CHAPTER IV

NAVIGATIONAL PATH PLANNING

Obtaining intelligent travel has long been a concern for Al and robotics researchers.
Many different issues are involved in the production of such travel. These include spatial
reasoning, heuristic search, motor control, representation of uncertainty and environmen-
tal sensing of various types, particularly vision.

This chapter is concerned primarily with path construction and navigation in a par-
tially modeled environment. The Autonomous Robot Architecture (AuRA) incorporates
a hierarchical planner consisting of a pilot, navigator, mission planner and motor schema
manager (the execution arm of the pilot). This chapter addresses specifically the role and
operation of the navigator and its associated world model representations upon which the
navigator bases its decisions.

In the introduction, relevant work will be cited followed by a description of the UMASS
environment. Section 2 will describe the representation used by the navigator and the
cartographic software that builds this map. The operation of the navigator will be de-
scribed in Section 3. The extension of the representation to include diverse terrain types

will be related in Section 4. A summary and conclusions will complete this chapter.

§1. Introduction

Early in the days of artificial intelligence, Amarel showed that a good representation
is essential for the solution of a problem [1]. AuRA’s representation was chosen based on
an analysis of the existing representational strategies used in this domain (Chap. 2). A
hybrid vertex-graph free-space representation was chosen for global path planning.

The UMASS VISIONS [53,102,140| system encompasses a multi-level representation
scheme (Fig. 11). Previously, VISIONS has not maintained representations specifically
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addressing navigational path planning. While provision is made for 3D representations
of objects and their 2D projections in the vertical plane, no express representation of
horizontal projections to the ground plane has been available. AuRA extends and com-
plements the VISIONS system by adding representation levels that specifically deal with

the issues involved in navigational path planning.

Navigation path planners come in many forms, simple [130], hierarchical [63,66,90,100,
108] and distributed [61,120]. Unfortunately, in developing hierarchical planners, such as
the one used here (Fig. 4), no clear guidelines demarcate what should be delegated to
each of the different components (pilot, navigator, etc.). In many cases functionality in
one component for one given system is significantly greater than in another (e.g. Nitao
and Parodi’s reflexive pilot [98,103] incorporates much of what would be considered a
navigator in other systems). The navigator in AuRA serves a role analogous to the
navigator in a road rally: to provide a piecewise linear path to the vehicle pilot (driver)
for execution. Instructions might be: proceed 1.2 km on this road then turn right 90
degrees at the traffic light. The navigator operates from a relatively static map and is not
concerned with unrepresented obstacles unless the pilot expressly requests an alternate
route.

The pilot is considerably more short-sighted. It is concerned only with satisfying one
subgoal from the navigator at a time (although future subgoals may affect its decisions).
The pilot additionally accepts constraints from the navigator such as criteria for failure
to attain a subgoal. If any of those criteria are met, the navigator is informed and
navigational replanning initiated. Local alterations in the route can be made without
reinvocation of the navigator as long as these alterations fall within acceptable limits.
The pilot need not utilize the same representation the navigator does, as it assumes
that the navigator has correctly produced a path that avoids any modeled obstacle.
Consequently the pilot is concerned solely with avoiding unmodeled obstacles (subject
to certain constraints). Other work [63,66,98] describes the use of similar hierarchical

planning systems.

§1.1 UMASS environment

The two arenas in which the robot is operated include both indoor and outdoor

environs. The first is within the confines of our building, the Lederle Graduate Research
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Center (GRC). The navigator assumes significant but incomplete a prior: knowledge of
the world. Blueprints for the building (Fig. 12) constitute the basis on which the initial

indoor representation is built. A digitizer is used to enter the relevant map features.

The second arena is the grounds surrounding the GRC. This model is derived largely
from a map made via aerial photography (Fig. 13). Figure 14 shows two photographs
of the same area. Multiple terrain types are present including concrete sidewalks, grassy
regions and a gravel path, all of which are available for navigation by the robot.

It should be noted that although the ground plane assumption is made (i.e. the
free space is flat) as a simplification for these early phases of the research, there is
nothing inherent in the representation that precludes the use of surface models (e.g. planar

patches) to represent topographic features within the free space regions.

§2. Representation

To address the issues of path planning, a static representation and a dynamic rep-
resentation have been developed (the reader is referred to [140} for visual interpretation
representations). The static representation, or long-term memory (LTM), is where all a
priori knowledge is embedded. It is static only in the sense that learning has not yet been
incorporated into the system. Although a variety of sensor interpretation strategies also
access data stored in LTM, the navigator is the prime consumer of this representation
within the hierarchical planner.

The dynamic representation, short-term memory (8TM), is a layered representation
consisting of the robot’s current perception of the world based upon a long-term memory
context. Of the planner components, the pilot (and motor schema manager, which is the
execution arm of the pilot) is the principal user of the data stored here. Portions of LTM
are instantiated in STM based upon the robot’s current position and the navigator’s
instructions. As the robot traverses this path, sensor data (visual and ultrasonic) are
incorporated by the cartographer to build up a dynamic model of the perceived world.
This is then used to direct the pilot to appropriate action when the path is blocked or a
short-cut makes itself apparent. Additionally, vehicle localization (increasing positional
certainty) can be guided by available landmarks found in these regions of visibility. A

discussion of the details of short-term memory for navigation appears in Section 5.
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Figure 12: Indoor environmental model
This diagram, a partial blueprint for the GRC, serves as the
basis for building the long-term memory model of the robot’s

world (indoor case).
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Figure 13: Outdoor environmental model
For the outdoor scenario, the long-term memory representa-
tion is built starting with an aerial map of the environment

surrounding the GRC.




Figure 14: Outdoor photos

Two outdoor photos of the area depicted in Fig. 13.
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§2.1 Long Term Memory - Meadow Map

The principal representation used by the navigator is a “meadow map” representation
(a hybrid vertex-graph free-space model) based on previous work by Crowley [36] and
Chatila and Laumond [33]. It models free space as a collection of convex polygons.
Diagrams depicting an indoor scene and an outdoor scene appear in Figures 12 and 13
respectively. The rationale for using convex regions is that a line between any point within
one convex region to any other point within that same region is guaranteed to be free of
collisions with all known obstacles. Thus, the global path planning problem simplifies to
finding an appropriate sequence of convex region traversals. (Actually finding a “good”
path is more difficult - see the path improvement strategies described in Sections 3.2 and
4.2).

