CHAPTER 1

INTRODUCTION

Mobile robots, in order to be successful in a world as unconstrained as a human’s,
must be capable of responding intelligently to changes in their environment. Safe and
successful goal-oriented navigation can only occur if the robot is able to emulate intelligent

behavior. It should be recognized that in the real world:

1. Things are not always as they appear.
2. The world changes over time.

3. The spatial limitations of sensing when combined with mobility lead to new per-

ceptions as previously unknown parts of the world are encountered.

Intelligent behavior can be defined as the ability to respond to changes in the perceived
world in an advantageous manner. It should be made clear that a sharp distinction exists
between reality and the perceived reality of the senses. A view of the world is just that, a
view, and is not the world itself. If this fact is ignored and all perceptions are viewed as
valid unambiguous interpretations of reality, any cybernetic system (animal or machine)
is doomed to a short-life span. Consequently, it is of fundamental importance for such a
system to be able to extract from the wealth of data provided by its senses a coherent
interpretation that is subject to later revision and possible revocation based on freshly
acquired information. Simply put, a robot must be able to alter its beliefs.

An Al system with the ability of handling this difficulty is usually vulnerable to the
frame problem [46] i.e. the system is not fully aware of all the consequences of any action

that is undertaken. Fortunately, action-oriented sensing can serve as a means to cope

with this ill.




In order to design a mobile robot system with the ability to behave intelligently, the
real-world characteristics enumerated above must be addressed. Handling errorful percep-
tion requires a mobile robot system capable of frequent sensor sampling and uncertainty
management. Multiple sensors utilizing appropriate sensor fusion techniques can also
ameliorate problems arising from the differences between the real and perceived worlds.
Spatio-temporal changes in the real world require frequent updating of the robot’s inter-
nal world model. It is unsafe to assume, except in highly structured workplaces, that a
static environment exists. World modeling and navigation should additionally extend to
regions where the robot has never been before or which it has not encountered recently.
Ideally, learning can also be used to adapt to slowly varying changes in the world and to
add new locales to the robot’s memory.

Most mobile robot systems built to date have had a narrow focus of interaction with
their environment. There are road-following vehicles, hall-following robots, guide-dog
robots, etc. Little effort has been placed, however, on the development of a more general
purpose robot capable of functioning well in both indoor and outdoor environments. If
robots are expected to be other than special-purpose (although programmable) machines,
a bridge must be built to allow the transition from constrained environments to more open
ones. The key to accomplishing this transition is the construction of an architecture and
accompanying representations that are less restrictive than those previously employed.

The thrust of this dissertation is the development of a mobile robot navigation system
(AuRA - Autonomous Robot Architecture) that can operate in environments to which
civilized man is accustomed. This system is developed and experimentally tested in
what are termed extended man-made environments. These environments include the
interiors of buildings, streets, sidewalks, city and campus settings. It is not intended to
deal with navigation in jungles, swamps, forests and other unstructured environments,
in which indeed a human - without a compass, clear skies, or additional information -
can become hopelessly lost. The principal reason for the choice of these environments
for the mobile robot’s domain is the wealth of visual cues they afford the vision system.
The assumption is made that man-made objects are more readily discernible via machine
vision than natural ones, largely due to a significant population of regularly shaped
edges or characteristic colors of such objects. These cues can be used by the robot for

localization, guiding it to greater confidence in its position relative to the world, as well




as goal recognition and obstacle avoidance.

§1. Navigation

Navigation can be simply defined as moving from one place to another in an effective
manner. One may navigate amongst that which is known ahead of time, or in unknown
territory. In a perfectly modeled world, a path can be computed in advance that is
completely acceptable. The robot’s task becomes simply to maintain its bearings relative
to the precomputed global path so that it does not deviate from this predetermined route.
At the other extreme, where nothing is modeled ahead of time, the robot reacts to its
environment, seeking an unknown goal amidst unforeseen barriers. The first case, moving
in a known world, will be referred to as map-navigation, and the second case, reacting to
unknown events, will be referred to as piloting.

Most real world situations involve both navigational forms. When given a task, any
a priori knowledge of the world (if available) is mustered prior to the initiation of move-
ment. In a perfectly modeled world, simple path adherence is all that is required. In a
less than completely known world, (i.e. the real world), the robot starts moving along a
predetermined path. If no unusual events occur, the pilot maintains the map-navigator’s
path. If an unexpected event occurs, the pilot initiates dynamic sensor-based replanning.
As long as the deviations are minor, the pilot handles the replanning. If the path devi-
ations are too severe, the pilot informs the map-navigator, who computes an alternate
path.

