 215

11 234 270 372 332 440

2 329 3

4
408 6692 |

5 349 494 525 377 441

6 3191 498 663 5512 458

1. Picked up the ag instead of just going near it.

2. Didn't run completely due to race condition

(See Section 5.10).

Figure 7.25: Time to create a simple con�guration. The fractions estimate
progress towards a solution for experiments interrupted by the
lab monitor due to lack of time, asking for assistance, or being
obviously stuck. The top group of participants are the non-
programmers, the middle group the programmers, and the bot-
tom group were programmers who had previously usedMission-

Lab.

215

6

Had used Mlab

5

2

11

Programmers

9

8

4

12

Non-programmers

10

7

3

Participant ID 1

Task 1 Task 2 Task 3 Task 4 Task 5

 0 Minutes
 4
 8
12

Incomplete Incomplete Not Attempted Not Attempted Not Attempted

Incomplete Not Attempted

Incomplete Incomplete Not Attempted Not Attempted Not Attempted

Incomplete Incomplete Not Attempted

Figure 7.26: Time to create a simple con�guration

Graphical representation of the time spent editing (same data
as Figure 7.25). The tasks are shown along the horizontal axis.
The vertical axis represents the duration of the event. The
vertical separation is � 16 minutes.

216

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 O

cc
ur

re
nc

es

Edit Time in Seconds

Distribution of Edit Time

Figure 7.27: Distribution of the time participants spent editing each con�gu-
ration. The horizontal resolution is 100 seconds and the vertical
resolution is one occurrence. The graph is extremely well de-
�ned with a single peak and no right-hand tail.

217

Ability to create con�gurations

It is useful to partition the participants into three groups. The �rst natural grouping
of the participants will be called the non-programmers. The non-programmers can
further be divided into two classes based on their technical backgrounds. People
without a technical background are generally familiar with computers based only
on their use of commercial software packages such as word processors and E-mail
systems. This group (Participants 1, 3, and 12) struggled the most with the user
interface. One test participant familiar with one button mice found the three button
mouse very cumbersome. A second person didn't think of using a looping construct to
repeat an action on multiple objects and instead replicated the speci�cation multiple
times, in e�ect unrolling the loop.

These three struggled with the experiments. Participant 12 �nishing two of the
�ve, and Participants 1 and 3 did not complete any solutions. However, most of the
incomplete solutions were more than 1=2 complete and made the robot move. One
example of the problems faced was trying to decide between using the perceptual
triggers \Detect" and \Near" to terminate a \MoveTo" action. Using \Detect" causes
a transition as soon as an object of the desired type is detected. \Near" waits until
the robot is within a certain distance of the object before causing the transition. The
repeated mix-up of these two triggers by the non-programmers points out that a more
descriptive help system is necessary.

A second example of the problems faced by this group was in replicating portions
of the con�guration instead of utilizing looping. This unrolling of loops points to the
need for an introduction to basic iterative techniques. Users with no programming
background require some basic instruction related to how Finite State Automata
function, how one can construct and terminate loops, and other introductory pro-
gramming information.

The second class of non-programmers were those technically oriented but not
able to program in the C language (although some had classroom experience in other
languages). These were generally people with engineering backgrounds who never got
into programming. Participants 7 and 10 �t this grouping. This is a very important
category of users because it represents the target audience for this research. One of
the primary goals of the MissionLab toolset is to enable people who can not program
to specify complex robot missions. As the results for this group show, that goal has
been achieved.

The second group consists of the expert programmers. These people were com-
fortable programming in C and had varying levels of exposure to robotics. They did
very well using the GUI and had few problems with the experiments.

The �nal group included three people who had participated in various portions
of the MissionLab development. None had used the MissionLab GUI before the

218

experiment and their mediocre performances suggest that they didn't gain signi�cant
advantage over the programmers.

General feeling after use

The system received great reviews from the users. These statements are from the
questionnaire given at the end of the session:

� It was fun and fast.

� The [MissionLab toolset] is straightforward and easy to �gure out.

� Easy to specify missions

� It seemed very intuitive and easy to use.

� Very fast start time [with] no learning curve. It deals with the higher levels of
a mission, not the speci�cs of low-level control.

Non-programmers especially commented on how easy it was to tell the robots \what
to do" and to check their solution. Some quotes from participants:

� The visual interface makes it much easier to set-up, test, and think about the
control loops and decision points; i.e., the logic ow.

� The graphics were very indicative of what an actual mission would look like
schematically.

� What I liked about MissionLab were the available range of behaviors and com-
mands.

� The ow-chart type screen used for building missions was very visually appealing
rather than only using text.

� The commands were easy to understand and follow.

� It was fun to run [the mission] and see if it worked.

There were some frustrations with the system. Many focused around an apparent
race condition in the MissionLab. When marking an unknown object as either safe
or hazardous, the \Detect Unknown Object" trigger would still �re even if the object
just marked was the last unknown object. This issue turns out to be related to the
Frame Problem and is discussed in detail in Section 5.10.

219

Most of the remaining frustrations centered around selecting behaviors for states
and triggers for transitions. More e�ort is needed to identify better names and de-
scriptions for these agents while eliminating any semantic overlap between choices.
Some illustrative statements from the participants:

� I think I got caught in a race condition once.

� Not able to see which state the robot is in during simulation.

� Terms are somewhat confusing for beginners.

� Got a little confused at �rst between add tasks and add triggers.

Experiment 1 successfully demonstrated that the graphical editor is quite usable
for constructing robot missions. The participants were excited about the power it gave
them to quickly and easily construct robot missions. Their encouraging performance
using the toolset shows that MissionLab is aiding the development process.

7.2 Experiment 2: Mission Speci�cation Using C

7.2.1 Objective

This experiment was intended to generate data allowing a direct comparison of perfor-
mance of participants using C and the graphic editor to specify missions. Participants
from the same subject pool performed both this experiment and Experiment 1 in a
random order. There was a several day break between the two experiments to at-
tempt to minimize the bene�ts associated with repeating the same tasks. Of course,
participants who were not programmers were unable to perform this experiment. The
primary goal was to duplicate conditions in Experiment 1 as closely as possible except
for the use of the C programming language.

7.2.2 Experimental Setup

Test Environment

Same as Experiment 1.

Test Participants

Each of the people who volunteered for Experiment 1 were asked if they were uent
in the C programming language. Those who were able to program in C were asked
if they would be able to take part in two sessions. Three participants (4,5 and 6)

220

could program in C but were unable to participate in more than one session and only
completed Experiment 1. Five of the participants (1,3,7,10 and 12) were unable to
program in C and therefore didn't complete Experiment 2.

This left four participants (2,8,9, and 11) who completed both Experiment 1
and Experiment 2. The numeric codes assigned to these participants match those
from Experiment 1. Two of the participants were randomly selected to complete
Experiment 2 before Experiment 1 and the others did Experiment 1 �rst. Two of the
participants were familiar with MissionLab and the other two were robotics graduate
students, but had not previously used the toolset.