What distinguishes this representation from the efforts that preceded it is the ability
to embed both terrain characteristics and data for establishing sensor expectations and its
extension to allow navigation over diverse terrain types (see Section 4). Convex regions
were chosen over a regular grid approach due to their ability to avoid digitization bias,
a smaller search space, and a significant reduction in memory requirements. Voronoi
diagrams (a set of polygonal regions, each representing an enclosed area in which all
contained points are closer to one particular point in a given point set than to any other
point in the set) were avoided due to their inability to relate landmark and terrain data
readily and their perceived limitations on flexibility of path construction when compared
to the strategy used in AuRA.

In this section, the map building algorithm used to construct the basic representation
(not multi-terrain) is described. This is followed by a brief presentation on the role of

the feature editor and its importance for guiding environmental sensing.

Meadow Map Construction

The algorithm for the construction of the LTM meadow map is described in Figure 15

and consists of the following phases: initialization, main map building and clean-up.

Initialization

In the initialization phase, a series of vertices in global coordinates describing the

maximum reaches of robot navigation are accepted. In the case of the interior of a
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FREE SPACE MAP BUILDING ALGORITHM

Initialization

Accept and shrink bounding region (a ld) configuration space)
Accept and grow modeled obstacles (configuration space)
Merge collided grown obstacles and border together

Attach obstacles to border (1 region results)
Main map building algorithm

IF region is convex (no concave angles present)
done
ELSE
Find (most least first) concave angle
Connect it to (most opposite leftmost, rightmost) clear vertex
Apply main map-building algorithm recursively

to the two resulting regions
ENDIF

Clean-up

Merge any regions together that will yield a convex region

Output list of connected convex regions

Figure 15: Free space map-building algorithm
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building, this would be the bounding walls. In more open terrain, it might be boundaries
of limiting paths or an imaginary polygon bounding the traversable region. There are
no restrictions on the shape of the bounding region (and obstacles) other than that they
be represented by a series of straight line segments. Curving surfaces must be converted
to piecewise-linear segment approximations. The raw data is obtained from a map or
blueprint of the region and the use of a bitpad digitizer.

After the actual coordinates of the bounding region are accepted, the region is shrunk
by a distance equal to the radius of the robot plus a safety margin (Fig. 16) in the con-
figuration space (C-space) manner as developed by Lozano-Perez [76]. This enables the
robot to be treated as a point thereafter for path-planning purposes. Ties are maintained

via pointers from the newly created C-space vertices to the original bounding vertex.

During the shrinking (and obstacle growing process described below) a deviation from
standard C-space techniques was required in the case of concave vertices. Normally the
circular robot would produce a curved C-space for a concave angle (Fig. 17a). Two
alternatives are available to produce the required linear segments. First the resulting
side line segments could be extended until they meet (Fig. 17b). This could result in
significant and unnecessary loss of free space for very sharp angles, even resulting in the
blockage of free space corridors (Fig. 17c). The second alternative is extending the line
segments and then chopping the resulting C-space region, when a line normal to the
bisector of the grown angle is intersected (at a distance from the vertex equal to the
robot diameter) with the segments produced in the first method (Fig. 17c-d). Although
this approach still wastes some free space, it is considerably better than the first case.
The principal drawback is the formation of two grown vertices from the original ungrown
one, which results ultimately in more regions being formed and thus more processing
time during the later path planning phase. The decision at what degree of convexity
to switch from straight extension to chopping mode is controlled by setting a program
parameter. Highly cluttered areas would favor chopping for most of the concave angles to
prevent passage occlusion, whereas relatively clear areas would prefer the straightforward
extension method.

Known obstacles that are present in the environment (pillars, telephone poles, etc., —
any static impediment to motion) are then added. These also are digitized in the manner

above. These obstacles are then grown in the C-space style for the same reason that the
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Figure 16: Grown border
A test indoor case, based on an example from [51], shows
the original ungrown border, (dotted line), and the resulting
shrunken region (solid line). (The shrinking is exaggerated in

this figure for the sake of clarity)




(c) (d)

——————— Actual obstacle
Grown obstacle
---------- Blocked by C-space but should be clear area

Figure 17: Chopping concave angles
(a) Traditional configuration space growing for a circular
robot.
(b) Simple intersection method results in a single vertex.
(c) Simple method can occlude passages that should be clear.

(d) Chopping the angle reduces waste but results in 2 vertices.
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bounding region was shrunk (Fig. 18). Any obstacles whose growth results in a collision
with the bounding region, are merged into the border as they no longer can be completely

circumnavigated.

Finally, the remaining obstacles are attached to the bounding region as follows. The
obstacle vertex that is closest to a bounding obstacle is attached to the bounding region
by two passable links; one going out to the obstacle and the other returning. This is
repeated until all the obstacles are connected. In essence, a single region, consisting of
the border and the perimeters of all the grown obstacles, is produced (Fig. 19). To the
mathematical purist, this would not be a region as the two passable lines connecting the
obstacle to the border are in identical positions. Nonetheless, this simplifies the recursive

decomposition algorithm which appears in the step following.
Main Map Building Algorithm

This portion of the algorithm decomposes the region produced in the initialization
phase by recursively splitting the area until all resulting regions are convex. Upon receipt
of the initial region it is checked for convexity. If the region is convex, this portion of the
procedure terminates. If it isn’t, which usually is the case, a concave angle is selected
from those available in the region. There is guaranteed to be at least one concave angle or
the region would be convex. Three options were considered for selection of the vertex: the
least concave, the most concave, or the first concave angle found can be chosen (Fig. 20).
Intuition as well as empirical results indicate that choosing the most concave angle results
in the fewest regions to be remerged during the cleanup phase below. Choosing the first
concave angle would be more computationally efficient during this phase, but may require

additional compute time in the clean-up phase, offsetting any gains here.

