CHAPTER 1l

THE AURA AUTONOMOUS ROBOT ARCHITECTURE

AuRA (Autonomous Robot Architecture) is a system architecture that provides ex-
tensions to the UMASS VISIONS system that are primarily concerned with safe mo-
bile robot navigation. The VISIONS group at the University of Massachusetts has
an extensive and ongoing research project in the interpretation of real-world images
[41,42,102,140]. These extensions include the addition of representations specific to
navigation, the incorporation of motor schemas as a means of associating perceptual
techniques with motor behaviors, and the introduction of homeostatic control utilizing
internal sensing as a means for dynamically altering planning and motor behaviors.

This chapter is divided into the following sections. Section 1 presents an overview
of the AuRA architecture. Section 2 describes how navigation is accomplished within
AuRA, specifically the roles of long-term and short-term memory and the operation
of the navigator, pilot and motor-schema manager. The issue of spatial uncertainty is
addressed in Section 3. Section 4 discusses the theoretical motivation for AuRA. The
hardware and system implementation issues are described in Section 5. A summary

concludes the chapter.

§1. Architecture Overview

A block diagram of AuRA is presented in Figure 2. AuRA consists of five major
components: the planning, cartographic, perception, motor and homeostatic subsystems.
The planner consists of the motor schema manager, pilot, navigator and mission planner
and is described in Section 2 and in more detail in Chapters 4 and 5. A cartographer,

whose task is to maintain the information stored in long- and short-term memory and

39

40

supply it on demand to planning and sensory modules, provides the additional func-
tionality needed for navigational purposes. Long-term memory (LTM) contains the a
priori knowledge available to the system, while short-term memory (STM) contains the
acquired perceptual model of the world overlaid on an LTM context. The cartographer

1s also responsible for maintaining the spatial uncertainty in the vehicle’s position.

A perception subsystem, (in the future consisting of the VISIONS system, sensor
processing and sensors), is delegated the task of fielding all sensory information from the
environment, performing preliminary filtering on that data for noise removal and feature
enhancement, then extracting perceptual events and structuring the information in a
coherent and consistent manner, and finally delivering it to the cartographer and motor
schema manager. It is also the subsystem, in conjunction with the cartographer, where
expectations are maintained to guide sensory processing.

The motor subsystem is the means by which the vehicle interacts with its environment
in response to sensory stimuli and high-level plans. Motors and motor controllers serve to
effect the necessary positional changes. A vehicle interface directs the motor controllers
to perform the requested motor response received from higher level processing.

The homeostatic control subsystem is concerned with the maintenance of a safe inter-
nal environment for the robot. Internal sensors provide information which can dynami-
cally affect the decision-making processes within the planner, as well as modify specific
motor control parameters. Homeostatic control is to be implemented only after the
motor schema manager is moved from simulation to real-time implementation and the
vehicle is equipped with the necessary internal sensors. The mission planner is currently
rudimentary and has a low priority for development.

The first pass implementation of the perceptual system does not draw on the en-
tire VISIONS system. Although the VISIONS system is ultimately expected to fuse
multi-sensory data to yield a rich 3D model of the perceived world, presently relevant
vision algorithms are extracted from the VISIONS environment and used outside of its
context. The algorithms used are simplified versions, gaining speed at the expense of
robustness. The real-time needs of mobile robotics can be handled by this strategy as
the vision algorithms are not yet developed on parallel hardware. (When the UMASS
Image Understanding Architecture is available, parallelism will then be exploited). Thus

the cartographer assumes greater responsibility than might be needed in future designs

41

> | Human
Cartographic Commander
Subsystem
LTHM STHM | .
'l =1 r Mission Planner
H o . a
! | | decision data 3
Mead?w Mep g Navigator &
_______ A I -) S
High-Level |« Piot % signel
L v Sch
Intermediate g ? " b
: Z e o E Homeastatic
Lowslevel |< P . £ |2
- I Frenning 515 | e
) Z Subsystem 5 54[" J
Perception & 22 Signal
Subsystem i”s':'"’:_ internal
Motor |7=" data
Panic iations
[Shunts Schema
.................. 1]. Manager
Sensor Sensor Sensor teaell Vehicle Interface
Processing Processing Processing
! | | Internal Sensors
M2 controlle totor
(M1 controTler] Subsystem

SNYIRONHENT

Figure 2: System architecture fe+

Block diagram -

Architecture (A

i

—l

design for the Autonomous Robot

42

when many of the cartographer’s chores are subsumed by the VISIONS system. Figure 3

shows AuRA’s initial implementation strategy.

The subsections that follow describe briefly the ultimate roles of the various AuRA

subsystems (with the exception of the planning subsystem which is discussed in Section
2)

§1.1 Cartographer

The cartographer is the manager of the non-VISIONS representations and high-level

controller of the map maintenance processes. Its responsibilities include:

* Preservation of the integrity of the perceived world model, reconciling temporally

conflicting sensor data.

* Initiating and scheduling processes whose duty it is to:

~ Incorporate data from the perception subsystem into short-term memory
— instantiate models from LTM into STM

— provide sensor expectations and to guide schema instantiations
® Maintenance of uncertainty at all levels of representation

— spatial uncertainty map maintenance for robot localization

— STM environmental uncertainty handling (object location)

* Initial LTM Map building (i.e. knowledge acquisition)

Additional information on the operation of the cartographer appears in Chapters 4
and 7.

§1.2 Perception Subsystem

Environmental sensor processing occurs within the confines of the perception subsys-
tem and consists of three submodule types: sensors, sensor processors, and the VISIONS
system. Currently, simplified versions of low-level vision algorithms that are tuned for
real-time performance, at the expense of robustness, are used, until a full real-time scene

interpretation VISIONS environment becomes available.

MAP-BUILDER Navigetor
! - shot : : pestrneninannaes
5 i Pilot :
: N :
: : =
LACEELLELCTETTPTTTORPPPR i SSrRe NI seve 2
static dynamic 2
- [/ 4 (5]
LONG~TERHM Meadow &| SHORT-TERM ! S
MEMORY stantiator; E3 Memory : @
Meadow Map + Features 123 E : ﬁ
o
, EO =
UNCERTAINTY | : L‘i
0 :
Region Line Ultrasonic | [Pesition & MAP TMANAGER LSRR .
Interpreter interpreter Interpreter Interpreter,
“J< L 3 .
N STl
' UNCERTAINTY
Expecter MAP
Cartographic Subsystem
----------- -g--.-..-.-.......-...!.J.-......-..-. #escusccsunasaed--.F......m‘........ lascescecsas nancavncnvnannda
Perception Subsystem
P Y CLIPBOARDS| Line
Extractor

Processes

L)

Data Structures

...