An important distinction is that map-navigation is model-driven and sensor-indepen-
dent whereas piloting is largely sensor-data driven. It is entirely possible for the pilot
to inform the map-navigator of newly sensed information so the world model can be
updated to incorporate this new data. This is in essence a learning mechanism. It is
important to note however that not everything the pilot detects should be entered into
the map-navigator’s model. Moving obstacles (cars, people, etc.) may be present only
for a very short time and should not be added to the navigator’s map. This implies that
semantic interpretation of the sensed data is essential for navigational updating of the
world map.

Another important distinction between map-navigation and piloting lies in scope.




Map-navigation is more global in nature, ignoring the small detail to arrive at a satisfac-
tory global solution (based on available knowledge). The short-sighted pilot, on the other
hand, is concerned with the immediate environs and deals with sensed but unmodeled
obstacles that are not represented in the navigator’s map. Meystel describes the role of
scope in navigational planning in [83].

Sidestepping the issue of learning for the moment, the maintenance of two distinct
representations for the different levels of navigation facilitates planning: long-term mem-
ory (LTM) for the static world representation used by the map-navigator, and short-term
memory (STM) which is used by the pilot for building up a perceived model of the world.
Localization (determining the robot’s position relative to the global LTM map) becomes
a matter of correlating STM with LTM, and learning involves moving relevant features
from STM to LTM. The pilot also draws on LTM but in a more limited way, LTM
providing specific cues for the pilot to look for (e.g. landmarks) which can be used for
localization. The pilot monitors only those landmarks in its vicinity and thus can more
effectively use its available computational resources.

For the purposes of piloting in AuRA there exist two strategies: a low-level reactive or
reflexive approach using schema-based control structures which does not draw directly on
memory (either STM or LTM) but instead uses sensor data as it is received, and another
method using both the local context of LTM and the accumulated sensor data in STM
when the reflexive approach fails. Unmodeled and changing world conditions are treated
through relevant schema and STM representations. The distinctions between these two
methods will be discussed in Chapters 3 and 5.

A partial a priori model (LTM) of the domain of interaction is provided for the
map-navigator’s use. It includes static objects, (lampposts, walls, buildings, etc.), but
omits dynamic ones (people, cars, chairs, etc.). The question of the robot learning and
adapting its representations to meet the demands of a changing world is considered in

the theoretical development of the architecture presented in Chapter 3.

§2. Characteristics of mobile robotics

Mobile robotics in many respects is decidedly different from conventional robotics.

It is worth describing some of the characteristics that distinguish it from the more con-




ventional robot arms and manipulators. Some of the material in this section is loosely

adapted from Thorpe [126] and Andresen et al [3]. These characteristics include:

e Inherent inaccuracy

e Limited degrees of freedom

e Cumulative error

¢ Incomplete model

e Environmental uncertainty

e Non-repetitive paths

e On-line, continuous path planning

Inherent inaccuracy

The sensors relied upon by mobile robots can easily give rise to imprecise and inaccu-
rate data. Even if the devices themselves are highly accurate, (e.g. shaft encoders), the
correspondence of the changes in the sensors to the changes in the robot’s environment
may be poor (e.g. due to wheel slippage). Feedback in the traditional sense of control
theory is not immediately applicable and can only be used as a guide to establish expec-

tations for higher level processing.

Limited degrees of freedom

The number of degrees of freedom for the mobile robot are significantly less than
those of a robotic manipulator. Assuming no translational motion is allowed in the ver-
tical (up and down) direction (generally a necessity due to available locomotion systems
- this would change if applied to legged, flying and submarine robots), there are 2 DOF's
of translation and one DOF of rotation. This is half of the 6 DOFs commonly found in

a robot arm and wrist, a decided decrease in complexity.

Cumulative error
Errors if left uncorrected will tend to increase. This is typical of any type of dead-

reckoning system. A path cannot be computed and the robot sent off to execute it




without frequently verifying and correcting the robot’s internal model of its position.
Merely avoiding obstacles along the way is insufficient to guarantee that a robot will
reach its goal or even recognize when it reaches it. Consequently, information must be

maintained in a representation that enables this type of updating to be performed.

Incomplete model

Any model by definition is incomplete, otherwise it would not be a model. Internal
world representations for mobile robots are perhaps more incomplete than most, due to
the larger and more unstructured world in which it operates when compared to indus-
trial robots. Space-versus-time computational tradeoffs must be made in order to meet
the real-time constraints of path planning, replanning, and obstacle avoidance. Excess
representational baggage is a luxury that generally cannot be afforded. It is difficult to
see how any representation can be maintained, updated and accessed by algorithms that
must process the data in real-time with ezisting hardware and yet is complete enough for
accurate positioning of the robot, semantic interpretation of high level commands and
objective statements, supporting multi-modal sensors, coping with uncertainty, handling
goal recognition and choosing alternate path-planning strategies dependent upon external
factors.

Representational incompleteness can also be encountered when the robot is required
to traverse areas in which it has never been before. The representation may have to be

built dynamically from only partially correct and possibly contradictory sensor data.