After an appropriate concave vertex is selected, the second (victim) vertex for splitting
the region in two must be chosen. Again we have defined three choices (Fig. 21): the
leftmost clear vertex, the rightmost clear vertex, or the most nearly opposite vertex (right
of center). A connecting edge, labeled as passable, is completed between the concave
angle and its victim and the initial region is split in two. The algorithm is then applied
recursively to each of the resulting two newly formed regions. Pointers within the newly
produced edges are maintained indicating the adjacent passable region (Fig. 21a). Thus

a graph of convex regions and their traversability is produced, facilitating search during
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Figure 18: Obstacles
The obstacles have been added to the case shown in 16. The
dotted line represents their original position and the solid line
their grown area. Only the shrunken border region is shown

(solid line), not the original border.




Figure 19: Attached obstacles
The grown obstacles have been attached to the surrounding
shrunken border. The resulting single region is now ready to

undergo convex decomposition.
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Start —-

(a) (b)

Figure 20: Effect of vertex selection on decomposition

a) A region to be decomposed that contains 3 concave vertices {numbered
1,2,3). The list representing the region begins at start and proceeds counter-
clockwise. Figures b-d show how the vertex can affect the decomposition. For
each case below, the most opposite vertex is selected as the victim.

b) Most concave vertex selected.

¢) Least concave vertex selected.

d) First concave vertex selected.
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the path finding process. This decomposition continues until all of the regions produced

by this algorithm are convex.

The efficiency of each mode and their impact on the path planning computation, and
data regarding map-building times appears in Appendix A. Considerable experimentation
was carried out, trying to determine which of the concave selection modes and victim
selection modes (of the 9 possibilities) yields the “best” results. Figure 22 shows 5
different decompositions on the same region. Just how to define what constitutes the
best result is nebulous. Shortest Euclidean distance as a path length metric (which might
appear to be the most obvious choice) may result in significant problems with the clipping
of modeled obstacles during travel due to the inherent positional uncertainty found in
the mobile robotics domain. Fewest overall legs in a particular path is another possible
choice. In one instance [36] an algorithm producing the maximally large convex region is
used. This might actually work against the path optimization strategies described below,

although conceivably improving overall search time for the coarse “raw” path.

When the path search was restricted to the midpoints of the bounding regions,
(A*-1, see Section 3.1), the experimentation indicated, even based on the shortest dis-
tance metric, that the results obtained were more strongly influenced by the shape of the
initial bounding region and the choice of start and goal points of a particular path than
by any predetermined choice of vertex selection modes for decomposition. That is not
to say the choice of decomposition method did not produce significantly different paths
in certain circumstances for the midpoint search; rather, information that is dependent
on a particular initial region and the most likely paths to be taken within that region
should appropriately influence the vertex selection process. An expanded search (A*-3)
through 3 points on each péssable meadow boundary (the midpoint and one point near
each endpoint) largely decouples the dependency of the path cost on the decomposition
method. Consequently, it becomes less significant which map-building strategy is chosen
if this more costly search methodology is used.

When not guided by other factors, this author would choose the most concave angle
and most nearly opposite angle as selection modes, as it generally results in the fewest
merges in the clean-up phase while yielding a more aesthetically pleasing result (aesthetics
are not forwarded as a metric however). It also is intuitively appealing as a “natural”

decomposition strategy.




(a) (b)

(d)
(c)

Figure 21: Effect of victim selection on decomposition
a) This figure contains one concave vertex (C) with three possible victims. O
is the most opposite victim, L is the leftmost and R is the rightmost.
b) The decomposition resulting from the most opposite victim selection mode.
c) The decomposition resulting from the leftmost victim selection mode.
d) The decomposition resulting from the rightmost victim selection mode.
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(a)

(b)

Figure 22: Different convex decompositions
Figure 22 shows 5 of the nine different decompositions available for the region
shown in Fig. 19. Solid lines represent impassable obstacles and borders, dotted
lines - passable boundaries between meadows.
a) Selection modes: most concave angle, most opposite victim.
b) Selection modes: most concave angle, leftmost victim.
(Figure continued on following page).
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Figure 22 continued.

c) Selection modes: most concave angle, rightmost victim.
d) Selection modes: least concave angle, most opposite victim.

e) Selection modes: first concave angle, most opposite victim.
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One other note: although the algorithm is recursive, for efficiency in implementation,
instead of using the system stack and system-provided activation frames found with stan-
dard recursive calls, a push down stack was managed by the map-builder process itself,
avoiding the significant system overhead that would be required for the decomposition of
large and complex free space areas. The net result in any case is a list of the resulting
convex regions along with an embedded connectivity graph maintained by pointer links

in the passable edges connecting a region to its adjacent passable regions.
Clean-up

The resulting number of convex regions produced by the main decomposition algo-
rithm is not always minimal. In other words there may be some regions which can be
merged together that still result in a convex region. This is a consequence of the lo-
cal nature of the decomposition technique; no checks are run to determine the global
consequences of a region splitting. Although this could be built into the algorithm, the
backtracking that would be required is believed to be considerably more expensive than
the simple merging step. In some instances (e.g. most concave - most opposite vertex se-
lection modes) merging is relatively rare, while in others it is relatively common. During
this phase, a pass is made on the convex region list that merges together any regions that
would result in a single convex region. On merge completion, the map-builder process
then invokes the feature editor.

It should be recalled that this is the algorithm for the simplest case, involving only one
terrain type. Multiple terrain types require additional processing which will be described

in Section 4.

§2.2 Feature editor

The feature editor was created to allow data pertinent to sensor guided navigation
and uncertainty management to be added to the meadow map. It serves as an interface
to assist in the knowledge acquisition and representation processes.

A major advantage of the meadow map representation is the ease with which represen-
tations of objects, landmarks, terrain features, etc., can be expanded. In an experimental
system this is very important. The level of granularity at the point of attachment can

vary. Obstacles or walls can be represented with full 3D models of the entire object;
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2D planar representations of surfaces (pop-up views) can be associated with meadow
sides (edges); or simplistic line models for individual corners, projected up into the im-
age plane, can be attached to meadow vertices. For terrain, entire region characteristics
(traversability data, statistical error data, data for guiding visual region segmentation
algorithms, etc.) can be tied to the free space regions. Individual meadows can have
topographical models (for non-planar surfaces) which represent contours in any way the
designer of such a representation chooses. This flexibility for adding and modifying world
representations is one of the prime factors in the choice of the meadow map scheme over
other alternatives such as the regular grid or Voronoi diagram.