Software

The GNU C++ compiler Version 2.7.2 was used for these tests. A library of func-
tions which mimicked the behaviors available in the graphical editor was created and
provided to the participants. A stub program and scripts to build and execute the
con�gurations required the participants only to create a suitable state machine to
complete the missions. The software was compiled using the C++ compiler. The
library supplied to the participants was structured to allow them to write standard C
code if they desired. The standard UNIX text editors vi and emacs were available for
the participants' use. The same MissionLab simulation system was used to evaluate
their solutions as in Experiment 1.

Programming Model

Same as Experiment 1.

7.2.3 Experimental Procedure

Same as Experiment 1. The additional reference material provided, which explains
the function library calling interface, is reproduced in Appendix A, Figures A.15
and A.16.

7.2.4 Raw Data Generated

Due to the use of standard UNIX tools, the ability to automatically log editing
events was lost in this experiment. The videotape taken of the experiments was shot
over the shoulder of the test participants and not of su�cient quality to recreate their
edit session. However, by instrumenting the build and run scripts, some information
was still gathered. Figure 7.28 shows an annotated event log from this experiment.
The comments are enclosed in // // brackets. The start of the experiment is logged,
along with the task number. The start and end times for each compile are logged.

221

// Started the experiment //

Wed 10:56:37 AM, Mar 20 1996

Starting task 3

// 1st build of the solution //

Wed 11:03:28 AM, Mar 20 1996

Start make

Wed 11:03:36 AM, Mar 20 1996

End make

// 1st build of the solution //

Wed 11:04:07 AM, Mar 20 1996

Start make

Wed 11:04:11 AM, Mar 20 1996

End make

// 2nd build of the solution //

Wed 11:05:08 AM, Mar 20 1996

Start make

Wed 11:05:23 AM, Mar 20 1996

End make

// 1st run to check correctness //

Wed 11:05:24 AM, Mar 20 1996

Start run

Wed 11:05:54 AM, Mar 20 1996

End run

// 2nd run to check correctness //

Wed 11:06:20 AM, Mar 20 1996

Start run

Wed 11:06:57 AM, Mar 20 1996

End run

// Total time: 620 Seconds

// Edit time: 526 Seconds

Figure 7.28: An annotated portion of an event log from Experiment 2. Com-
ments are enclosed in // // brackets.

222

This allows counting the number of compilations as well as computing the time the
participant spent editing the con�guration. The start and end time for each execution
of the con�guration in the simulation system is also logged.

223

7.2.5 Overview of Experimental Results

Figure 7.29 shows a representative solution for a task in Experiment 2. Each partici-
pant constructed a robot command function which called the library of behaviors and
perceptual processes to complete the mission. This support library exactly matched
those available in the graphical con�guration editor.

Vector robot_command()

{

static int status = 0;

if(SigSense(SAFE))

{

switch (status)

{

case 0: /* At start */

status = 1;

return MoveTo(flags);

case 1: /* On way to flag */

if(Near(flags,0.1))

{

status = 2;

return Stop();

}

return MoveTo(flags);

case 2: /* At flag */

status = 3;

return Stop();

case 3:

if (Near(home_base,0.1))

return Stop();

return MoveTo(home_base);

}

}

else return Stop();

}

Figure 7.29: A representative task solution

224

The experiment was structured to allow a direct comparison between the graph-
ical con�guration editor and the C programming language. The results, summarized
below, clearly demonstrate the advantages of using the graphical editor over hand-
crafting solutions in C. For the 4 people who completed both Experiment 1 and
Experiment 2:

� In 12 instances participants completed a task faster using the MissionLab con-
�guration editor than they completed the same task using C.

� In only one instance did a participant complete a task faster using C than using
the con�guration editor. Note: This occurred on Task 5 and the participant
had previously completed the GUI portion.

� In 4 cases times were similar.

� In general, the times required to generate solutions using the con�guration
editor were more consistent.

� The average time required by the 4 participants for each task was 12.4 minutes
using C and 5.9 minutes using the con�guration editor.

� The average number of compilations was 4 using C and only 2 using the con�g-
uration editor.

7.2.6 Detailed Experimental Results

Number of Compilations

Number of Compilations using C

Participant Task 1 Task 2 Task 3 Task 4 Task 5

2 4 7 5 1 3

8 3 6 3 2 |

9 3 1 4 4 8

11 4 5 2 10 2

Figure 7.30: Number of compilations required to complete each task using
the C language.

The number of compilations each participant made before completing the task
is shown in Figure 7.30. Participants 2 and 11 completed the GUI portion �rst. A

225

dash (|) indicates there wasn't time to work on that task. The average number of
compilations required to construct a correct con�guration is 4:0 computed over the 19
data points. The standard deviation in this data is 2:37. This matches the predicted
4 compilations necessary when using C.

Figure 7.31 compares the number of compiles required both when using C and the
GUI. Recall that the average number of compiles when using the GUI was computed
to be 2:02 with a standard deviation of 1:66. This shows that the GUI provides a
better development environment by reducing the compile-edit-test cycles by half in
this experiment.

226

11

9

8

Participant ID 2

Task 1 Task 2 Task 3 Task 4 Task 5

 0 Minutes

 5

10

Incomplete
GUI Not Attempted

C Not Attempted

C Session

C Session

C Session

C Session

GUI Session

GUI Session

GUI Session

GUI Session

Figure 7.31: Graph of number of compiles required in GUI and C sessions.
GUI sessions are marked with 2 and C sessions with �. The
vertical axis represents the number of compiles. There are 11
instances where the compiles using C exceeds that for the GUI.
This compares to 4 instances where C required fewer compila-
tions and 2 where the numbersmatch. This shows the advantage
in using the GUI over the C programming language.

227

Time to create a simple con�guration

Figure 7.25 presented edit times for the participants using the GUI and Figure 7.33
presents edit times for the participants using the C programming language. Fig-
ure 7.32 graphs both sets of data for the four people who participated in both exper-
iments to allow a closer comparison.

There are 12 instances where the time taken using the GUI is less that when using
C. There is one clear case of the GUI taking longer and 4 examples where the times
are quite similar.

Notice that only Subjects 2 and 11 were able to do better using C than with
the GUI. This is interesting since Subjects 2 and 11 performed the GUI portion
(Experiment 1) before the C session (Experiment 2). It appears that there is a speed-
up from performing the same experiments again using the other modality. However,
even these participants performed the tasks faster using the GUI in most instances.

7.3 Experiment 3: Con�guration Synthesis

7.3.1 Objective

This experiment exercised theMissionLab toolset's multi-architecture support. Exist-
ing technologies do not support retargeting of con�gurations and no direct comparison
is possible. Therefore, the experiment concentrated on demonstrating the Mission-
Lab capabilities. Data gathered during the experiment will provide insights into the
strengths and weaknesses of MissionLab for these tasks.

