APPENDIX A

GLOBAL PATH PLANNING COMPUTATIONAL COSTS

This appendix provides some typical timings for the cartographic and navigator com-
ponents of the AuRA architecture. All CPU times are from a moderately loaded VAX-11
750 (8 MB memory and floating point hardware). It is estimated that the times cut be
cut by 67% to 75% by using a 68000 based workstation (e.g. SUN).

§1. Mapbuilder

Recognizing that the mapbuilder code is far from optimized, still some basic interpre-
tations of the performance of the underlying algorithms can be made. Each component
of the mapbuilding algorithm will be discussed in turn. The results of this section are

based on a total of 72 different decompositions on 8 maps.

§1.1 Border Growing

The border growing algorithm is dependent on the number of vertices to be grown.
The time required to grow the border for figure 16 was approximately 5.2 CPU seconds
(28 vertices). A larger border (57 vertices) took approximately 22 seconds.

§1.2 Obstacle attachment

The obstacle attachment component of the mapbuilding algorithm is currently the
least efficient part of the code. Massive improvements in CPU speed can be made. This
phase of the mapbuilding is the most time consuming and appears to be exponential
in order. A significantly more efficient algorithm for this phase could and should be

developed if this system was to be used for other than experimental testing. The total

337

338

time to grow and attach 1 typical obstacle is 0.05 sec. This increases to 28 seconds for 7
obstacles and is dependent, on the number of vertices of the border, number of obstacles,
and number of obstacle vertices. Efficiency is currently not a prime factor during the
long term memory mapbuilding phase as it is only compiled once at the start of the run.

Nonetheless, for more complex environments this part of the code should be cleaned up.

§1.3 Decomposition Times

Perhaps of more interest is the time required for the recursive decomposition of the
single region output by the obstacle attachment algorithm. Surprisingly rapid results
were obtained. For Figure 18, computational times from 3.2 to 12.2 CPU seconds were
observed (including merge). The general trends were as expected; choosing the first
concave vertex consistently outperformed the least or most concave modes (an example
timing is provided in Table 6). Of greater significance was the choice of the victim vertex:
the opposite vertex performed best, followed by leftmost then rightmost victim. In many
cases choice of the most opposite vertex resulted in decomposition times about 1/4 of the

time required for rightmost victims.

§2. Navigational path finder

Fifteen different paths using four different start and end point pairs and two different
safety margins were computed using the decomposition shown in Figure 22a. Many of
these paths are shown in Figures 26-32.

No claim is made for the efficiency of the implementation. Significant time savings
could probably be achieved (especially in the path improvement section) if the code was
rewritten. These should be considered relative figures, not those that indicate the lower

bounds of the algorithm.

§2.1 Search

As would be expected the search time for the A*-3 algorithm is considerably higher
than that for the A*-1 method. The total number of possible nodes to be expanded
triples, while the path solution space is cubed. Although the A*-3 method is definitely

Table 6: Typical mapbuilding timings

Concave | Victim Decompose Clean-up || Total || Number
Mode Mode time | merge time || time region;U
Most Opposite 2.06 1.10] 39.3 29 ||
Most Leftmost 3.08 3.95 || 43.1 38
Most Rightmost 6.15 6.06 | 48.3 35
Least Opposite 2.56 0.95 || 39.6 37 ||

|l Least Leftmost 3.50 5.06 | 44.7 37

" |l Least Rightmost 4.00 5.35 [45.5 38

i || First Opposite 2.00 1.86 40.0 31

‘|| First Leftmost 2.76 5.20 || 44.1 38

" || First Rightmost 3.55 6.88 | 46.5 34

These timings are for the decomposition of the map shown in Figure 18.

The time required to grow the border region (configuration space) is 5.2 seconds.

The time required to grow and attach the obstacles to the border is 30.9 seconds.

339

340

more costly, it is not prohibitive as the data below confirms.
Range for A*-1 (search) : 0.46-1.38 sec (avg: 0.95 sec)
Range for A*-3 (search) : 1.51-6.15 sec (avg: 4.07 sec)

Percentage Increase for A*-3 over A*-1 (search):

e Range: 188% - 781%
e Average: 455%

§2.2 Path Improvement

A*-3 will perform better than A*-1 in the path improvement component of the al-
gorithm as it can completely bypass the initial tautness part. This results in significant
time savings which offset some of the additional computation as described above.