The mechanism for adding these representations is through the use of the feature
editor. The concept is simple: a particular free space region, obstacle, obstacle edge,
or vertex is chosen through the editor; data for the new representation is accepted by
the editor; storage is allocated for it and a link js made between the new representation
and the old. This is repeated until no more data is to be added. The data within the
allocated representations can also be modified interactively if required.

The data stored in the representations can be acquired through sensors as well. For
example in the case of visual data for region segmentation, by pointing the robot camera
in the direction of a known region type (e.g. grass), and then acquiring the appropriate
statistics through interactive use of the video digitizer and a histogram process, the robot
can store the statistical features for a particular terrain type on a per run basis. This
avoids the inflexibility that would be present if the statistics had to computed once for
all weather and seasonal conditions. The result is more robust visual segmentation.
In essence the robot can be trained quickly and efficiently to recognize certain terrain
features. It would not be difficult to extend this to include data for landmark recognition
and other necessities once appropriate representational strategies were chosen. Static
representations can be input from data files, reducing the map-building time. It should
be recognized, however, that changing lighting conditions and other environmental factors
can render these statistics obsolete. Consequently, adaptive (feedforward) mechanisms
are required by the perceptual processes to make the system more reliable (Chap. 6).

Some of the initial features included in the system are:
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e Terrain data

— Traversability factor (ease of passage)

— Terrain-specific translational and rotational error data - (to guide the uncer-

tainty map manager in handling positional uncertainty)

!

Data to guide terrain region labeling using visual region segmentation

— Unmodeled obstacle density
¢ Obstacle data

= 3D models of landmarks
— Partial wire frame models of buildings

— Vertical edge data for particular vertices (sides of buildings, doorways, etc.)

Currently this data is user-supplied. In the last stage of the map-builder, after the
user exits the feature editor, the pointers for long-term memory are installed making

LTM available to other processes. The map-builder process then terminates.

§3. Navigation (Global Path Planning)

After the map-builder process terminates, the planner process is initiated. The plan-
ner is hierarchical in design; consisting of a mission planner, navigator and pilot. The
mission planner is delegated the responsibility for interpreting high level commands, de-
termining the nature of the mission, setting criteria for mission, navigator and pilot
failure, and setting appropriate navigator and pilot parameters. For example, if the mis-
sion is reconnaissance oriented, (e.g. searching for lost keys), the pilot mode of operation
would be set to path seeking. On the other hand if it was target oriented, (e.g. delivering
a pizza), the mode would be set to goal seeking. The mission planner, although part of
the overall design, is not yet fully implemented, and has a relatively low priority. Section
6.1 describes the rudimentary mission planner used in the first-pass implementation of
AuRA.

The navigator accepts a start and a goal point from the mission planner and, using the

global map built by the map-builder, determines the “best” path to attain that goal. The
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definition of optimality is determined by the mission planner. It might be the shortest,
or the safest, or the fastest, or the least energy consuming path. In essence, the mission
planner determines which cost functions and heuristics that the navigator will use in
carrying out its role.

The remainder of this section deals with the search strategies used by the navigator,
the path improvement strategies that convert a coarse, raw path into a refined one, and
a presentation of results. The modifications necessary for multi-terrain navigation are

presented in the section following.

§3.1 Search

The navigator’s task is to search through the meadow map produced by the map-
builder and derive a good path available for a specified start and goal. As stated earlier,
“best” is difficult to define. Many different criteria can be used to affect the quality of a
path. Parodi [104] used a weighted cost function and dynamic programming techniques
to search through the solution space of a regular grid and arrive at the best path.

The A* search algorithm [56,96] is used in AuRA with heuristics that guarantee

optimality. The A* cost function is defined as:

f=g+h
where:

g = the measured cost of the path up the current point

h = the heuristic cost from the current point to the goal

(to be admissible, A must not overestimate the actual cost to the goal).

Two different search spaces are available for the search algorithm. The simplest and

most efficient, A*-1, is built from the midpoints of the bordering passable regions (a
concept derived from Crowley’s adits [36]). The larger space, A*-3, is derived from a
triad of points on the bordering regions; the midpoint and two points near each end
of the passable edge (separated from the end by a specified safety margin). Although
computationally more expensive (the space is larger), the advantage of A*-3 over A*-1
lies in a significant decoupling of the path planning from the map-building free space
decomposition method (due to the expanded search space). The A*-3 method explores

more alternatives, possibly resulting in a lower cost path than would be available with
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the A*-1 search. Additionally, since it tests points in close proximity to obstacle vertices,
the location of the boundaries of the adjacent meadows themselves become less important
(especially for short paths). In either case (A*-1 or A*-3), the search space is smaller
(and consequently faster) than that of a regular grid or pure vertex graph representa-
tion. Finding the initial coarse path is a fairly rapid operation (see Appendix A). It is
guaranteed to be the best path available (subject to the cost function chosen) within
the specified search space. This space, however, is not strictly analogous to the physical
world.

The choice of A*-1 or A*-3 is made by the mission planner, differentiating between
the two on the basis of whether it is more important to compute a path rapidly (A*-1:
faster) or more important to traverse the path rapidly (A*-3: can yield a lower cost path).
In many cases the paths resulting from both A*-1 and A*-3 are identical.

In order to ensure admissibility, the heuristic function % of A* must never overesti-
mate the cost remaining to the goal. The easiest h heuristic function to guarantee an
underestimate (or the exact cost) is the straight-line Euclidean distance on the plane
from the current position to the goal assuming the best terrain. Since the search space
is relatively small, no effort has gone into finding better heuristics. The computation
time required to produce the path (in A*-1) is somewhat dwarfed by the time required
to convert this initial raw path into a refined and reasonable path (see Appendix A).

The cost function used takes into account the traversability factor of a given terrain
type, the actual distance traversed, and can readily incorporate other factors such as
threat measurement, topographical grades, etc. This cost function is used in the g com-
ponent of the A* algorithm. Other factors might include unmodeled obstacle density
(perhaps a function of time of day - e.g. high obstacle density between classes on a side-
walk, low otherwise), and ease of localization (based on numbers of readily discernible
landmarks within a given region).