43

.........

('
) Mission Planner

Commander

DEPTH
MAPPING

Digitizer

REPORTS
. DATA |

&
Region
Extractor

YISION

Posting Time
Stamped data

\

Panic
Process

E}LLTRASOL@ [z
-80

POSITION
-80

Figure 3: First pass implementation of AuRA architecture

44

Sensor processors preprocess the sensor data into a form that is acceptable to the
receiving modules. The principal goal for these sensor-specific filters (e.g. for vision,
ultrasonic or dead-reckoning sensors) is to simplify the job facing the remainder of the
perception subsystem by converting relevant data from diverse sensors into a more useful
form. The conversion of time-of-flight for a sonar echo to feet or the temporal averaging
of images are typical tasks.

The VISIONS system is ultimately intended to be the heart of the perception sub-
system. Multiple levels of processing acting on the sensor data and their associated
interpretations are present. Perceptual schemas are instantiated and maintained within
this system. The net result is a collection of plausible hypotheses and interpretations for
sensor data with associated confidence levels that reflect their uncertainty. Data can be
drawn off by the planner at any representation level within the VISIONS system, ranging
from low-level pixel data and intermediate-level lines and surfaces, to high-level full scene
interpretations.

Information foretelling imminent danger will pass directly to the vehicle interface
from the sensor processors via panic shunts without the mediation of the cartographer,
VISIONS system or motor schema manager. These panic shunts are intended to emulate
reflex arc activity, bypassing higher level processing.

Chapter 6 describes the perceptual strategies used in AuRA in detajl.

§1.3 Motor Subsystem

The motor subsystem is delegated the responsibility of effecting the commands of the
motor schema manager. In the case of the UMASS Denning Research Vehicle, it consists
of three major components: motors, motor controllers, and vehicle interface. The steering
motors, drive motors and motor controllers are provided by the vehicle’s manufacturer.

The vehicle interface, in its most general version, translates the commands from the
motor schema manager into the specific form required for the vehicle. This module is
the one component of the overall architecture most profoundly influenced by the specific
robot vehicle chosen. Vehicle independence is a design goal for all other AuRA modules.

Refer to Chapter 5 for a more detailed view of the motor subsystem.

45

§1.4 Homeostatic Control Subsystem

In order for robots to be truly autonomous, not only must they be capable of in-
telligent action, but they must be self-sustaining. Placing robots in environments that
are unsafe for humans has been a longstanding aim of robotics. Little concern has been
devoted to the maintenance of the routine functions that are essential for the ongoing
“survival” of a robotic system. Most of these functions fall into an entirely different clas-
sification than high-level planning. The homeostatic subsystem of AuRA is concerned
with homeostasis - the maintenance of a safe internal environment for the robot. This
aspect of autonomous robot design deals with survivability issues. How can a robot best
utilize its limited energy resources in light of changing environmental conditions? In high
temperature environments, what actions can the robot take to minimize its risk? How
will dangerous situations and limited resources affect planning? These concerns (and
others) are addressed by the homeostatic control subsystem.

Concern for behavioral changes in planning due to the internal state of the robot has
not been encountered elsewhere in the literature. Most systems assume optimal conditions
at all times, others (e.g. [117]) operating in hazardous environments simply determine
whether it is safe or not to enter a particular location, while still others (e.g. [104]) make
plans based on fuel reserves and other factors but don’t consider the robot’s dynamic
behavior.

In the homeostatic control subsystem, internal surveillance of the robot is constantly
maintained by appropriate sensors. “Life”-threatening conditions such as excessive tem-
peratures, corrosive atmospheres, or low energy levels, can dynamically alter variables in
the motor subsystem and affect decision-making within the planning subsystem. This ex-
tended functionality will provide the robot with enhanced survivability through a greater
capacity to respond to a changing environment.

Issues in the design of the homeostatic control system are discussed in [14]. Several

significant features include:

e Information is transmitted via a non-hierarchical broadcast mechanism.

o Controllers are targeted by the presence of specialized receptor schemas that are
used to accept and then indicate as to how the information received should be

processed.

46

¢ Negative feedback control is managed by procedures embedded in the transmitter

schema.

® Sensor inputs can trigger the transmitter schema, but maintenance levels are han-

dled by the transmitter schema after initiation without additional intervention,

® The types of information to be handled are primarily concerned with the regulation

of the robot’s internal condition; in other words, homeostasis.

* Ongoing motor schemas rates (or other processes) are affected through the param-

eters specified in the receptor schemas.

Although initial system designs will assume optimal conditions for the homeostatic
control system, its design considerations will be dealt with from the start to simplify the

integration of this concept into later versions.

§2. Navigation

This section provides an overview of the process of navigation for our system, con-
centrating particularly on the relationship of visual perception to the robot’s path choice
and successful path completion. The detailed roles of the navigator, long-term and short-
term memory are described in Chapter 4, and the motor schema manager’s function is
presented in Chapter 5.

There are two distinct levels of path planning available: map-navigation, based on «
priori knowledge available from the cartographer and embedded in long-term memory;
and sensor-data-driven piloting conducted by the motor-schema manager upon the re-
ceipt of instructions from the pilot. The motor schema manager is perhaps best viewed as
the execution arm of the pilot, responding to the perceived world in an intelligent man-
ner while striving to satisfy the navigator’s goals. First, let’s examine the hierarchical
planning component of the planning subsystem.

A hierarchical planner, consisting of a mission planner, navigator and pilot (Fig. 4),
implement the requested mission from the human commander. The functions of the three
hierarchical submodules are described below. It should be remembered that communica-

tion is two way across the submodule interfaces, but is predictable and predetermined, a

47
characteristic of hierarchical control.

§2.1 Mission Planner

The mission planner is given the responsibility for high-level planning. This in-
cludes spatial reasoning capabilities, determination of navigation and pilot parameters
and modes of operation, and selection of optimality criteria. Input to this module is
from three sources: the cartographer, the homeostatic control subsystem and the human
commander. The cartographer provides current world status, including both short-term
and long-term memory structures. The homeostatic control system provides data regard-
ing the robot’s current internal status: energy and temperature levels and other relevant
safety considerations that have a bearing on the robot’s ability to successfully complete
a plan. No assumptions should be made by the planner that the robot has the necessary
resources available to complete any plan that is developed. This is crucial for reliable
long-range planning capabilities.

Mission commands are entered by the human commander through a user interface.
The exact structure of these commands will be dictated by the task domain (domestic,
military, industrial, etc.).

Real-time operation is not as crucial for mission planning as it is for lower levels in
the planning hierarchy. Nonetheless, efficient replanning may be necessary at this level
upon receipt of status reports from the navigator indicating failure of the attainment of
any subgoal.