Using the same paths as in the search component, these results follow:

Range for A*-1 (path imp.): 0.76-6.91 sec (avg: 3.18 sec)

Range for A*-3 (path imp.): 0.43-4.20 sec (avg: 1.46 sec)

Percentage of A*-3 over A*-1 (path improvement):

e Range: 12% - 83%

e Average: 58%

§2.3 Total Path time (simple terrain - no relaxation)

In all but one case the A*-1 algorithm outperformed the A*-3 method using CPU
time as the indicator. The results are not too widely separated due to the shorter path
improvement times required for A*-3. This shows the feasibility of this method in certain
instances. It should also be noted that in every case (except one) the A*-3 algorithm
came up with a path equal to or lower in cost to the one produced by the A*-1 algorithm.
Only when high safety factors were involved did A*-1 derive a lower cost path. This is
misleading as the goal was to produce safe, not short paths. If the straightening was
turned off the A*-3 algorithm would have outperformed A*-1 as expected.

Range for A*-1 (total) : 1.22-7.59 sec (avg: 4.1 o)

Range for A*-3 (total) : 2.14-8.66 sec (avg: 5.54 sec)

Percentage Increase per run for A*-3 over A*-1 (total):

341

e Range: 75% - 271%

e Average: 162%

On the average it took 62% longer to find a path using A*-3 than A*-1 when all path

improvement techniques are in use.

§2.4 Path cost savings

Of the three paths produced by the A*-3 method that were less costly than those
produced using the A*-1 method, the first was 8% less costly, the second was 7% less
costly, and the third was 2% less costly. These are rather paltry cost savings for the
mobile robot domain in which dynamic obstacles and/or uncertainty can render any

precomputed path useless.

§2.5 Multi-terrain transition zone relaxation

Path relaxation figures were harder to collect and are highly dependent on the re-
laxation step size. The increment was set to 3.0 feet, about the diameter of the robot.
Obviously, the number of transition zones to be relaxed also has a profound effect on the
relaxation time.

For a single relaxation zone, (the longest concrete-grass border: see Figure 36), re-
laxation times observed ranged from a minimum of 0.40 CPU sec to a maximum of 4.13
sec. For two zones (grass across gravel path to other grassy section), times from 3.06 to
5.23 seconds resulted.

The relaxation for Figure 37 (two zones) took 0.38 seconds (this was overhead cost
only as the path produced by the improvement strategies was already at a minimum
cost). Figure 38 (2 zones) took 3.73 seconds and Figure 39 (3.5 zones) took 10.7 seconds.
The longest observed relaxation time (4 zones) was 22.81 seconds. It is anticipated that

most paths for the mobile robot will not involve numerous transition zone crossings.

APPENDIX B

ROBOT VEHICLE INTERFACE C LIBRARY

The routines listed below are used to establish communications, execute translation
and orientation changes of the vehicle, control sensor data collection processes, and other
miscellaneous functions. Fortunately, many of the functions existed within the DRV
terminal emulation software and the major function for several of the routines below was
to communicate the command from the host VAX to the robot. In other cases, the DRV
software had no parallel. The Denning documentation set (38] and the UMASS DRV’s
Software Development Guide [12] serve as further references.

If AuRA is to be ported to another vehicles, these routines would need to be recoded
to accommodate the new vehicle. As long as the vehicle’s locomotion system is not that
different from the DRV’s, most of the other subsystems of AuRA can be considered insu-

lated from a vehicle change and thus support the concept of robot vehicle independence.

§1. Robot Primitives

e Translation commands:

- move(distance,velocity,acceleration)

move a given distance then stop.

drive(velocity,acceleration)

Initiate translational motion.

wait_for_drive_to_stop()

signal when drive motor has stopped.

|

stopdrive()

terminate translation normally (smooth deceleration).

342

343

— killdrive()

emergency stop.

— stop()

stop both translation and rotation.
¢ Rotation commands:

- turn(angle,angular_velocity,angular-acceleration)

turn a given angle then stop.

— steer(angular_velocity, angular_acceleration)

initiate rotation.

home(angular_velocity,angular. acceleration)

turn wheels to known orientation relative to body.

— wait_for_steer_to_stop()

signal when robot has stopped turning.

stopsteer()

terminate rotation normally.

killsteer()

emergency rotation stop.
e Sensor

— Ultrasonics:
% range_start()
start ultrasonic sensors firing.
* range_stop()
stop firing of ultrasonic sensors.
* range.read(sonar_data)
acquire ultrasonic data.