At this point in our research, it is impossible to say just what constitutes a “best”
path. If a path is very short but the robot gets lost due to inadequate landmarks for
localization, or it gets mired in poor terrain and its dead reckoning sensors become grossly
misleading, little has been achieved. The only effective metric is the robot’s ability, under
the pilot’s control, to successfully complete the path. If it can, only then can we take

into account additional yardsticks such as time, distance, etc.
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Consequently, the ultimate goal of the navigator is to arrive at a “reasonable” path
rather than a claimed “best” path. By reasonable we mean a path that appears plausible
from a human’s perspective - i.e. it is conceivable that a person would take a similar
path. In any case even if an optimal path (by whatever definition) was attainable by the
navigator it could only be based on partial information (i.e. the modeled world). Since
the robot’s environment is subject to unmodeled and even moving obstacles, there is no
a priori guarantee that any path produced by any navigator is the best path, given only
incomplete world knowledge (although the path is optimized relative to the current world
model). Reasonableness seems an acceptable criteria.

In a dynamically changing world, which can quickly invalidate preformulated plans,
how do we gauge “reasonableness”? Only successful completion of the robot’s experiments
can be the judge. This is especially the case for multi-terrain navigation. When would
you, as a human, take a short-cut over the grass in lieu of the sidewalk? Robot’s have
different locomotion systems so this example is not fully extendible, but the navigator can
still be judged in this light. One more point in defense of the premise of reasonableness:
do people really choose an “optimal path” when traveling from one point to another?
I think not, except under rare circumstances. The time required to compute the path,
(referring to a map etc.), might take longer than the completion time of the path itself.
Therefore, no claims are made for the optimality of the paths produced by the navigator,
only that the resultant paths are reasonable under all observed conditions.

In summary, the navigator algorithm (shown in Fig. 23) accepts two points from the
mission planner. It then searches, using the A* algorithm with a cost function based
on terrain factors and traversability, the space of midpoints (A*-1) or triads (A*-3) of
connecting adjacent passable meadows, outputting a coarse path consisting of a series
of piecewise linear segments connecting the start, the edges of bordering meadows and
the goal. This approach generally expands fewer nodes than would a comparable pure
vertex graph of the obstacle edges (and obviously much fewer than a regular grid) as
the number of passable meadow boundaries is less than the number of vertices. The
pure vertex graph (although guaranteed to produce the shortest path) also suffers from
an inability to readily produce safe paths (paths that minimize the danger of the robot
clipping an obstacle), since the free space is not directly represented. A Voronoi diagram

can readily produce safe paths, but also lacks the flexibility afforded by this representation
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to change its strategies (safe to short to fast) when deemed appropriate by the mission
planner. The Voronoi diagram discards information regarding the obstacles themselves
too soon, making it necessary to reconstruct that data when needed for alternate path

finding strategies.

The key, however, lies in the path improvement techniques described below. Without
these techniques the raw path produced in many cases would appear to be haphazard

and unreasonable even to the casual observer (especially for A*-1).

§3.2 Path Improvement Strategy

Path improvement techniques are relatively common in the use of regular grids. Al-
though the representation used for AuRA’s long-term memory is a meadow map and not
a regular grid, the precedent of refining a coarse path into a better one exists. Thorpe
uses a relaxation based approach on a coarse grid [126] while Mitchell and Keirsey use a
compensation technique [88] to minimize inefficiency due to digitization bias.

The algorithm for path improvement for the simple single terrain case is presented
in Figure 24. A graphic illustration of the process appears in Fig. 25. The “raw” path
is first received from the navigator. Beginning at the start path node and proceeding to
the end node, each node on a passable meadow border is tested at three locations; slid
all the way to the left (leaving a specified safety margin clearance), slid all the way to the
right (minus safety margin), and unchanged at the middle. The lowest cost solution is
chosen and the path modified accordingly. This can be visualized as pulling on the ends
of the path thus tightening the path around the obstacles and walls. This is considerably
less costly than a relaxation algorithm requiring multiple iterations over the entire path.
(A limited relaxation algorithm involving only the transition zones is required for the
multiple terrain case - see Section 4). The A*-3 search method can bypass this initial
tautness processing as its search strategy has already effectively accomplished it.

For eliminating unnecessary turns, if deemed appropriate by the mission planner, a
straightening algorithm is utilized. Any unnecessary turns in the path are removed. Be-
ginning with the start path node, all further path nodes are checked against the current
path node to see if a path exists that does not intersect with any of the known envi-
ronmental obstacles. If such a path exists, all intervening path nodes between the two

connectable nodes are deleted from the path. This process is repeated for all nodes in




PATH FINDING ALGORITHM

Accept start and goal from mission planner.

Check for validity (located in free space).
Search

Apply A* search algorithm through convex region connectors,

(A* - 1: midpoint only)

(A* - 3: midpoint + two points near endpoints of connectors)
Output Raw Path.

Path Improvement Techniques

If specified
A. Tighten path by sliding towards side vertex
by some given amount.

B. Straighten path by removing any turns that are not essential

for a clear traversal.
(details for both parts A and B appear in Fig. 24)

Return “reasonable” piecewise linear path through world model.

Figure 23: Path finding algorithm
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PATH IMPROVEMENT ALGORITHM
(single terrain type)

Accept the coarse path from the search component of the navigator

Tautness part

Accept safety margin (clearance from side)
Get first border midpoint of coarse path
DO WHILE Not at end of path
compute length of path for three cases
a. Midpoint unchanged
b. Midpoint slid to right (maintaining safety margin)
c. Midpoint slid to left (maintaining safety margin)
choose lowest cost path from a, b or c.
modify path if necessary and mark path node as moved
Get next path node
ENDDO

Straightness Part

Get start of path
DO WHILE not at end
IF clear path is available to any path node ahead of current node
delete all intervening nodes
ENDIF
Get next path node
ENDDO

Clean up

Slide towards edges again as in tightening part above if path was
straightened (only for unmoved path nodes still at midpoint)

Output refined path

Figure 24: Path Improvement Algorithm
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Figure 25: Path improvement - tautness component
a) The initial raw path passed from the A* search strategy to the tautness
component. S denotes the start and G the goal.
b) The first passable boundary is tested at three locations, the midpoint and
the two endpoints (minus a safety margin). The lower cost result is shown as
the dark line.
c) The process is repeated at the other two passable boundaries. This results in
a lower cost but as yet unstraightened path. (The kink from the final boundary
to the goal will be removed by the straightening component).
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the path.