The output of the mission planner is directed to the navigator. It consists of pa-
rameters posted on the blackboard and modes of operation that determine the overall
behavior of the robot. Additionally, mission specifications and commands (subgoals) for
the current task are provided.

The mission planner, although a significant component of the overall architecture, has
a relatively low priority for complete implementation at this time. Chapter 4 describes

the rudimentary mission planner used for the purposes of this dissertation.

§2.2 Navigator

The navigator accepts the specifications and behavioral parameter lists from the mis-

sion planner and designs a point-to-point path from start to goal based on the current a

Parameter Settings
(safety, energy, etc.)

Homeostatic
Control

Status

(Successful completion or
intelligent disobedience)

Motor Schema Instantiation

Motor
Schema

Status

Manager

Human
* Commander
Spatial Mission
Resolution Commands
a
g ge?rt):gfiscadnia > MISSION
Sf PLANNER
Mission
Commands Status
and
Parameters
2
g
3|
eadow
E Map — NAVIGATOR
2 (LT™)
£
Point to Point
commands
Q
Short-term
o
e ’ memory 7 PiLoT
Perception
Subsystem

Figure 4: Hierarchical planner for AuRA

48

49

priori world model stored in LTM. The representation level used by the navigator is the
“meadow map”: a hybrid vertex-graph free-space world model. Status reports are issued
back to the mission planner either upon successful completion of the mission specifica-
tions (subject to the behavioral constraints) or upon failure to meet the requisite goals.
If failure results, the reason for failure is reported as well.

The meadow map’s basic structure is an outgrowth of work by Crowley [36] and Giralt
and Chatila [33,51,52|. Our work is distinguished by the incorporation of multiple terrain
types, the use of specialized map production algorithms, the availability of several search
strategies and the ability to easily embed perceptual and navigational knowledge. Data
stored at this level reflects geometrically and topologically the robot’s modeled world. A
polygonal approximation of all obstacles is used to simplify both map building and path
planning computation. The necessary visual representations (feature map) for path exe-
cution and uncertainty management are tied to these polygonal ground plane projection
models. The meadow map serves as the basis for the robot’s short-term memory context.
Specific components are instantiated in STM based upon the robot’s current position and
the current navigational subgoal.

The feature map can be viewed as a facet of the associated meadow map. Data
pertaining to the distinctive features of terrain, obstacles, landmarks, etc., constitute the
feature map. The information stored here contains the attributes of the meadow map’s
vertices, lines, and polygons and their associated obstacles or free space.

Depending upon the robot’s current position, meadows from long-term memory are
moved into short-term memory. These contain information on landmarks currently visi-
ble, features of known obstacles, terrain characteristics, and the like. This data is available
for prediction by the perception subsystem or for use by the pilot for schema instantia-
tion. All meadows the robot is expected to traverse during path execution plus a limited
number of adjacent meadows are made current in STM.

Output of the navigator is directed to the pilot. This output consists of a point-to-
point path and other parameters that will affect the pilot’s overall behavior. Essentially,
the navigator is model-driven, (the model being the meadow map), passing off its goals to
the data (sensor)-driven pilot. Status information is received by the navigator from the
pilot indicating either the successful completion or failure of the established goals of the

pilot. Upon pilot failure, the navigator may initiate replanning without reinvoking the

50

mission planner. Time constraints are more critical for the navigator than the mission
planner, but are not as stringent as those needed for the real-time requirements of the pilot
and motor schema, manager. See Chapter 4 for a complete description of the navigator

and meadow-map representation.

§2.3 Pilot

The pilot accepts a point-to-point path from the navigator and provides the robot
with suitable motor behaviors that will lead to its successful traversal. The pilot selects
appropriate motor schemas from a repertoire of available behaviors (based on the current
long-term memory context), passing them (properly parameterized) to the motor schema
manager for instantiation. From that point on, path execution is turned over to the motor
schema manager. During actual path traversal, the cartographer concurrently builds up
a short-term memory representation of the world based on available sensor data. If, for
some reason, the motor schema manager fails to meet its goal within a prescribed amount
of time, the pilot is reinvoked to find an alternate path, based on both the LTM context
and STM. Approximating polygons representing sensed but unmodeled (i.e. unexpected)
objects are inserted into the local ground plane instantiated meadows and the convex-
decomposition algorithms (used by the cartographer to build LTM) are run upon them.
These “fractured” meadows serve for short-term path reorientation by the pilot and the
basis for the instantiation of new motor schemas.

Associated parameters for the slot-filling of motor schemas are provided by the mission
planner, navigator and LTM. The commands issued by the pilot result in motor schema
instantiation within the motor schema manager.

Typical motor schemas include:

¢ Move-ahead: Move in a specified direction.

¢ Move-to-goal: Move to an identifiable world feature.

¢ Avoid-static-obstacle: Avoid collision with unmodeled stationary obstacles.

¢ Stop-when: Stop when a specified sensory event occurs.

Stay-on-path: Remain on an identifiable path (road, sidewalk, etc.).

b1

Associated perceptual schemas (run in the context of the motor schema manager)

include;

¢ Find-obstacle: Identify potential obstacles using a particular sensor strategy.

¢ Find-landmark: Detect a specified landmark using sensory data (for managing

the robot’s positional uncertainty).

¢ Find-path: Locate the position of a path on which the robot is currently situated

using a specified sensor strategy.

The pilot requires more timely data than do either of the two higher levels in the
planning hierarchy. Sensor data is passed in two ways: through the short-term represen-
tation provided by the cartographer or, in limited instances, by panic shunts which serve
as reflex arcs issuing directly from the sensory subsystem.

The concept of a reflexive pilot is not novel, although this implementation is, Nitao
and Parodi [98,104] describe the importance of such a pilot. The essential fact is that
the pilot operates in virtually a memoryless manner, maintaining little or no information
about former subgoals. The pilot is basically concerned with getting from one point to the
next and reporting failure if it is unable to do so. Success or failure is based on Judgment
criteria passed down from the navigator. Reflex arc activity is strongly dependent on
local sensory Processing that is carried out within the perception subsystem.

Finally, the pilot monitors the motor subsystem status to determine if indeed the
specified motor actions have been carried out as desired. The pilot reports its own status
regarding the implementation of the navigator’s specified plans back to the navigator.

See Chapter 4 for a description of the structure and operation of the pilot.