A small group of researchers experienced with creating robot con�gurations par-
ticipated in this experiment. They �rst created a generic con�guration (from scratch)
which moved the robot through two waypoints to an area where the operator con-
trolled it using teleoperation. When the operator exited teleoperation mode, the
robot returned to the starting location.

The con�guration was �rst bound to a Denning MRV-2 robot and evaluated using
the MissionLab simulator. Once it worked as expected, the mission was repeated
with the con�guration deployed on a real MRV-2 robot. Finally, the con�guration was
unbound and subsequently rebound to a HUMMER robot, which uses the SAUSAGES
run-time architecture. The SAUSAGES code generated by MissionLab was then
evaluated using the CMU SAUSAGES simulation package to verify its correctness.

228

11

9

8

Participant ID 2

Task 1 Task 2 Task 3 Task 4 Task 5

 0 Minutes

 5

10

15

20

25

30

Incomplete GUI Not Attempted

C Not Attempted

C Session

C Session

C Session

C Session

GUI Session

GUI Session

GUI Session

GUI Session

Figure 7.32: Graph of the time spent editing in both the GUI and C ses-
sions. GUI sessions are marked with 2 and C sessions with �.
The vertical axis represents time required to complete the tasks.
There are 12 instances where the time taken using the GUI is
less that when using C. There is one clear case of the GUI taking
longer and 4 examples where the times are quite similar. These
results show using the GUI speeds the development process.

229

Edit time using C

Participant Task 1 Task 2 Task 3 Task 4 Task 5

21 547 1383 951 600 630

82 834 1342 526 766 |

92 635 626 413 659 538

111 1057 725 407 1269 241

1. Performed the GUI tasks �rst.

2. Performed the C tasks �rst.

Figure 7.33: Total edit time (in seconds) when using the C programming
language. A dash (|) indicates there wasn't time to work on
that task.

7.3.2 Experimental Setup

Test Environment

The tests were conducted in the Georgia Tech Mobile Robot Laboratory. A SPARC
5 workstation was used for the experiments. An MRV-2 Mobile robot was connected
to the SPARC via radio modems to allow using it from MissionLab. The sessions
were videotaped using a �xed camera positioned behind the participant. The author
supervised the experiment due to lack of other personnel. The participants were given
rather explicit instructions on how to perform the experiment.

Test Participants

Three expert roboticists participated in this experiment. Two of the participants had
previously taken part in Experiment 1 and one of these had also completed Experi-
ment 2. The third had not used MissionLab previously. None of the participants had
performed any binding operations using the graphical editor prior to this experiment.
Codes assigned to participants are the letters A, B, and C.

Software

The MissionLab toolset version 1:0b was used in this experiment. The SAUSAGES
simulation system provided by Jay Gowdy and Carnegie-Mellon University was used
to evaluate the SAUSAGES script �les generated during the experiment.

230

Programming Model

The programming model developed in Section 6.6.2 was used for this experiment.

7.3.3 Experimental Procedure

The procedures outlined in Section 6.6.3 were followed during this experiment. The
script used is reproduced as Figure A.17 in Appendix A.

7.3.4 Raw Data Generated

Raw data was gathered using the MissionLab event logging facilities. The event log
parsing tool was used to extract the information presented below from the logs. The
format of the event logs was documented in Section 7.1.4.

7.3.5 Experimental Results

Time to complete Experiment 3

Participant Part 1 Part 2 Part 3

A 694 5 94

B 690 1 82.7

C 471 24 93.5

Figure 7.34: Time to complete Experiment 3. Part 1 is the number of seconds
it took the participant to construct the initial con�guration and
deploy it on a simulated MRV-2 robot. Part 2 is the number
of seconds to restart the con�guration driving a real MRV-2
mobile robot. Part 3 is the number of seconds to unbind the
con�guration, rebind it to target a UGV robot and output the
corresponding SAUSAGES code. Notice it only took about 1:5
minutes to retarget con�gurations. This is a huge savings over
recoding.

Figure 7.34 lists the times in seconds that it took the three participants to com-
plete the portions of the experiment. Part 1 required the participants to create a
con�guration which moved the robot through the speci�ed mission. The time listed
in Figure 7.34 includes the time required to compile the con�guration.

231

The time after evaluating the con�guration in simulation to restart the system
to drive one of the real MRV-2 mobile robots is shown as Part 2 in the �gure. This
time is minimal except for the �nal one, where the robot was not prepared before the
experiment began. None of the con�gurations required any changes after simulating
them before they were ready to drive the mobile robot.

Part 3 times shown reect the time required to retarget the con�guration to a UGV
robot. This requires unbinding the con�guration from an MRV-2 robot, rebinding to
a UGV robot, and recompiling to invoke the SAUSAGES code generator. The time
required to save the �le is also included since the procedures requested participants to
save their con�guration before recompiling. Notice this only took about 1:5 minutes
to retarget a con�guration to a di�erent architecture and generate executables for
a di�erent robot. This is a great speedup compared to the 10 minutes required
to construct the initial con�gurations. The retargeting support of MissionLab will
greatly improve developers' ability to support heterogeneous robots.

None of the participants experienced any errors in compiling or binding their
con�gurations. This experiment did not include enough subjects to perform any
in-depth analysis of the logs or to produce statistically signi�cant information.

A comparative analysis is not possible since there is no other system which sup-
ports retargeting robot con�gurations to other run-time architectures. However, the
experiment demonstrated a factor of 5 speedup from recoding the con�guration from
scratch to retargeting the con�guration using MissionLab. The participants were able
to construct a single con�guration and run it both on MRV-2 robots using the AuRA
architecture and on a simulated HUMMER robot using the SAUSAGES run-time
system. No modi�cations to the con�guration were required, just rebinding to the
correct architecture. This success is achieved by raising con�guration speci�cation
above the constraints imposed by individual robot run-time architectures.

7.4 Summary

This chapter has documented the experimental evaluation of the MissionLab toolset.
These studies focused on use of the graphical con�guration editor for encoding and
deploying missions on mobile robots. In Experiment 1, twelve participants used the
graphical editor to construct �ve di�erent con�gurations based on mission descrip-
tions. Experiment 2 repeated the same tasks with four participants who coded solu-
tions for the missions using the C programming language. Experiment 3 used three
participants to demonstrate the ability to retarget con�gurations developed using the
graphical editor.

Values for various usability criteria for the graphical editor were established using
event logging data gathered in Experiment 1. Table 7.1 is a reproduction of Table 6.2
with the measured values column added. This presents the usability criteria in tabular

232

form for ease of comparison. Notice the measured values are all far superior to the
expected values. However, the large amount of variance in the time users spent
picking new behaviors and new triggers points out some di�culty in that area. A
popup window currently presents an alphabetical list of choices, each with a short
description. More e�ort is needed in both naming and describing the behaviors and
triggers to make their usage apparent.