If the path is straightened, a better path may now be obtained by sliding some of the
previously unmoved path nodes. Before exiting, the algorithm checks all these unmoved
nodes, if there are any, to see if a lower cost path can be obtained by sliding them along
their meadow boundaries (basically the same procedure as in the tautness part above
but checking only a subset of the remaining path nodes). The resulting refined path is
output from the navigator and stored in short-term memory for use by the pilot.

Reasonable paths have been observed in extensive testing of all cases presented. Un-
necessary detours around obstacles are removed by the straightening component of the
path improvement strategies, while overall cost minimization is ensured by the tightening

approach.

8§3.3 Results

The results are presented in Figures 26-32. The straightening component of the
algorithm can be observed to remove unnecessary detours around obstacles, while the
tightening component reduces the overall path cost. The cost function used is the same
cost function used in the search algorithm (for these figures, Euclidean distance is the
cost).

A significant advantage in deferring the path improvement strategy until after the
search (rather than being an integral portion of the search algorithm) lies in the abil-
ity to alter the path, if necessary, without re-searching. Additionally, embedding the

straightening portion would be awkward at best within the search algorithm.

For A*-1, (Figures 26-29), the actual paths produced from the navigator are a function
not only of the start-end points and improvement strategies used, but are also dependent
on the modes used during the map-building. Considerable experimentation was con-
ducted trying to determine which if any of the nine modes available to the map-builder
resulted in consistently better paths. No clear connection could be made between the
cost of the path, the start and end points of the path, and the nature of the convex region
decomposition. In some decompositions, for a given start and end point a better path
(A*-1) could be obtained using one decomposition approach over another (Fig. 28 and
29). For another set of start-goal points, however, the same approach that performed

poorly in the first case did better than the one that previously performed well. For all
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Figure 26: Single terrain path planning example - (A*-1)

This sequence illustrates the path finding process of the navigator for a single
terrain type. The convex decomposition of Fig. 22a is used for Figs. 26-28.
The initial start in this case is in the lower left corner, while the goal is in the
upper right. Solid lines represent grown obstacles and borders, dotted lines
represent passable meadow boundaries and the dot-dash line is the path. The
safety margin was specified as 1 foot {on an overall scale of approximately 400’
by 400).

a) The initial path produced by the A*-1 search algorithm through the mid-
points of the passable bordering meadows.

b) The path after undergoing path improvement strategies.

¢) The same path as in (b), shown without passable boundaries for clarity.

d) A safer path (safety margin 10 ft). Note that a safety margin of 10 feet
does not guarantee 10 foot clearance of all obstacle vertices. It serves only to
limit the tightening (sliding) along the passable border to within 10 feet of the
vertex. It is NOT a measure of path distance from the vertex as one should

note in the last corner in the upper right portion of the path.
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(b) ()

Figure 27: Another single terrain planning example (A*-1)
a) Initial coarse path.
b) Improved path (safety margin 1 foot).
¢) Improved path (safety margin 10 feet - see note for Fig. 26d.)




(a)

(b) (c)

Figure 28: Yet another single terrain planning example (A*-1)
a) Initial coarse path.

b) Improved path (safety margin 1 foot).
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¢) Improved path (safety margin 10 feet - see note for Fig. 26d.)
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(b) (c)

Figure 29: Dependency on decomposition method (A*-1)
In this case, the decomposition method of Figure 22b (most concave vertex,
leftmost victim) was used, not that of Fig. 22a (most concave vertex, most
opposite victim) as in the previous cases, Although the start-goal points and
path improvement techniques are identical with Figure 28, the path produced
here is of lower cost. This is a consequence of the decomposition strategy used.
a) Initial coarse path.
b) Improved path (safety margin 1 foot).
¢) Improved path (safety margin 10 feet - see note for Fig. 26d.)
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(b)

Figure 30: A*-3 path planning
Contrasting this figure against Fig. 28 (which uses the same decomposition
method as is used here), A*-3 search provides the same lower cost path as
was seen in Fig. 29 (although a different decomposition strategy was used in
Fig. 29). A partial decoupling of the decomposition method and path finding
strategy is in evidence.
a) Initial A*-3 search path. Note the selection of points near edges as well as
midpoints.
b) Final improved path. Almost identical to raw path (a) in this case.
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Figure 31: More A*-3 path planning
Here it can be seen that the A*-3 method gives no improvement over the A*-1
method for the cases in Figs. 26 and 27. The extra computational cost proves
unnecessary.
a) Same start and goal as in Fig. 26 but using A*-3. The initial raw path
is shown as a dashed line in relation to passable meadow boundaries (dotted
lines).
b) Final improved path for (a).
¢) Same path as in Fig. 27 but using A*-3. Initial raw path.
d) Final improved path for (c}.
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(b)

Figure 32: A*-1 versus A*-3
In tight quarters, A*-3 can make a slight difference. The gain
in this example, however, is small (on the order of 2% of the
overall cost).
a) A*-1 final improved path.
b) A*-3 final improved path.
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possible start and end points within any given map, no single map-building strategy was
clearly superior.

For A*-3 noticeable improvement occurred. Figure 30 clearly shows the ability to
produce a better path using the same convex decomposition than was the case with the
A*-1 method (Fig. 28). Figure 32 confirms these results. The raw paths of A*-3 are
generally close to or the same as the final path, whereas this is much rarer in the case
of A*-1. The computational penalty, however, can be significant as the search space is
considerably larger and is discussed in Appendix A.

Hopefully the diagrams (Fig. 26-32) give a feel for just what a reasonable path is.
There are no unnecessary or unexpected turns. When two or more choices are available,
if one is significantly more advantageous than the others, the better one will be chosen.
If there is only a slight advantage (you might need a ruler to tell as in Fig. 32), one of
the best will be chosen. No claims for overall optimality are made, although if subopti-
mal results are produced for these cases they still qualify as reasonable. Restating that
optimality is perhaps a misplaced notion in a dynamically changing world (without con-
stant replanning), the value of spending high computational effort in ensuring absolute
minimal costs in the mobile robot domain is unjustified.