§2.4 Motor Schema Manager

Distributed control for the actual execution of path travel occurs within the confines
of the motor schema manager. Multiple concurrent schemas are active during the robot’s
path traversal in a coordinated effort to achieve successful path transition. A potential
field methodology [68,69] is used to provide the steering and velocity commands to the
robot. An overall velocity vector is produced from the individual vector contributions of
each active motor schema. This vector determines the desired velocity of the robot rel-

ative to its environment. When each motor schema is instantiated, at least one relevant

52

visual algorithm or perceptual schema is associated with it. Additionally, various percep-
tual schemas are instantiated to identify available landmarks (as predicted by long-term
memory and the current uncertainty in the robot’s position). These are used to local-
ize the vehicle without necessarily evoking motor action. The role of the motor schema
manager, the potential field representations used, and the underlying motivation for its

use are presented in Chapter 5.

§2.5 Navigation Scenario

Perhaps the best way to convey the navigational process within AuRA is by example.
Figure 5 represents an LTM meadow-map model of the area outside the Graduate Re-
search Center at the University of Massachusetts. Embedded within this map, (although
not visible in the figure), is additional data regarding landmarks, building surfaces, ter-
rain characteristics, etc. This includes specific visual cues to assist the robot during its

path traversal.

Suppose the robot is given the command to go from its current position (outside the
GRC low-rise) to meet Professor X. Available weather data indicates that the grassy
regions are currently impassable (the ground is muddy due to rain), and the robot must
restrict its travel to the concrete sidewalks or the gravel path. The mission planner,
recognizing this, might carry out the following: set the traversability factors for the grassy
regions to IMPASSABLE, locate the fact that Prof. X’s office is in the East Engineering
(EE) building, determine that he is likely to be in his office at this time (by referring to
the current time of day and the day of week) and then invoke the navigator to determine
a path from the robot’s current position to the door of the EE building. We’ll ignore
the indoor navigation issues here. (The current implementation of the mission planner
is only rudimentary and the above discussion is presented to indicate its ultimate role as
opposed to the current state of development).

The navigator, based on the instructions from the mission planner, determines a
global path (Fig. 6) that satisfies these goals using an A* search algorithm through the
meadow boundaries (Chapter 4 will provide the details of how this is accomplished). This
path consists of 5 legs, the individual piecewise linear components of the path. Let’s look
particularly at leg 3, where the robot is to follow the gravel path (i.e. assume the robot

has successfully traversed the first 2 legs of this path). The pilot receives the message to

53

Concrete ™

Key
S - Sterting Paint for robot
6 - Goal for robot
F - Fire Hydront
L - Lemppost

Figure 5: Outdoor meadow map
This map represents the area outside the Graduate Research
Center when viewed from above. The detail level of thig partic-
ular map is low so that small objects are treated as unmodeled

obstacles for global path planning pburposes.

54

travel from point M, representing the center of probability of the robot’s current position,

to N, the end of the gravel path.

The pilot now has available in short-term memory “instantiated meadows” (i.e. those

LTM meadows over which the robot is expected to pass during this particular leg of the

Journey, and several additional visible adjacent meadows, all provided by the cartogra-

pher). From this LTM data, the pilot extracts the following relevant facts:

1. Path - The robot is to travel over a gravel path bordered on either side by grass.
2. Landmark - At the end of the path, near where the robot is to turn, is a lamppost.
3. Landmark - Off to the right of the path there appears a bright red fire hydrant (a

readily discernible landmark).

. Landmark - To the left of the path, the robot will pass the GRC tower, a 16 story
building (another good landmark).

. Obstacles - It is possible, as always, that people, cars or unmodeled obstacles may

be present on the path (either stationary or moving).

Goal - At the end of this path there is a change in terrain type, from gravel to

concrete.

1 is useful for a path-following strategy, 2 and 6 are useful for goal recognition,

1,2,

3,4,6 are useful for localization purposes, and 5 is necessary for obstacle avoidance.

From this information, the pilot, (see Chapter 4), determines that appropriate be-

haviors for this particular leg (travel across the gravel path) include:

@ ® = U aw »

Stay-on—path(ﬁnd-path(gravel))

Move-ahead (NNE — 30 degrees)

. Move-to-goal(right(ﬁnd-landmark(LAMPPOST_107),3))
. Move-to-goal(ﬁnd-transition-zone(gravel,concrete))
Find-landmark(HYDRANT_2)
Find-landmark(GRC.TOWER (face.3))

. Avoid-obstacles

55

Figure 6: Global Path constructed by navigator
An A* search algorithm is used to search the midpoints and
edges of the bordering passable meadows to arrive at the global

path.

56

The vector outputs of all active motor schemas are summed to produce the robot’s
velocity. Each component vector is computed from the robot’s position relative to the
sensed environmental feature. Chapter 5 describes the control issues for motor schema
based navigation in detail.

Motion is first initiated by the move-ahead schema, directing the robot to move in
a particular direction in global coordinates, in response to the pilot’s need to satisfy the
navigator’s subgoal to move to point N. This heading is based on information contained
within the spatial uncertainty map that reflects the uncertainty in the vehicle’s position
and orientation relative to the world map as well as the specific direction of this particular
path leg. It is not critical that the heading be exactly correct; indeed significant error
can be tolerated due to the presence of the stay-on-path motor schema. As soon as a
move-to-goal schema becomes active (due to the recognition of the goal —- the lamppost
and/or terrain type transition zone), the move-ahead schema is deinstantiated in favor
of it. Motor actions produced by the move-ahead schema and move-to-goal schema
are mutually exclusive.

Stay-on-path(ﬁnd-path(gravel)) yields 2 perceptual subschemas for one motor
schema: find-path-border - using a line-finding algorithm to detect the position of
the path’s edges, and segment-path, a perceptual schema that uses region-based seg-
mentation to locate the spatial extent of the path. Through the combined efforts of these
cooperating schemas the position of the path relative to the robot is ascertained. As a
result of the posted path position, the stay-on-path motor schema produces an appro-
priate velocity vector (based on the robot’s current position within the field generated
by the path) moving the vehicle towards the center of the path (Fig. 7a). This vector is
summed with any other vector outputs of active motor schemas (e.g. move-ahead) to
yield the overall velocity vector for the robot.

We define a schema instantiation (SI) to be the activity of applying a general class
of schemas to a specific case [6,7,140]. The fact that a lamppost is present at the end
of the path results in the creation of a find-landmark SI dedicated to finding LAMP-
POST 107, whose model is extracted from LTM via the instantiated meadows in STM.
This find-landmark schema directs the sensor processing by instantiating a VISIONS
perceptual schema and/or looking for particular strong vertical lines in a given portion

of the image and/or utilizing any other relevant sensor algorithm. Every time a potential

Figure 7: Potential fields produced during leg traversal

The arrows represent the desired velocity vectors that constrain
the robot’s motion, indicating the velocity the robot should
undertake based on its position within the field. The primitive
schema potential fields that are summed to yield this composite
behavior appear in Fig. 47.

a). Before the goal is identified, the move-ahead and stay-on-
path SIs conduct the robot on its way. A single obstacle SI is
present.

b). After the goal is identified, the move-to-goal SI replaces
the move-ahead SI. Two obstacle SIs are shown as the goal is

approached.