Looking back at the analysis of Experiment 1 it is apparent that Subjects 7 and 10
were very successful with the GUI even though they were unable to program in C
(i.e., Figure 7.26). Neither had any signi�cant programming experience. Subject 12 is
a non-programmer ROTC student (undergraduate ME) who struggled a bit learning
the system, but was very successful on Task 2 with only one hour of exposure to the
system. Subjects 1 and 3 were administrative people who use computers as part of
their job duties, but only use application software such as e-mail or word processors.
Both were able to construct con�gurations where the robot partially completed the
tasks. Examples of partial completion include sending the robot straight home instead
of �rst moving to the ag (because of an incorrect selection of trigger to terminate
the move to ag behavior), and transporting one object successfully but not knowing
how to construct a loop to move all the objects (this subject began replicating the
successful portion of the con�guration and moved a total of three objects). The
fact that there were two users doing very well and the remainder making signi�cant
progress with such minimal training supports the claim that this system empowers
non-programmers.

Experiment 2 was conducted with only 4 participants. The group of expert pro-
grammers had varying levels of exposure to robotics. After a mere twenty minutes of
training with the graphical editor the participants were able to achieve parity with
their C programming times and many were faster using the graphical toolset. The
reduction in the number of compilations necessary when using the GUI also makes
it apparent that it is easier to create correct robot con�gurations using the graphi-
cal editor. This shows that even expert robot programmers can bene�t by using the
MissionLab toolset and the learning curve is su�ciently short to encourage switching.

Experiment 3 was used to demonstrate the ability to retarget con�gurations cre-
ated using the graphical editor. The group of participants were able to easily create
a generic con�guration. They were then able to rapidly deploy their solution on a
simulated Denning robot, a real robot, and on a simulated UGV robot using the
CMU SAUSAGES simulator. The speedup gained from retargeting versus recoding
demonstrates the success of the explicit binding process and multiple code generators
used by MissionLab.

The experiments have established the power and utility of theMissionLab toolset.
The graphical con�guration editor is an especially powerful tool which allows non-
programmers to construct, evaluate, and deploy robot missions. This success shows

233

Table 7.1: The MissionLab usability criteria with the experimentally mea-
sured values included.

MissionLab Usability Criteria

Worst Best

Usability Value to be Current Acceptable Target Possible Measured

Attribute Measured Level Level Level Level Value

1.

Novice user

performance

Time to add a mis-

sion step 1 Min 30 sec 10 sec 1 sec 2.2 sec

2.

Novice user

performance

Time to specialize a

step 2 min 1 min 30 sec 3 sec 6.2 sec

3.

Novice user

performance

Time to parameter-

ize a step 1 min 1 min 30 sec 2 sec 4.1 sec

4.

Novice user

performance
Time to add a mis-

sion transition 1 min 30 sec 10 sec 2 sec 2.6 sec

5.

Novice user

performance
Time to specialize a

transition 2 min 1 min 30 sec 3 sec 4.9 sec

6.

Novice user

performance
Time to parameter-

ize a transition 1 min 1 min 30 sec 2 sec 4.0 sec

7.

Novice user

performance

Number of compiles

to create a con�gu-

ration 4 5 2 1 2.0

8.

Novice user

performance

Time to create a

simple con�gura-

tion 20 min 20 min 15 min 5 min 7.4 min

9.

Non-

programmer

performance

Ability to create

con�gurations No Yes Yes Yes Yes

10.

User

acceptance
General feeling af-

ter use N/A medium good great good

234

that the uniform representation provided by the Con�guration Description Language
is an asset when developing user programming tools.

235

236

Chapter 8

Summary and Contributions

8.1 Summary

Behavior-based robotic systems are becoming both more prevalent and more compe-
tent. However, operators lacking programming skills are still forced to use canned
con�gurations hand-crafted by experienced roboticists written in traditional program-
ming languages such as C and LISP. This inability of ordinary people to specify tasks
for robots is inhibiting the spread of robots into everyday life. Even expert roboticists
are limited by this problem. Since there is no commonality of con�guration descrip-
tions, researchers are unable to share solutions in executable forms. Further, since
each model of robot typically has a disparate run-time architecture, a con�guration
commonly requires signi�cant rework before it can be deployed on a di�erent robot,
even one with similar capabilities. This dissertation has attacked this problem from
three fronts.

First, the foundational Societal Agent theory describes how agents form abstract
structures at various levels in a recursive fashion (Chapter 3). It provides a uniform
view of agents, no matter what their physical embodiment. Agents are treated con-
sistently across the spectrum, from a primitive motor behavior to a con�guration
coordinating large groups of robots. The recursive nature of the agent construction
facilitates information hiding and the creation of high-level primitives. The Societal
Agent theory provides a framework for analyzing societies of agents transcending
robotics.

Secondly, the MissionLab toolset was developed to measurably improve the pro-
cess of specifying robot con�gurations (Chapter 5). MissionLab supports the graph-
ical construction of architecture- and robot-independent con�gurations by using the
Con�guration Description Language (CDL) as the representation of the con�guration
(Chapter 4). This independence allows users to directly transfer designs to be bound
to the speci�c robots at the recipient's site. Support for multiple code generators
ensures that a wide variety of robots can be supported.

MissionLab utilizes the assemblage construction to support building new coherent
behaviors from coordinated groups of other behaviors. The new behaviors can then be

237

archived and reused in subsequent designs with parameters di�ering based on mission
requirements. This recursive construction process allows users to build increasingly
high-level primitives which are domain speci�c and directly tailored to the needs of
the organization.

The methodology of temporal sequencing brings an object-oriented approach to
robotics by partitioning a complex mission into discrete operating states with per-
ceptual triggers causing state transitions. This allows the construction of several
smaller con�gurations (assemblages) to implement each of the states. The temporal
sequencing methodology is directly supported by MissionLab, which allows graphical
construction of such state-transition diagrams.

Thirdly, speci�c usability criteria for toolsets such as MissionLab were established
(Chapter 6). Three usability studies were de�ned to allow experimental establish-
ment of values for these criteria. As part of this research, these three studies were
carried out using the MissionLab toolset and con�rmed its bene�ts over conventional
techniques (Chapter 7). An impressive result was that users unable to program in
conventional languages were still able to specify complex robot missions with only 30
minutes training using the toolset. This con�rms that a major goal of this research,
to empower non-programmers to create and evaluate con�gurations, has been met.

8.2 Speci�c Contributions

This research project has produced several speci�c contributions to the �eld of robotics:

The Societal Agent theory

The fundamental contribution of this dissertation is development of the Societal
Agent theory. This theory provides a uniform representation of computational ob-
jects at all levels in hierarchical organizations. The power of this representation
supports recursive composition of operators, information hiding, and code reuse. It
also provides a framework for representing and studying complex societal structures
such as ant colonies, animal herds, and military organizations. The utility of the
Societal Agent theory has been borne out by its successful implementation in the
MissionLab toolset.