The limitations for other representation forms show the advantages inherent in the

use of the meadow map approach; these include:

o regular grid: high memory and search cost and digitization bias resulting in sub-

optimal paths;

¢ pure vertex graph: optimal paths only in the context of shortest distance and not

amenable to safe path production;

¢ Voronoi diagrams: more difficult to arrive at short paths and additional represen-

tational features not easily embedded.

A major advantage lies in the ability of the meadow map to incorporate virtually any
additional representation desired to guide vehicle localization, sensor processing, etc. (see
the discussion on the feature editor in Section 2.2). If the paths produced are sub-optimal
in the global context and thus are only “reasonable”, that is a small price to pay for the

versatility and lower memory costs afforded by this representational strategy.
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§4. Multi-Terrain Extensions

One of the principal contributions of this work lies in its extension to handle differing
terrain types. Previously the regular grid has been the principal representation used
to deal with diverse ground covers [88]. Certainly, for the planner to produce realistic
paths in outdoor scenarios, a reflection of the different terrain types must be taken into
account by the navigator. Some terrain types will be more costly to traverse than others
(e.g. gravel or grass as opposed to concrete). We do not want to exclude these different
terrains as navigable areas, but yet we don’t want to lump them into one uniform terrain
type. The traction of the vehicle will depend on the specific surface encountered and
more slippage is expected to occur on gravel than on pavement. The cost in terms of
positional uncertainty can be high on loose ground. On the other hand, if a significant
reduction in the total distance to be traversed from start to goal can be obtained (and
associated reduction in time cost), the tradeoff of increased positional uncertainty for
greater time savings may be warranted. In some cases the total amount of positional
uncertainty gained by traveling over poor surfaces may be substantially less than that
garnered by traveling over a superior cover due to the much shorter distance the robot
may travel by taking a rougher terrain short-cut.

Another sticky point lies in terrain borders where one ground cover type ends and
another begins. If the robot keeps one wheel on one terrain type and the other(s) on
a different cover, disorientation can be rapid. One of the goals of the representational
strategy used here is to prevent the robot from straddling terrain borders. This is accom-
plished by the creation of transition zones which separate the ground covers and define
clean traversal points. Forbidden zones are also produced which prevent the robot from
navigating at the corners of terrain boundaries (regions which typically are expected to
be very problematic in terms of maintaining proper localization).

This section first describes how the map-builder accommodates multiple terrain types
through the construction of transition zones and their appropriate features. A description
of how the navigator has been modified from the uni-terrain model to accommodate path-

planning through this extended representation is then presented.
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§4.1 Multi-terrain map-builder

The extended map-builder is built from the uni-terrain map-builder described in Sec-
tion 2.1. The algorithm appears in Figure 33.

The input structure of a terrain region is identical to that of the previous map-building
algorithm: a list of border and obstacle vertices. This region is decomposed in exactly
the same manner as was done previously. Nothing labeling a terrain border is present to
identify it as such to the algorithm. Initially, all borders of each terrain region and its
enclosed obstacles (which may later turn into other terrain regions) are initially labeled
as impassable.

Wherever two different terrain types are found to touch, rectangular transition zones
are built allowing a limited type of traversability between them. As a side effect, forbidden
zones (corners of intersecting bounding regions), are marked as off-limits for later path
planning purposes. This restriction ensures that any path taken across a transition zone
will result in a minimal distance path. The transition zone is tagged for recognition by
the path planner and other components of the overall system dealing with long-term
memory. The details of this process follow.

After the initial terrain area is decomposed, the map-builder algorithm keeps accept-
ing new ones until none remain. After each terrain area is decomposed in isolation, a
matching algorithm is run on each new terrain convex region to see if it shares any com-
mon edges with any of the previously decomposed regions. This match is performed on
the ungrown vertices (or else they would never match). If a match is identified, evidenced
by at least the partial overlap of any impassable edges of two different terrain types, a
transition zone is built.

The transition zone is a special region connecting two differing terrain types. Most of
the data for transition zone construction is already available from the matching process.
Basically, the two grown edges, each representing the common border of each matched
region, are used for two of the edges of the transition zone (Fig. 34a). This gives a
distance across the zone equal to the robot’s diameter plus two times any safety margin
that was used in the growing (or shrinking) of the initial terrain regions (Fig. 34b). The

initial zone consists of the four vertices of the two matched edges.

It is highly desirable to minimize the time it takes for the robot to cross a transition
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MULTI-TERRAIN MAP-BUILDER ALG ORITHM

DO WHILE no more terrain to add
Run the uni-terrain map-builder (Fig. 15) on a terrain region
Tag all resulting free space regions with a new terrain identifier
Match borders of new free space regions against the
terrain free space regions already produced
IF matches exist
Build transition zones connecting terrain types

Add these transition zones to free space regions
ENDIF
ENDDO

Figure 33: Multi-terrain map-builder algorithm
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Figure 34: Transition zone construction
a) Initial bordering terrain types. Terrains A and B share a common edge from
vertex 5 to 6.
b) The initial transition zone is built by connecting the four vertices of the
bordering C-space lines.
¢) The initial region is converted into a rectangle yielding the final transition
zone. The resulting forbidden zones are shown as shaded areas.
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zone, implying a normal straightline path. Consequently the initial polygonal represen-
tation is converted into a rectangle (Fig. 34c). The new edges produced (sides of the
rectangle) are labeled as impassable, producing small forbidden zones which the planner
construes as unnavigable. Any path that is produced by the path planner is guaranteed
to be normal to the original matched edges, thus ensuring the smoothest and fastest
transition possible from one terrain type to another. Finally, appropriate passable links
are made to connect the new transition zone and the two bounding free space regions of
the different terrain types.

The traversability factor (used for costing in path planning) should be high for transi-
tion zones due to the problems associated with terrain changes. Currently the traversabil-
ity of a transition zone is defaulted to the sum of the traversabilities of the two bordering
terrain types. This value can be readily changed if appropriate via the feature editor

(Section 2.2).