57

TERIR S Y R A -

¥ ¥y
a2

—— T
1. !
.l T
e SOOI

AAS 8544 0s

NNNSSY NN Y
AR ANAN

‘i
A
IS 388
sy
MAY
Viny
Wy
IR
RN
bl)
BTN N
0"
g A
| Gty
NS
a &
S
S
N
AW
NN
~—~—
oy
IAAAAA AN A AN s Assrs

'~
Obstacly 34+7/

7
7
7
f
4

’
e
’
7

58

59

LAMPPOST_107 is found in the image (perhaps evidenced by a pair of strong parallel
long vertical lines in an appropriate window of the image) a new LAMPPOST_107 SI
is created and monitored independently of all other similarly created LAMPPOST.107
schema instantiations. When sufficient supportive data is available confirming that one
of the SIs is highly probable to be the landmark desired, all other LAMPPOST_107
SIs are deinstantiated (or placed into hibernation) and the appropriate motor schema
(move-to-goal) starts producing a velocity vector directing the robot to a point 3 feet
to the right of the identified lamppost. If the certainty in the current LAMPPOST 107
drops below a certain threshold, other Sls may be activated or created in response to
particular visual events that correlate to the lamppost’s model. Additionally, output
from the find-landmark schema is used to update the robot’s spatial uncertainty map,
independent of any motor action that may result from the move-to-goal SI.

The move-to-goal(ﬁnd-transition-zone(gravel,concrete)) SIis handled in a similar
manner, but different perceptual schemas are instantiated and the image is searched in
different regions. Texture measures for gravel are of value as well as the presence of
a strong horizontal line within the boundaries of the path. The move-to-goal schema
contains an implicit stop-when schema, so when the target is reached the pilot is notified
that the goal has been achieved and the next leg can be undertaken.

The ﬁnd-landmark(HYDRANT_2) schema might involve a color-based segmenta-
tion, tagging all bright red blobs in a particular portion of the image as a potential
fire-hydrant. Ultimately size and shape from a model of the hydrant would be brought
into focus to confirm the hypothesis to prevent incorrect identifications (e.g. a red car,
or a person with a red coat). Once identified, this hydrant is then used to reduce the
uncertainty in the robot’s position (i.e. localization). The same kind of operation would
be involved in the ﬁnd-landmark(GRC-TOWER(face_3)) SI, but instead of using color
as the primary agent for hypothesis formation, a strong vertical line (the building is 16
stories high!) or a corner silhouetted against the sky would be more suitable as the main
strategy.

The avoid-obstacles schema is actually active most of the time. The image is
windowed in the direction of the robot’s motion and if any unusual events occur in
that area (e.g. change in texture, color, strong line, etc.) an obstacle SI is associated

with that particular event. That portion of the image is monitored over time by the

60

obstacle perceptual SI to try to confirm or disprove the hypothesis that the visual event
is truly an obstacle. Concurrent with the instantiation of the obstacle perceptual schema
is the instantiation of an avoid-obstacle motor schema. If the monitored obstacle’s
certainty becomes sufficiently high and the robot enters within the sphere of influence
of the obstacle, then a repulsive velocity field is produced by the avoid-obstacle SI,
altering the robot’s course. If, on the other hand, the hypothesized obstacle eventually is
determined to be a phantom and not a real obstacle at all, both the perceptual and motor
schemas are deinstantiated. When an active obstacle passes outside of the influence of the
vehicle, its Sls are deinstantiated as well. Nonetheless, information about the obstacle’s
position is maintained in STM by the cartographer at least for the duration of the leg
traversal.

Figure 7 shows a potential field simulation representative of the robot traversing
a path studded with obstacles as above. More details regarding the interaction and

operation of the motor schemas in AuRA can be found in Chapter 5.

§3. Uncertainty Representation

Treatment of uncertainty must occur at several levels throughout the system. Esti-
mates of positional and orientation uncertainty are crucial to accurate determination of
a path. The robot not only needs an accurate representation of the world, it must also
model its position relative to the world.

A new strategy for representing the positional uncertainty is accomplished through
the use of a spatial uncertainty map. This map reflects the plausible limits of the robot’s
position within the world itself, beginning with an initial amount of uncertainty in the
robot’s starting position. Each “turn and run” motion of the robot will be accompanied
by a possible difference between the actual amount of distance traveled and the actual
amount of rotation accomplished from those amounts commanded the robot through the
vehicle interface. This error will depend on several factors, not least of which is the
terrain. A spatial uncertainty map, representing both the center of probability of the
robot’s position as well as the probable limits of the robot’s position, is maintained and
updated on every “turn and run” move.,

An uncertainty transform is performed upon the previous spatial uncertainty map

61

for each move, based on the distance traversed, angle of rotation and characteristics of
the terrain. Experimental data has been obtained regarding the mean error, standard
deviation, etc., for both translational and rotational motion for each of the terrain types
the robot is expected to encounter. These include concrete, grass, gravel and tile. These
data, in conjunction with the commands fed to the pilot, are used to determine the
predicted spatial occupancy areas of the robot.

The chief significance of this approach lies in its ability to use this data to restrict
sensor interpretation. The robot’s position is known sufficiently well to enable us to
restrict the possible interpretations of sensor data or to window the visual images fed to
the perception subsystem, thus decreasing processing time. If no plausible interpretation
was found within these limits, special procedures can be invoked calling for additional
sensor data to re-establish the robot’s bearings.

If no feedback was provided by the sensors, the spatial uncertainty map would grow
without bound, eventually occupying the entire world model. Consequently, sensory
information and subsequent landmark recognition serve to prune this spatial uncertainty
map. As correct interpretations are found within the limits of the map, a reduction in
its size is made. This feedback between internal model and sensor data helps meet the
real-time demands of a mobile robot, system.

Chapter 7 describes in detail the maintenance of the spatial uncertainty map, its

relationship to landmark perception and its overall role within AuRA.

§4. Theoretical motivation

AuRA has many characteristics which distinguish it from previous work. Theoretical
consideration of cybernetic issues provides the impetus for most of the concepts employed
in the AuRA architecture. It is believed that insights drawn from the existing autonomous
mobile control systems, animals, can provide powerful tools in any implementation of
autonomous robotic based vehicles.