Usability criteria and experiments

A contribution to the robotics domain is the creation of usability criteria for toolsets
such as MissionLab and the design of experiments suitable for experimentally mea-
suring values of the criteria. These experiments evaluate the performance of people
completing certain benchmark tasks using the tools being tested. These experiments

238

were used to evaluate the MissionLab toolset, both to measure the toolset's usability
and to validate and benchmark the experiments themselves.

The Con�guration Description Language

The Con�guration Description Language (CDL) was developed to capture the recur-
sive composition of con�gurations in an architecture- and robot-independent fashion.
CDL provides a compact, exact description of individual robot con�gurations as well
as the interactions of societies of cooperating mobile robots. The language is used to
specify the con�guration of behaviors and not the implementation of behaviors. This
allows construction of generic con�gurations which can be bound to speci�c robots
through an explicit binding step. No other language currently supports this explicit
binding and, thus, the independence a�orded by CDL.

A feature of behavior-based controllers is that behaviors themselves become almost
trivial in complexity. The complexity of the system is transferred into the coordination
of the multitude of simple behaviors active within the con�guration. Therefore, an
important facet of CDL is the explicit representation of coordination mechanisms.
By forcing designers to partition coordination from behaviors, both are made less
complex and easier to modify.

The MissionLab toolset

The MissionLab integrated development environment was created as part of this re-
search to support the creation of behavior-based robot con�gurations. MissionLab
includes an interactive designer to allow graphical speci�cation and visualization of
robot missions. MissionLab is based on CDL and supports the uniform represen-
tation of components inherent in that language. Support for explicit binding and
multiple code generators allow MissionLab to support the many varieties of robots
and robot run-time systems in common use. The usability experiments con�rmed
that MissionLab empowers non-programmers to specify missions for mobile robots.

MissionLab provides a least-commitment design architecture where users are free
to build con�gurations unconstrained by hardware limitations and later map them
onto vehicles providing the required functionality. The graphical editor facilitates
con�guration design and modi�cation by non-programmers and speeds the process
even for expert programmers. The graphical presentation improves con�guration
maintainability. Component reuse is encouraged by the recursive construction. As
components are created they can be easily archived to libraries and reused as compo-
nents in subsequent constructions. The result is to improve the design process both
in speed and accuracy and to improve the quality of the designs themselves through
the reuse of tested components.

239

8.3 Future Work

Research projects generally open more avenues for exploration than they close and
this e�ort is no di�erent. This section will attempt to describe those areas of future
research which have occurred to the author over the course of this project.

The Societal Agent theory makes strong claims as to the utility and pervasive-
ness of representing coordinated collections of agents in a recursive fashion. Although
used in this research within the robotics domain, the theory also provides a frame-
work for representing and studying complex societal structures such as ant colonies,
animal herds, and military organizations. It would be interesting to conduct psy-
chological studies to attempt to verify that humans indeed follow these abstractions
when interacting with such complex structures.

The MissionLab toolset is well structured for use in an educational setting. The
support for visually constructing robot missions without the use of conventional pro-
gramming languages allows students to concentrate on building solutions without
getting bogged down in programming details. The integrated compilation and simu-
lation subsystems allow quick and easy evaluation of solutions. The rapid retargeting
of con�gurations allows these solutions to be easily deployed on actual robots for fur-
ther testing. An interdisciplinary course in robotics would bene�t greatly from use of
MissionLab, since many of the students would likely not be pro�cient programmers.

The MissionLab toolset will continue to evolve as new researchers tailor it to their
needs. The recent MissionLab public release of version 1:0 is only a milestone in its
continuing evolution. There are several features that could be added to MissionLab
to improve its usability. Adding the capability to place arbitrary comments within
the con�guration, support run-time monitoring from within the editor (i.e., source
level debugging), and better run-time support for interacting and monitoring large
numbers of vehicles are just a few of the possibilities. The usability studies pointed
out a likely place for improvement is the behavior and trigger selection process.

8.4 Conclusion

The title of this dissertation is A Design Methodology for the Con�guration of Behavior-
Based Mobile Robots. The focus on improving the design process grew out of a desire
to make robots commonly accessible. Before robots can move beyond the control of
their designers and into the hands of users the process of specifying missions must
be made accessible to ordinary people. The research documented in this dissertation
has moved the state of the art in robot programming a substantial distance in that
direction, and thereby achieved its purpose.

240

Appendix A

Documents from the Usability

Experiments

241

Figure A.1: This checklist was used for Experiments 1 and 2 by the monitor
to maintain consistency between sessions.

242

Figure A.2: This consent form was approved by the Georgia Tech oversight
board for use in the usability experiments. All test subjects
signed a copy of this form before taking part in any experiments.

243

Figure A.3: This is part 1 of the background questionnaire used to gather
information about participants in the experiments (part 2 is Fig-
ure A.4). All test subjects �lled out a copy of this form at the
start of the experiments.

244

Figure A.4: This is part 2 of the background questionnaire (part 1 is Fig-
ure A.3).

245

Figure A.5: The interaction with the experiment monitor was scripted to
ensure consistency between sessions. This is the \hello" script
used to start the session.

246

Figure A.6: The participants �rst completed a warmup exercise while the
monitor remained in the room and assisted them. This is part 1
of the script used during this warmup task (part 2 is Figure A.7).

247

Figure A.7: This is part 2 of the script for the warmup task (part 1 is Fig-
ure A.6).

248

Figure A.8: This is the script used for task 1. The experiment monitor read
this script and then left the room while the participants com-
pleted the task.

249

Figure A.9: This form was used by the experimentmonitor to record progress
of the participants as they completed the tasks. Any unusual
occurrences were also recorded for later examination. The par-
ticipants were instructed to test their solutions in two di�erent
simulated worlds. The World column was used to record the
results of their testing in each of the two environments.

250

Figure A.10: This is the script for Task 2.

251

Figure A.11: This is the script for Task 3.

252

Figure A.12: This is the script for Task 4.

Figure A.13: This is the script for Task 5.

253

Figure A.14: After the participants had completed as many of the tasks as
possible in the alloted time they were asked to �ll out this exit
survey.

254

1. Constants

// The ObjectClasses parameter is a bit mask with the following �elds:

#de�ne mines (1 << 0)

#de�ne enemy robots (1 << 1)

#de�ne ags (1 << 2)

#de�ne EOD areas (1 << 3)

#de�ne rocks (1 << 4)

#de�ne trees (1 << 5)

#de�ne home base (1 << 6)

#de�ne unknown objects (1 << 7)

// Signals

#de�ne DANGER 'd'

#de�ne SAFE 's'

2. Triggers

// Causes an immediate transition

bool FirstTime();

// Never take this transition

bool Never();

// start a wait cycle

void StartWait();

// Causes a transition after the delay expires

bool CheckWait(int delay);

// Are we near one of the marked objects?

bool Near(ObjectClasses classes, double distance);

// Are we away from all objects of these types?

bool AwayFrom(ObjectClasses classes, double distance);

// Is there one of the objects we are looking for?

bool Detect(ObjectClasses classes);

// Causes a transition when an object is not detected

bool UnDetect(ObjectClasses classes);

// Check the last signal sent (remains true until a new one arrives)

bool SigSense(int signal);

Figure A.15: Reproduction of the handout describing the usage of the be-
havior library for Experiment 2, page 1 of 2.