— Shaft encoders:

* initxy()

set Xy position coordinates to x = 0, y = 0, theta = 0.

getxy(x,y,theta)

acquire positional information from DRYV.
setxy(x,y,theta)

set positional information from DRV.
drivepos()

acquire shaft encoder data from drive motor.

steerpos()

acquire shaft encoder data from steering motor.

drivevel()

acquire velocity of drive motor.
steervel()

acquire velocity of steering motor.
drivestat(status)

read the status of the drive motor controller.

steerstat(status)

read the status of the steering motor controller.

e Communications

— open_robot_channel()

Establish communications with the robot.

- send_robotnmessage(channel,message,length)

send a command to the robot.

flush_to(channel character)

remove garbage output from robot.

read.robot_character(channel character)

read a character from robot.

- ﬁnd_ﬁrst_non(channel,character,buffer)

strips data up to character.

close tty line(channel)

terminate communications with robot,.

344

345

e Miscellaneous

— set_terminal_raw()
configure the DRV’s communication port.
- set_parameter(name,value)

set a DRV internal parameter to a specified value.

— monitor-move(sensor,spread,limit)

safe translation using ultrasonic data.

APPENDIX C

VISION ALGORITHMS

This appendix contains outlines of two of the vision algorithms referred to in chapter
6. References are cited where appropriate to direct the reader to more information on

their details.

§1. Fast line finder

The outline of this algorithm, developed by Kahn, Kitchen and Riseman, is repro-
duced from [64]. The interested reader is referred to that paper for additional details. It

is based on a previous algorithm by Burns, Hanson, and Riseman [31].
1.0 PASS 1 over the image

1.1 for each image pixel do

1.1.1 Compute the gradient direction and magnitude

1.1.2 Threshold on gradient magnitude

1.1.3 Use gradient direction to classify suprathreshold pixels into buckets.
(Pixels below threshold and pixels whose gradient is not in a direction of
interest are specially labeled and ignored in all subsequent processing.)

1.1.4 Perform connected components analysis to group adjacent pixels that
share identical bucket labels into region fragments, and build a fragment
equtvalence list

1.2 for every unprocessed region fragment do

1.2.1 Use the fragment equivalence list to merge fragments into line support
regions and set the region pixel count to the sum of the fragment pixel

counts
1.2.2 Eliminate regions whose pixel count is below a certain threshold by
tagging their constituent fragments “insignificant”™ so thev will be ignored

in subsequent processing
1.2.3 Assign region labels to fragments which are part of these “significant”
regions

346

347

2.0 PASS 2 over the fragment labeled image and gradient magnitude image

2.1 for each image pixel in a “significant” region do

2.1.1 For the region within which the pixel is contained, accumulate statistics
needed to compute the scatter matrix and endpoints (for line fitting)

2.1.2 If desired, build a region labeled image

2.2 for each “significant” region do
2.2.1 Compute the scatter matrix from the accumulated statistics
2.2.2 Compute the best-fit line orientation and centroid anchor position
2.2.3 Compute the line endpoints

2.2.4 Put the fitted line and associated statistics into a line list to be output
by the FLF program

§2. Fast Region Segmenter

This algorithm closely resembles the fast line finder on which it is based. See [64] for

additional information.

1.0 PASS 1 over the image

1.1 for each image pixel do
Using a previously loaded look-up table and an arbitrary image, produce
the bucket-labeled image based on gradient magnitude

1.1.2 Perform connected components analysis to group adjacent pixels that share
identical bucket labels into regions and build a fragment equivalence list

1.2 for every unprocessed region fragment do

1.2.1 Use the fragment equivalence list to merge fragments into regions of
similar intensity and set the region pixel count to the sum of the fragment
pixel counts

1.2.2 Eliminate regions whose pixel count is below a certain threshold by
tagging their constituent fragments “insignificant” so they will be ignored
in subsequent processing

1.2.3 Assign region labels to fragments which are part of these “significant”
regions

2.0 PASS 2 over the region labeled image and gradient magnitude image

2.1 for each image pixel in a “significant” region do
g g

2.1.1 For the region within which the pixel is contained, accumulate region
statistics.

348

2.1.2 Build a region labeled image
2.2 for each “significant” region do

2.2.1 Compute the scatter matrix from the accumulated statistics
2.2.4 Put the realm statistics into a list to be output by the FRS program