Arbib [5] states that a robot requires a minimum of the following four components to

function effectively in a complex environment:

62

1. A set of receptors and algorithms to interpret the data into meaningful relations

through scene analysis.

2. A set of effectors and algorithms to act upon the environment and reposition the

sensors,
3. An internal world model reflecting the results of scene analysis and robot actions.

4. A problem solver that uses scene analysis output to both update the world model
and provide commands for courses of actions. It must also be able to interrupt

activities when necessary in order to update and replan as necessary.

The AuRA architecture implements all four of these functions. The perception sub-
system subsumes item one, just as the action subsystem does item two. The internal
world model is contained within the multi-level representation scheme and maintained
within VISIONS and the cartographer. Both short-term memory and a hierarchical long-
term memory are present as well as a means for their modification. The problem solver’s
functionality is distributed between the cartographer and hierarchical planner. Replan-
ning is initiated upon subgoal failure in the hierarchical planner, by danger signals from
the homeostatic control subsystem or by reflex arc activity passed through the panic
shunts directly from the sensor subsystem.

The action-perception cycle, described in cybernetic context in 6], is reflected in the
overall structure of AuRA. Arbib forwards the idea that perception should be viewed as
potential action. Succinctly stated “Perception activates . . . and planning concentrates”
[6, p. 1459]. Robotics has been described by Brady as the “intelligent connection of
perception into action” [23]. To that end, the action-perception cycle was considered
as an important design model upon which to subdivide functionality within the overall
system.

The action-perception cycle essentially involves perception of the world via a sensory
system resulting in the modification of a cognitive map of the world. This map then
serves as a basis for the direction of locomotion and other actions that in turn alter the
current perception of the world. Arbib [6] and Hanson and Riseman [563] have advanced
schema theory as an approach to describe the interactions involved. Although the use of

all the forms of schemas in AuRA may not be true to the form that these authors report,

63

the interpretation presented below does model a functioning mobile robot system. It is
not intended to emulate the operation of the animal brain.

Schema usage involves multiple concurrent processes, each posting hypotheses, possi-
bly several times, guiding the overall system to converge on a valid interpretation of the
perceived scene or implementation of the invoked action. The VISIONS group at the Uni-
versity of Massachusetts has developed a scene interpretation system implementing these
ideas [140]. Ongoing work within that group has led to the development of a “schema
shell” ~ a control and maintenance system for schemas. Other work [58,77,110] from
the University of Massachusett’s Laboratory for Perceptual Robotics performed in the
context of distributed control of a robot hand affects our formalization of motor schema
theory.

Schema theory is implemented at three locations within AuRA: the sensor subsystem
(perceptual schemas - VISIONS), the action subsystem (motor schemas) and the home-
ostatic control subsystem (signal schemas). The perceptual schemas and motor schemas
will be discussed first. Signal schemas, concerned with maintaining internal control of
the robot, will be elaborated upon separately.

The computational responsibility and power residing within both the sensor subsys-
tem and motor schema manager is not apparent upon inspection of the block diagram
(Fig. 2). Each of these units contains fully independent distributed processing units
requiring significantly more computational resources than both the planner and cartog-
rapher combined. Consequently, much of the work needed to implement these units in
their entirety has to be deferred unt;l the basic requirements necessary for a practical
operating robotic system have been completed. Development of these components as a
real-time control method is a long-term goal, but their design must be considered at an
early stage to prevent an unnecessary system design change at a later date. Simulation
work (Chapter 5) and experimental results (Chapter 8) demonstrate the validity of this
approach.

§4.1 Perceptual schemas (VISIONS)

A perceptual schema has been defined as the “unit of knowledge, the internal repre-
sentation of a domain of interaction, within the brain” [6]. Although this architecture

is not specifically concerned with brain theory, the subdivision of perceptual realization

64

into discrete and manageable units is important.

Hypothesis formation, confidence (or activation) levels, and multiple concurrent pro-
cesses are characteristic of all of AuRA’s schema forms (perceptual, motor and signal).
VISIONS perceptual schemas however, are geared specifically for the interpretation of
images and ultimately the building of a sensor-independent 3D world model. As such
they are not dedicated to the production of action in a robot. It is expected that
VISIONS schemas, used in the context of sensor fusion, will be extended to produce
sensor-independent representations drawing ultimately on multiple sensory sources. This
digested sensor data can be readily integrated into the motor schemas. Since this exten-
sion is a long-term activity, the implemented version (working demonstration system -
see Chapter 8) of this robot system of necessity requires some design compromises.

Operating within the perception subsystem (i.e. VISIONS system) this collection of
concurrent processes posting hypotheses regarding interpretation (at different levels) of
a scene is used to build an understanding of the nature and relationships of the objects
perceived. When sufficiently high confidence is achieved in an interpretation of part or
all of the scene, the information is forwarded to the cartographer and drawn upon by the
motor schemas.

The motor schemas described below are concerned only with obtaining the informa-
tion necessary to produce an action. Based on the premise of action-oriented perception,
these schemas operate on the representations provided by the perceptual schemas. Spe-
cific needs or expectations regarding sensory data can be communicated via the sensory
channel from the motor schema manager to the VISIONS system. This serves as a

focus-of-attention mechanism based on specific action requirements.

§4.2 Motor Schemas

Motor schemas operate in a manner analogous to the perceptual schemas. It should
be noted that the motor schemas run within the framework of the planning subsystem
under the control of the motor schema manager and have a decidedly different fAavor
than the perceptual schemas. The motor schema manager consists of a separate schema
shell in the form currently being used by the VISIONS interpretation group. Appropriate
motor schema representations are employed which bear only superficial resemblance to
the VISIONS perceptual schemas.

65

Motor schemas were a principal part of Overton’s dissertation [101]. His definition
for a motor schema is quite apropos. He states that a motor schema is “a control system
which continually monitors feedback from the system it controls to determine the appro-
priate pattern of action for achieving the motor schema’s goals, (these will, in general,
be subgoals within some higher-level coordinated control program)” [101].

As 1t is necessary that a large multiprocessor be used before the realization of real-
time scene interpretation and sophisticated real-time motor schema control, much of the
motor schema work for this dissertation is conducted via simulation (Chapter 5). The
working robot demonstration system (Chapter 8) has several motor schemas (although
not operating concurrently) to illustrate conceptually how these behavioral control sys-

tems can be used to advantage.

§4.3 Signal Schemas

Signal schemas are an outgrowth of schema theory as applied to homeostasis - the
maintenance of a stable internal system. In order to ensure a robot’s safety in hostile
environments, its behavior must be modified in response to the changing conditions of its
own internal variables. How much energy remains, its internal temperature, and other
factors can and should affect both the decision making process and effector action.