255

3. Actions

// Kills the robot

void Terminate();

// The robot doesn't move

Vector Stop();

// Check the type of the object

Vector ProbeObject();

// move the robot to the closest object of a certain type

Vector MoveTo(ObjectClasses classes);

// move the robot away from selected types objects

Vector MoveFrom(ObjectClasses classes);

// the robot wanders about the environment

Vector Wander(double curious, double cautious);

// Pickup the closest object of the desired type

Vector PickUp(ObjectClasses classes);

// put the object into the EOD container

Vector PutInEOD();

// Change the object to the new type

Vector MarkObjectAs(ObjectClasses new class);

// Causes the robot to drop a ag at the current location

Vector DropFlag();

// Terminate the nearest enemy robot

Vector TerminateEnemy();

Figure A.16: Reproduction of the handout describing the usage of the be-
havior library for Experiment 2, page 2 of 2.

256

Start cfgedit by typing: \task 1 id" and select a "new robot" workspace in the editor.

Start the process by clicking on the \OBP" button to bring up the list of output binding

points. In this case, there is only one choice which is common to both the UGV and AuRA

architectures. Click on \movement" and then \OK" and then place the output binding

point icon in the workspace.

In this exercise, the movements of the robot will be controlled by a state-based coordination

operator. Click on the \Operator" button to get the list of coordination operators. Again,

there is only one that is common to both architectures, so click on \FSA" and then \OK".

Now place the FSA icon in the workspace and then connect its output to the input of the

binding point by clicking on the arrows.

Move down to de�ne the FSA by clicking the middle mouse button on the FSA icon. Now

add a state which causes the robot to move to location <7.0, 3.5>, then <4.0, 3.5>. At this

point the robot should go into Teleop mode, allowing the commander to guide it, and then

�nally it should return to location <9.0 4.0> and stop.

After you have constructed the state transition diagram, save your �le as "f gen.cdl". Then,

click on the \Bind" button and select the AuRA architecture. We will be targeting the

MRV2 robots for this mission, so select that class of devices when prompted. Now click on

the \Output" button to generate an AuRA robot executable.

When the build �nishes, click on \Run" and select a simulated robot to evaluate your work.

When you are satis�ed that it performs the correct tasks listed above, rerun it and select

\Ren" as the robot to deploy the con�guration on. (Make sure the radios and Ren are

turned on). Ren should be positioned near the door to the lab, facing out the door. Run

the mission on Ren to further evaluate your work.

Save this �le as "f aura.cdl". Click on the \Unbind" button to revert back to a generic

con�guration and then click on the \Bind" button and this time select the \UGV" archi-

tecture as the target. Generate the necessary LISP code by pressing the \Output" button

and then invoke the SAUSAGES simulation system by pressing the "Run" button.

Once the SAUSAGES system starts up (it takes a while) you will see a graphic display of

the room. Click the left mouse button on the \Mission" pulldown menu and select \Load

Mission". Then repeat the process to select \Run Mission". When you select \Run Mission"

the robot should appear as a blue dot on the right end of the red line. Now pull down the

\Flow" menu and select \continue" to start the robot moving. The active segment turns

green and then blue when it has been completed. When the robot reaches the Teleop state,

the \Modes" indicator on the upper left toolbar will switch to \Pick Point". Now you can

direct the robot by merely clicking the left mouse button in the workspace. Note: The

robot can not cross the solid black room boundaries. When you have �nished the Teleop

leg, pull down the \Flow" menu and select \continue" to terminate this state.

When the mission is complete, pull down the \File" menu and select \Quit". Save this �le

as \f ugv" and you are �nished.

Figure A.17: Reproduction of the script used for Experiment 3.

257

258

Bibliography

[1] M.A. Arbib, A.J. Kfoury, and R.N. Moll. A Basis for Theoretical Computer

Science. Springer-Verlag, NY, 1981.

[2] R.C. Arkin. Towards Cosmopolitan Robots: Intelligent Navigation of a Mobile

Robot in Extended Man-made Environments. Ph.D. dissertation, University of
Massachusetts, Department of Computer and Information Science, 1987. COINS
TR 87-80.

[3] R.C. Arkin. Motor schema-based mobile robot navigation. The International

Journal of Robotics Research, 8(4):92{112, August 1989.

[4] R.C. Arkin and D.C. MacKenzie. Temporal coordination of perceptual algo-
rithms for mobile robot navigation. IEEE Transactions on Robotics and Au-

tomation, 10(3):276{286, June 1994.

[5] T. Balch, G. Boone, T. Collins, H. Forbes, D. MacKenzie, and J. Santamar��a. Io,
Ganymede and Callisto - a multiagent robot trash-collecting team. AI Magazine,
16(2):39{51, Summer 1995.

[6] Tucker Balch and Ronald C. Arkin. Motor-schema based formation control for
multiagent robotic teams. In Proc. 1995 International Conference on Multiagent

Systems, pages 10{16, San Francisco, CA, 1995.

[7] Daniel G. Bobrow et al. Common LISP object system. In Guy L. Steele Jr.,
editor, Common LISP: The Language, chapter 28, pages 770{864. Digital Press,
1990.

[8] Mark Bradakis, Thomas C. Henderson, and Joe Zachary. Reactive behavior
design tools. In Proc. IEEE International Symposium on Intelligent Control,
pages 178{183. IEEE, 1992.

[9] R.A. Brooks. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, 2(1):14{23, March 1986.

[10] R.A. Brooks. A robot that walks: Emergent behaviors from a carefully evolved
network. Neural Computation, 1(2):253{262, 1989. Also MIT AI Memo 1091.

[11] R.A. Brooks. The behavior language: User's guide. AI Memo 1227, MIT, 1990.

259

[12] Jonathan M. Cameron and Douglas C. MacKenzie. MissionLab User Man-

ual. College of Computing, Georgia Institute of Technology, Available via
http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/mlab manual.ps.gz,
Version 1.0 edition, May 1996.

[13] John P. Chin, Virginia A. Diehl, and Kent L. Norman. Development of an
instrument measuring user satisfaction of the human-computer interface. In
E. Soloway et al., editors, Proc. CHI'88, Human Factors in Computing Systems,
pages 213{218. ACM, 1988.

[14] J. Connell. A colony architecture for an arti�cial creature. AI Tech Report 1151,
MIT, 1989.