Environmental uncertainty

Things are not always where they are expected to be, even when they are modeled.
Not only is the robot’s position uncertain, but the location of objects will also have to be
treated with skepticism. In addition, objects may have moved since their last observation
or even be in motion relative to the world or the robot. This is in marked contrast to

the robot manipulator’s highly structured workplace.

Non-repetitive paths
The path an autonomous mobile robot executes is unlikely to be the same twice. Al-

though the general route may be the same, changing conditions combined with positional




errors usually will require the actual path taken to differ from the high level specifications
each time it is traversed. If this were not so, as in some manufacturing situations, a stripe
or wire following automatic guided vehicle (AGV) would be the robot of choice instead

of an autonomous vehicle.

On-line, continuous, path planning

The robot must not close its “eyes” for long while moving. Constant monitoring for
collision avoidance is essential. To obtain enhanced performance, path planning should
be maintained during robot motion, just in case an unexpected event arises that would
necessitate a path change. These might include such things as an unanticipated barrier
(necessitating a detour) or the absence of a modeled obstacle (opening up a better path).

This dynamic replanning must be conducted in real-time.

§3. Overview of the dissertation

The ultimate goal of this dissertation is to provide a broad, relatively unrestricted
approach to the problem of mobile robot navigation. To accomplish this, several specific

issues will be addressed. These will include:

1. The development of an architecture to support intelligent navigation of a multi-

sensory (predominantly visual) robot in a “civilized world”.

Approach: The Autonomous robot architecture (AuRA) is forwarded as the struc-
ture to accomplish this goal. The “civilized world” includes both indoor and re-
stricted outdoor travel. The outdoor case will assume a significant population of
man-made objects (roads, paths, sidewalks, buildings, etc.) but also will allow for
substantial natural surroundings (grass, trees, sky, etc.). Extensibility and gener-

alizability are considered fundamental design goals.

2. Effective fusion of the visual data with other sensory input (e.g. shaft encoders
and ultrasonics). The development of techniques that are appropriate for resolving

conflict between contradictory sensory data while enhancing cooperative input.

Approach: The use of motor schemas and associated perceptual schemas as control

mechanisms to funnel relevant sensory data to the appropriate motor task.




3. Representation of spatial uncertainty and its use to guide expectations for percep-
tion. The use of sensing to restrict the limits of uncertainty through feedback.
Approach: The use of specific modules in the AuRA architecture dedicated to the

management of uncertainty, including the spatial uncertainty map and its manager,

and the Expecter used to provide expectations to the perception subsystem.

4. Selection of appropriate vision algorithms for specific tasks.

Approach: Associating specific strategies through perceptual schemas to provide

action-oriented perception. These include:

e A depth-from-motion algorithm for obstacle avoidance.
e A line extraction algorithm for path following.
e A region segmentation for path following and localization.

e Scene interpretation and interest operators for landmark recognition.

5. The use of knowledge representations that can effectively deal with navigation in
“civilized” environments and are general enough to be used both indoors and out-

doors.

Approach: A multi-level representation managed by a cartographic process that
maintains both an a priori model of the environment in addition to a dynamic

model of newly encountered obstacles and features.

Experimental testing of the resulting robot system is in two arenas: navigation within
the Graduate Research Center at the University of Massachusetts - Amherst (UMASS)
and in the outdoor area surrounding the same building. The results are presented in
Chapter 8.

The dissertation is structured as follows:
e Chapter 1 is this introduction.

e Chapter 2 describes relevant prior work in the field of mobile robot navigation,
including an analysis of the types of representations and control strategies used.
An overview of work in the use of vision as a sensor for robot navigation is also

presented.




Chapter 3 presents the structure of the Autonomous Robot Architecture (AuRA)
that is used as the framework for the experimental work of this dissertation. Mo-

tivation for its structure is also included.

Chapter 4 describes in detail the role of the navigator and long-term memory rep-
resentations used to develop a path for the robot based on a prior: knowledge.
The inclusion of both indoor and outdoor terrain types are important extensions
to previous work. The roles of the mission planner, pilot and their accompanying

representations are also presented.

Chapter 5 puts forth the motivation for motor schema based mobile robot piloting.
Action-oriented perception is a fundamental tenet of this approach. The use of
schemas in AuRA is described. The inter-relationship between the motor schema

manager and pilot is also discussed.

Chapter 6 describes the specific sensor algorithms, both visual and ultrasonic, that

are used to provide environmental data to AuRA.

Uncertainty management is discussed in chapter 7. An exposition of the role of the
spatial uncertainty map and its manager and the use of represented uncertainty to

guide perceptual expectations is provided.

Chapter 8 presents the actual experiments performed to validate the concepts pre-
sented in this dissertation. These include both indoor and outdoor runs with dif-

fering levels of a priori knowledge available.

Chapter 9 concludes the dissertation with a summary of accomplishments as well

as a discussion of future work.