The homeostatic control subsystem [14] is responsible for the activation of relevant
signal schemas (transmitter and receptor), to ensure the survival of the robot in conditions
where it might be jeopardized. The little work that has been done previously [e.g. 117]
has treated the hazardous environment problem as a go/no-go binary decision. What the
signal schema/homeostatic control subsystem affords is behavioral modification based on
the current internal conditions of the robot. Our initial system implementation assumes
optimal conditions at all times. Nonetheless, it is safe to assume that mobile robots will
be expected to undertake tasks that are too hazardous for humans and indeed may be
hazardous to their own existence. If this architecture is to support the more general case
of mobile robot, signal schemas and their distributed control within the motor schema
manager are needed. It may be that a realistic implementation of homeostatic control
would require significant hardware communication changes as well, conceivably involving

local area networks [14].

66

§5. System issues

System integration issues for a system as complex as AuRA are by no means trivial.
This section will discuss the approaches used in the first pass implementation. Topics

include supporting hardware, the communications link and global memory sharing.

§5.1 Hardware configuration

The UMASS DRV (Fig. 8), aka HARV (short for HARVey Wallbanger), is a mobile
robot manufactured by Denning Mobile Robotics. It is equipped with 24 ultrasonic
sensors as well as shaft encoders for both the steering and drive motors. A single video
camera (the VISIONS system has not yet utilized stereo images) is mounted on the vehicle

and connected to a Gould IP8500 digitizer.

The basic hardware support is depicted in Figure 9. Most of the software runs on the
VISION’s group VAXen. The LTM mapbuilding and STM maintenance components of
the cartographer, higher level components of the planning system, motor subsystem and
the perception algorithms are coded in C. The pilot and spatial uncertainty subsystem of
the cartographer are written in COMMON LISP. This development environment differs
from future run-time environments which might contain multiple microVAXs, SUNs and

of course the Sequent multiprocessor.

Code written for handling communications with the vehicle over a serial line was
written in FORTRAN, drawing largely on a library of existing routines developed for such
purposes. Graphics routines utilize COINS GUS device-independent graphic FORTRAN
routines.

The MC68000 processor onboard the Denning Research Vehicle (DRV) handles ter-
minal emulation using C code provided by the manufacturer. Sensor preprocessing of
both the ultrasonic data and shaft encoder data is handled by 2 separate Z-80 “expert”
microprocessors. The ultrasonic processor converts the time of flight for the sound wave
to tenths of a foot, and coordinates the 24 sensors by alternately firing them in three
banks of 8 interleaved sensors. The encoder Z-80 converts shaft revolutions for both the
steering and drive motors into a cartesian coordinate system reporting in tenths of a foot
and tenths of a degree. Motor controller board status can be polled directly by the VAX

to detect the actual motion of the vehicle at any given time.

(b)

Figure 8: UMASS DRV (HARV)

(a) HARV outside the Graduate Research Center
. ¢
(b) HARYV inside the GRC

67

Denning Research Uehicle

SONY
CCD CAMERA
2-80 2-80 (Black and white)
Shafrt
Encoder glrt)r:::s[::]c Cable tether
Processing 9 or
UHF link
MC68000
Terminal Emulation
Gould
Cable tether IP8500

or
YHF tink

—

IMAGE PROCESSOR

Host UAK-750

Figure 9: First pass AuRA Hardware

68

69

The Gould IP8500 Image processor handles the Image acquisition. Functions such as
temporal averaging of several images to minimize noise as well as smoothing are available.
Most of the code to accomplish this was obtained by stripping out relevant FORTRAN
routines embedded in the LIPS operating system for the Gould. The use of the available
lookup table facilities for the preprocessing of images for specific vision algorithms will
be exploited where appropriate in the future.

A major problem for real-time performance is the limited bandwidth of image trans-
mission from the Gould to the VAX. When preprocessing is done on the Gould, four
image channel buffers are available. In some instances, if preprocessing is performed on
the Gould, more than one image buffer needs to be transmitted to the VAX. The gain
obtained by exploiting the parallelism available with the Gould is somewhat offset by the
necessity of shipping multiple images back-and-forth between the two processors. For
many of the experiments in Chapter 8, video processing was performed on a VAX after
image acquisition on the Gould.

A Texas Instrument’s Explorer workstation is the current home of the schema shell.
Although the shell itself emulates concurrent processing, the multiple schema shell pro-
cesses are scheduled round-robin on the single LISP processor of the machine. Addition-
ally, a communication bottleneck between the TI Explorer and the VA Xen occurs over
the CHAOSnet link. For these reasons, the experimental schema system of Chapter 8
was implemented on the VAX. When the schema shell is finally implemented on the new
16 processor Sequent, it would be appropriate to port most of the VAX and schema, shell

software to that machine.

§6.2 Communications link

Two methods of communication with the robot are available: a visible tether and an
invisible tether. As the computing power required to drive the planning and perception
subsystems far exceeds the onboard capabilities of the vehicle, communications with
stationary host processors is required.

The visible tether is just that: 500 feet of cabling. Actually two cables are present, one
RS-232 serial communications link to transmit and receive data from HARV’s onboard
microprocessors to the VAX, and a video cable connecting the SONY CCD camera to
the Gould.

70

The invisible tether consists of a UHF /VHF TV-radio link broadcasting on channel 50
using satellite TV technology. A mobile station (Fig. 10) powered by separate batteries
and not the robot’s own power supply (to reduce noise) transmits video images while
receiving motor and status commands on a separate frequency and antenna. The ground-
based transceiver completes the connection between the TV-radio signals and the Gould
and VAX.

§5.3 Clipboards

In order to effectively communicate the results from differing concurrent perceptual
and interpretive processes, a global data structure termed clipboards has been devel-
oped. Clipboards are related to a heterarchical blackboard data structure, similar to the
whiteboards used in the NAVLAB (115] and the blackboard in the schema shell [40].

The name “clipboards” was chosen based on an analogous situation found in meteo-
rological stations for pilots at airports. Posted on the wall at these stations are multiple
reports of sensor observations for a particular location that go back over time. New re-
ports are added to the top of each of these clipboards as older ones are discarded from
the bottom of the pile. Interpreted reports (e.g. forecasts or weather patterns) are avail-
able based on condensations of the raw data present. Depending on the level of detail
required, a high level overview reflecting current or expected conditions can be obtained
as well as the raw data that serves for the basis of these reports. There is a sharp and
clear partitioning of these reports, and pilots can quickly find the information that is
relevant to their particular needs.