[15] E. Coste-Maniere, B. Espiau, and E. Rutten. A task-level robot programming
language and its reactive execution. In Proc. IEEE International Conference on
Robotics and Automation, pages 2751{2756, Nice, France, 1992.

[16] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science. North-Holland Publishing Company, Amsterdam,
The Netherlands, 1989.

[17] J. Firby. Adaptive execution in complex dynamic worlds. Computer Science
Tech Report YALEU/CSD/RR 672, Yale, January 1989.

[18] E. Gat. Alfa: A language for programming reactive robotic control systems. In
Proceedings 1991 IEEE International Conference on Robotics and Automation,
volume 2, pages 1116{1121, Sacramento, CA, 1991.

[19] E. Gat. Robust low-computation sensor-driven control for task-directed nav-
igation. In Proceedings 1991 IEEE International Conference on Robotics and
Automation, volume 2, pages 2484{2489, Sacramento, CA, 1991.

[20] E. Gat. Integrating planning and reacting in a heterogeneous asynchronous
architecture for controlling real-world mobile robots. In Proceedings AAAI Con-

ference, San Jose, CA, 1992.

[21] Michael P. George� and Amy L. Lansky. Reactive reasoning and planning. In
Proceedings AAAI Conference, pages 677{682, 1987.

[22] Matthew W. Gertz, Roy A. Maxion, and Pradeep K. Khosla. Visual program-
ming and hypermedia implementation within a distributed laboratory environ-
ment. Intelligent Automation and Soft Computing, 1(1):43{62, 1995.

260

[23] J. J. Gibson. The Senses Considered as Perceptual Systems. George Allen and
Unwin Ltd., London, 1968.

[24] J. J. Gibson. Notes on a�ordances. In E. Reed and R. Jones, editors, Reasons for
Realism: Selected Essays of James J. Gibson, pages 401{436. Lawrence Erlbaum
Associates, 1982.

[25] B. M. Gothard, R. D. Etersky, and R. E. Ewing. Lessons learned on a low-
cost global navigation system for the surrogate semi-autonomous vehicle. In
Proceedings SPIE Conference on Mobile Robots VIII, pages 258{269, Boston,
MA., 1993.

[26] J. Gowdy. SAUSAGES Users Manual. Robotics Institute, Carnegie Mellon,
version 1.0 edition, February 8 1991. SAUSAGES: A Framework for Plan Spec-
i�cation, Execution, and Monitoring.

[27] J. Gowdy. SAUSAGES: Between planning and action. Technical Report Draft,
Robotics Institute, Carnegie Mellon, 1994.

[28] Zvi Har'El and Robert P. Kurshan. Software for analytical development of com-
munications protocols. AT&T Technical Journal, 69(1), January/February 1990.

[29] Thomas C. Henderson. Logical behaviors. Journal of Robotic Systems, 7(3):309{
336, 1990.

[30] Thomas C. Henderson and Esther Shilcrat. Logical sensor systems. Journal of
Robotic Systems, 1(2):169{193, 1984.

[31] Deborah Hix and H. Rex Hartson. Developing User Interfaces. John Wiley and
Sons, New York, 1993.

[32] Charles Antony Richard Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12:576{581, 1969.

[33] Charles Antony Richard Hoare and N. Wirth. An axiomatic de�nition of the
programming language PASCAL. Acta Informatica, 2:335{355, 1973.

[34] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation, page 79. Addison-Wesley, 1979.

[35] Marcus J. Huber, Jaeho Lee, Patrick Kenny, and Edmund H. Durfee. UM-

PRS V1.0 Programmer and User Guide. Arti�cial Intelligence Laboratory, The
University of Michigan, 28 October 1993.

261

[36] L. P. Kaelbling. An architecture for intelligent reactive systems. Technical Note
400, SRI International, October 1986.

[37] L. P. Kaelbling. Rex programmer's manual. Technical Note 381, SRI Interna-
tional, 1986.

[38] L. P. Kaelbling. Goals as parallel program speci�cations. In Proceedings AAAI

Conference, volume 1, pages 60{65, St. Paul, MN, 1988.

[39] L. P. Kaelbling and S. J. Rosenschein. Action and planning in embedded
agents. Robotics and Autonomous Systems, 6:35{48, 1990. Also in Designing Au-
tonomous Agents: Theory and Practice from Biology to Engineering and Back,
P. Maes Editor, MIT Press, 1990.

[40] P. Kahn. Speci�cation & control of behavioral robot programs. In Proceedings
SPIE Conference on Sensor Fusion IV, Boston, MA., November 1991.

[41] D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2:127{145, 1968.

[42] J. Kosecka and R. Bajcsy. Cooperative behaviors - discrete event systems based
approach. Unknown source, 1993.

[43] B. Lee and A.R. Hurson. Dataow architectures and multithreading. IEEE
Computer, pages 27{39, August 1994.

[44] Jaeho Lee, Marcus J. Huber, Edmund H. Durfee, and Patrick G. Kenny. UM-
PRS: An implementation of the procedure reasoning system for multirobot appli-
cations. In Proceedings AIAA/NASA Conference on Intelligent Robots in Field,
Factory, Service, and Space (CIRFFSS '94), 1994.

[45] D. R. Lefebvre and G. N. Saridis. A computer architecture for intelligent ma-
chines. In Proceedings 1992 IEEE International Conference on Robotics and

Automation, pages 2745{2750, Nice, France, May 1992.

[46] Douglas B. Lenat and R.V. Guha. Building Large Knowlege-Based Systems.
Addison-Wesley, New York, 1990.

[47] Willie Lim. Sal - a language for developing an agent-based architecture for mobile
robots. In Proceedings SPIE Conference on Mobile Robots VII, pages 285{296,
Boston, MA., 1992.

[48] Michelle A. Lund. Evaluating the user interface: The candid camera approach. In
L. Borman et al., editors, Proc. CHI'85, Human Factors in Computing Systems,
pages 107{113. ACM, 1985.

262

[49] Damian M. Lyons. Representing and analyzing action plans as networks of con-
current processes. IEEE Transactions on Robotics and Automation, 9(3):241{
256, June 1993.

[50] Damian M. Lyons and M. A. Arbib. A formal model of computation for sensory-
based robotics. IEEE Journal of Robotics and Automation, 5(3):280{293, June
1989.

[51] Douglas C. MacKenzie. Con�guration Network Language (CNL) User Man-

ual. College of Computing, Georgia Institute of Technology, Available via
http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/cnl manual.ps.gz,
Version 1.5 edition, June 1996.

[52] Douglas C. MacKenzie and Ronald C. Arkin. Formal speci�cation for behavior-
based mobile robots. In Proceedings SPIE Conference on Mobile Robots VIII,
pages 94{104, Boston, MA., 1993.