Clipboards in AuRA provide a similar service. Time-stamped data arriving from sen-
Sor processes are posted in specific locations in shared global memory. (How this memory
is created and accessed by multiple processes is described in the section following). Each
clipboard partition of this global memory structure consists of a circular (ring) buffer.
As new data becomes available it overwrites old data, but a fixed number of reports
dating back over time are always available. Significant event reports can be locked onto
the clipboard if so desired until released by another consumer process. The number of
slots in the buffer for each report depends on their frequency and the amount of data
required to store them. For example, 24 ultrasonic readings require a fraction of what a

single 256 by 256 image would require. The current clipboard stores 5 raw sonar scans,

(b)

Figure 10: Communications hardware
a) Station on robot.

b) Ground base.

71

72

1024 interpreted sonar scans including position data (for STM), 10 encoder readings and
5 images.

Intermediate processes such as the line finder operate on the relatively raw data as
it is received. The line finding reports are posted on the clipboard and are available for
other higher level perceptual processes (e.g. perceptual schemas) associated with motor
schemas running in the context of the motor schema manager. Several perceptual pro-
cesses run solely within the confines of the perception subsystem, in some cases guided
by expectations provided by the needs of higher level processing (e.g. tuning the buckets
on the fast line finder as described in Chapter 6).

In summary, clipboards are global data structures consisting of a collection of circular
queues. These queues are filled by sensor processes posting relatively raw data and by
intermediate processes acting on this low-level data to produce intermediate results. For
those familiar with the VISIONS system, the similarity to its hierarchical structure (low-
level pixel data, intermediate tokens and high-level schema instantiations) should be
apparent (Fig. 11). In both VISIONS and AuRA, each queue has its own space relative
to the data it must produce, with each queue serving as a “temporal buffer”. Remember
that an AuRA design goal is to eventually hand off the sensor processing to the VISIONS
system when it is capable of performing multi-sensor interpretation (review Fig. 2). This

first pass implementation of AuRA using clipboards is consistent with that goal.

§56.4 Memory sharing via global sections

Sharing the global data structures present in AuRA is a primary system considera-
tion. These structures include short-term memory, long-term memory, clipboards, and a
command buffer for communication with the vehicle. As the first pass implementation
consists of multiple processes in concurrent execution, a means must be available for the
sharing of data. Although C typically affords pipes for interprocess communication, the
bandwidth was deemed too small to be of value for the large amount of data that needs
to be shared.

VMS, the operating system used on the VAX, offers extensive system services for the
sharing of data. The principal technique exploited is the creation and mapping of global
sections. A process initially creates a global section, which consists of a specific virtual

address space mapped to a user-specified pagefile. The cartographer’s creation of LTM is

73

a good example. Other processes can map this region to their own virtual address space
via a system service call. As a result, the planner processes can independently access the
exact data being used and managed by the cartographer. Interprocess synchronization is
handled via a semaphore-based method. Locking of the data structure is first performed
whenever it is to be modified. Other Processes can access this data freely when mapped
and unlocked.

It is also possible in principle to use multiple VAX processors by taking advantage of
the VAXCluster architecture. By mapping multiple processes on different processors to
the same shared disk pagefile, the data becomes available to all. The major problem in
using multiple VAX processors is associated with dynamically changing data. Whenever
data is changed on one processor, it must be write-page-faulted back to the disk to be
available to the other processors. If the data may have changed since the last read by a
given processor due to other processors modifying it, a read-page-fault must be made to
ensure that the modified data is brought in. Although this approach would work well for
static data structures such as LTM, it is generally undesirable due to the increased amount
of page faulting required. Perhaps more significantly, VMS offers no easy way to force
page faults from the disk when the page is already resident in physical memory. This can
be accomplished by unmapping and remapping the section, but this is a costly process.
Perhaps future releases of VMS will give the systems programmer even more flexibility
regarding page fault control. Until that time, the multiple processes will operate on a

single VAX processor at a significant computational penalty.

§6. Summary

AuRA is a mobile robot system architecture that provides the flexibility and exten-
sibility that is needed for an experimental testbed for robot navigation. By allowing for
the incorporation of a priors knowledge in long-term memory, a variety of different per-
ceptual strategies can be brought to bear by the robot in achieving its navigational goals.
In particular, the individual motor schemas and their associated perceptual schemas can

be added to or deleted from the overall system without forcing a redesign.

74

A hierarchical planner determines the initial route as a sequence of legs to be com-
pleted over known terrain with predicted natural landmarks. Typical objects encoun-
tered in extended man-made domains (the interior of buildings, and outdoor settings
with buildings and/or paths present) provide the information necessary for localization.
The information gleaned from LTM is used to guide the pilot in the selection and pa-
rameterization of appropriate motor schemas and their associated perceptual schemas for
instantiation in the motor schema manager. Actual piloting (sensor-driven navigation) is
conducted by the motor schema manager. Positional updating occurs concurrently with
the actual path traversal. Positional uncertainty is managed through the use of a spatial
uncertainty map and related uncertainty transform processes.

AuRA is a system in development and thus is not yet complete. Most of the com-
ponents concerning navigation and uncertainty management are already in place. It is
anticipated that AuRA will undergo evolutionary changes as new components are added
(e.g. a more complete mission planner). The schema shell implementation of the mo-
tor schema manager exists on an isolated Texas Instrument’s Explorer and awaits the
shell’s migration to the Sequent multiprocessor before it is added to the rest of the sys-
tem. In the meantime, the schemas are evaluated sequentially in the experimental motor
schema testbed (Chapter 8). Indeed, integration issues are a major concern for a system
consisting of as many processes as does AuRA, and much remains to be resolved.

AuRA approaches the problem of robotics in a manner different than previous efforts.
By drawing on cybernetic models, such as schema theory and the action-perception cycle,
significant progress is made towards the development of intelligent systems. Action-
oriented perception restricts the amount of computation to tractable levels as dictated
by the robot’s task of the moment. High level knowledge guides selection of primitive
motor behaviors in a new approach to the problem of navigation. Schema theory serves
as a basis for the design of the AuRA architecture. Motor, perceptual, and signal schemas
are the mechanisms for the connection of perception to action in the quest for intelligent
robotic behavior. AuRA itself provides the integrated framework for these components.

AuRA’s approach to navigation itself is perhaps most significant, with the robot no
longer heavily relying on positional sensors to guide its path execution. Motor behaviors,
instead of specific motor commands, accomplish the task of navigation. In a domain as

open as a “cosmopolitan” robot’s, this behavioral approach is of crucial importance. The

75

robot is afforded the freedom to react in a reflexive manner to its environment instead of
going through a sequence of preprogrammed steps. This flexibility, in our estimation, is

absolutely essential for successful navigation in a changing world.