[53] P. Maes. The dynamics of action selection. In Proceedings Eleventh International

Joint Conference on Arti�cial Intelligence, IJCAII-89, volume 2, pages 991{997,
1989.

[54] P. Maes. Situated agents can have goals. Robotics and Autonomous Systems,
6:49{70, 1990. Also in Designing Autonomous Agents: Theory and Practice from
Biology to Engineering and Back, P. Maes Editor, MIT Press, 1990.

[55] M. J. Mataric. Designing emergent behaviors: From local interactions to collec-
tive intelligence. In Proceedings From Animals to Animats, Second International
Conference on Simulation of Adaptive Behavior (SAB92). MIT Press, 1992.

[56] M.J. Mataric. Minimizing complexity in controlling a mobile robot population. In
Proceedings 1992 IEEE International Conference on Robotics and Automation,
Nice, France, May 1992.

[57] David J. Miller and R. Charleene Lennox. An object-oriented environment for
robot system architectures. In Proc. IEEE International Conference on Robotics

and Automation, volume 1, pages 352{361, Cincinnati, OH, 1990.

[58] M. Minsky. The Society of Mind. Simon and Schuster, New York, 1986.

[59] Frank G. Pagan. Formal Speci�cation of Programming Languages: A Panoramic

Primer. Prentice-Hall, New Jersey, 1981.

[60] Lynne E. Parker. Adaptive action selection for cooperative agent teams. In
Proceedings of 2nd International conference on Simulation of Adaptive Behavior,
number 92 in SAB, Honolulu, HA, 1992.

263

[61] Lynne E. Parker. Local versus global control laws for cooperative agent teams.
Technical Report AI Memo No. 1357, MIT, 1992.

[62] Lynne E. Parker. A performance-based architecture for heterogeneous, situated
agent cooperation. In AAAI-1992 Workshop on Cooperation Among Heteroge-

neous Intelligent Systems, San Jose, CA, 1992.

[63] Lynne E. Parker. Heterogeneous Multi-Robot Cooperation. Ph.D. dissertation,
MIT, Department of Electrical Engineering and Computer Science, 1994.

[64] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete
event processes. SIAM J. Control Optimization, 25(1):206{230, 1987.

[65] P.J. Ramadge and W.M. Wonham. The control of discrete event systems. Pro-
ceedings of the IEEE, 77-1(1):81{97, January 1989.

[66] J.K. Rosenblatt and D.W. Payton. A �ne-grained alternative to the subsump-
tion architecture for mobile robot control. In IEEE INNS International Joint
Conference on Neural Networks, volume 2, pages 317{323, 1989.

[67] S.J. Rosenschein and L.P. Kaelbling. The synthesis of digital machines with
provable epistemic properties. Technical Note 412, SRI International, Menlo
Park, California, April 1987.

[68] A. Sa�otti, Kurt Konolige, and E Ruspini. A multivalued logic approach to in-
tegrating planning and control. Technical Report 533, SRI Arti�cial Intelligence
Center, Menlo Park, California, 1993.

[69] Robert Sandy. Statistics for Business and Economics. McGraw-Hill, New York,
1990.

[70] Stanley A. Schneider, Vincent W. Chen, and Gerardo Pardo-Castellote. The
ControlShell component-based real-time programming system. In Proc. IEEE

International Conference on Robotics and Automation, pages 2381{2388, 1995.

[71] K. Schwan et al. A C thread library for multiprocessors. ICS Tech Report
GIT-ICS-91/02, Georgia Institute of Technology, January 1991.

[72] M.P. Singh, M.N. Huhns, and L.M. Stephens. Declarative representations of
multiagent systems. IEEE Transactions on Knowledge and Data Engineering,
5(5):721{739, October 1993.

[73] L. Spector. Supervenience in Dynamic-World Planning. Ph.D. dissertation,
University of Maryland, Department of Computer Science, 1992. Also Tech
Report CS-TR-2899 or UMIACS-TR-92-55.

264

[74] David B. Stewart and P.K. Khosla. Rapid development of robotic applications
using component-based real-time software. In Proc. Intelligent Robotics and

Systems (IROS 95), volume 1, pages 465{470. IEEE/RSJ, IEEE Press, 1995.

[75] N. Tinbergen. The Study of Instinct. Oxford University Press, London, second
edition, 1969.

[76] University of New Mexico. Khoros: Visual Programming System and Software

Development Environment for Data Processing and Visualization.

[77] F.Y. Wang, K.J. Kyriakopoulos, A. Tsolkas, and G.N. Saridis. A petri-net coor-
dination model for an intelligent mobile robot. IEEE Transactions on Systems,
Man, and Cybernetics, 21(4):777{789, July/August 1991.

[78] Allen C. Ward. A Theory of Quantitative Inference for Artifact Sets Applied to a
Mechanical Design Compiler. Ph.D. dissertation, MIT, Department of Mechan-
ical Engineering, 1989. Also Tech Report AI Tech Report 1089.

[79] Allen C. Ward and Warren P. Seering. The performance of a mechanical design
compiler. AI Tech Report 1084, MIT, 1989.

[80] David A. Watt. An extended attribute grammar for PASCAL. SIGPLAN No-
tices, 14(2):60{74, February 1979.

[81] P Wegner. The Vienna de�nition language. ACM Computing Surveys, 4(1):5{63,
1972.

265

266

Vita

Douglas Christopher MacKenzie was born in Hastings, Michigan on January 12, 1963,
the son of Douglas Lee and Judith Yvonne MacKenzie. After graduation from Lake-
wood High School in 1981, he attended Michigan Technological University. He grad-
uated with honors in 1985 with a Bachelor of Electrical Engineering degree. Doug
continued at Michigan Tech in the Computer Science department working towards a
Master's degree.

While attending Michigan Tech, he worked summers and part time for several
years at Hough Brothers, automating feed mills in the poultry industry. Doug left
Houghton and moved to Cleveland, Ohio in the summer of 1988 to work as a Software
Engineer in Allen-Bradley's Programmable Controller Division. Overlapping writing
of his thesis with work, he received the Master's in Computer Science degree in the
spring of 1989.

Doug married Karen Beth Brehob in Dearborn, Michigan in the fall of 1988. In the
fall of 1990 Doug and Karen moved to Atlanta so Doug could attend Georgia Tech.
While at Tech, Doug initiated development of the MissionLab toolset and created
the graphical Con�guration Editor which brings visual programming to the behavior-
based robotics domain. Doug is particularly interested in empowering people who
are not experts in robotics to be able to use mobile robots. This goal of making
robotics easy to use reects his belief that it is time to move mobile robotics beyond
the research labs. He also believes what is holding robots back is the lack of software
that is both powerful and easy to use. MissionLab begins to �ll that void.

Doug currently lives near Grand Rapids, Michigan and has formed the Mobile
Intelligence Corporation to further his goal of dispersing robotics into everyday life.
He can be contacted via E-mail at doug@mobile-intelligence.com.

267