§4.2 Multi-terrain Navigator

The navigator must be modified somewhat to ensure that the path produced is rea-
sonable in the multi-terrain case. The only components of the navigator that must be
changed are the path improvement strategies. This includes both the straightening and
tautness components. No modifications whatsoever are necessary for the search compo-
nent because the terrain cost is included in the cost function. As the transition zone
is rectangular, any path produced by the A*-1 method through the midpoints of pass-
able regions crossing over different terrain types is guaranteed to result in a straightline
across the transition zone. The A*-3 case occasionally requires slight path preprocessing
to ensure a perpendicular crossing of the transition zones prior to improvement. Un-
fortunately, modifying the path Improvement strategies (for both A*-1 and A*-3) was
non-trivial and required the implementation of a relaxation algorithm, limited to relax-
ing the terrain crossings only. Previously, terrain traversability costs were ignored during
the path improvement process, yielding shorter but more costly paths over more difficult
terrain. The relaxation approach readily ensured that traversals across the transition
zone remained perpendicular to the border edges while still producing low cost paths
dependent on the nature of the ground cover.

The algorithm for multi-terrain path improvement is shown in Figure 35. Actually,
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the complexity is somewhat greater due to special case treatment (start or end within
transition zone, entire path in transition zone, etc.). Sedgewick [114] states that “special

cases ... are the bane of geometric algorithms”, and I am in firm agreement with him.

The algorithm proceeds as follows: the previous path improvement strategy is first
run within the framework of each terrain type in isolation. This is the identical algorithm
as described in Section 3.2 but restricted to individual terrain types. To reduce the cost
of the relaxation later, the transition zone crossings are then slid in the same manner as
was done for the individual meadow border passages, with one exception. Both crossing
points on the transition zones are slid in tandem, insuring a perpendicular passage across
the transition region. This step generally reduces the overall distance the transition zone
crossings will have to be moved during the relaxation phase, thus reducing computation
time. Any previously unmoved vertices within the regions themselves are then retested
to see if sliding will lower the overall cost. If necessary, additional path straightening is
then performed.

Although avoiding a relaxation method for path improvement was an initial design
goal due to perceived high computational costs, (as in relaxation on a regular grid), it
eventually became necessary to resort to one. The cost associated with this relaxation
(see Appendix A) is not particularly high however, due to the preprocessing on the path
and, more importantly, only the transition zone crossings are relaxed, not all passable
borders. The algorithm used is fairly standard: displace the transition zones an incre-
ment in both directions and measure the lowest cost. Use the new lower cost point as
the starting point for the next displacement. Keep repeating until any displacement
results in a higher or equal cost path. Convergence is guaranteed using this standard
hill-climbing methodology. The time for convergence is determined to a large extent by
the displacement size and on the number of terrain crossings. The results for the worst
test cases in the lab have yielded times for the relaxation component that are not dis-
proportionate (typically the same order of magnitude) with the other components of the
algorithm (see Appendix A). The best case (no transition crossings) is virtually identical
to that of the uni-terrain results (Section 3.3); the average case results in slight increases
in path improvement time. Finally, path straightening is reattempted within the context

of each terrain type before final release to the pilot.
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MULTI-TERRAIN PATH IMPROVEMENT ALGORITHM

Accept a coarse path from search componeht of navigator.

Run tautness and straightness component of uni-terrain path planner
on each part of path within a given terrain type (Fig. 24).

Slide only the transition zones as in previous tautness algorithm.

Run tautness and straightness component again on each part of path
within a given terrain type (only on previously unmoved vertices).

Relax path by settling transition zone crossings into
a minimal cost point.

Restraighten if necessary.

Figure 35: Multi-terrain path improvement algorithm
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§4.3 Results

A schematic model of the environment outside the Graduate Research Center was used
for the outdoor terrain examples. Five different terrain regions are present: concrete, two
disjoint grassy regions, a gravel path and a parking lot. For the purposes of path planning:
the traversability of the concrete and the parking lot was set to 1.0, grass 1.5, and gravel
a factor of 1.2 (these are relative values: the higher the number, the more difficult to
traverse). The gravel path, although rough, has the decided advantage of path borders,
which make path-following strategies available that are not useful on grass. The terrain
types and their associated transition zones can be seen in Figure 36.

In Figures 37 through 39, the results of the path planning algorithm are illustrated.
The A*-1 search method was used for all these cases. Sub-figures 37a-39a shows the
initial path through the search space. Note in this and all other cases the perpendicular
passage through the transition zone is evident. Sub-figures 37b-39b show the improved
path before transition zone relaxation. Sub-figures 37¢-39¢ display the final path after

relaxation and post-relaxation straightening.

§5. Cartographic subsystem

The details and construction of long-term memory by the cartographer’s map-builder
process has been described in Section 2. The uncertainty management subsystem is
described in chapter 7. What remains to be discussed here is the structure and mainte-
nance of short-term memory. The subsections following will present the STM structure,
the STM manager’s role in creating and maintaining the perceptual level of STM, and
the cartographer’s meadow instantiator process which provides the LTM context for STM

that is drawn upon by the pilot in the event of motor schema navigation failure.

§5.1 Short-term memory structure

Short-term memory is a bi-level structure (Fig. 40). Its primary purpose is to provide
information for navigational purposes (i.e. it does not serve the same purpose as VISIONS
STM). At the base level, it consists of a group of meadows from LTM which define the

context for the current pilot goal. Recall that LTM consists, to a large extent, of a
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Figure 36: Multi-terrain map

A schematic diagram of the area surrounding the Graduate Research Center.
All impassable regions are represented as solid lines, passable meadow bound-
aries as dotted lines. The passable transition zones are the solid rectangles.
The different terrains (grass, concrete, parking lot and gravel path) are labeled.
(Scale approximately 320’ by 180’. This is much smaller than is actually the
case, but necessary to clearly show the transition zone-path relationship in the

figures to follow, i.e. the transition zones are larger ¢

han they would appear
otherwise).
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Figure 37: Multi-terrain path planning example

The start point is in the lower left corner on concrete with the
goal in the upper right on concrete. The path planner decides
it is more efficient to take the gravel path to achieve its goal,
requiring the traversal of two transition zones.

a) Initial raw path from A*-1 search through midpoints of
passable regions. The cost function includes a traversability
factor dependent on terrain.

b) The same path without the passable borders. Note the for-
bidden zones present at the edges of transition zones.

c) The final improved path. Note how the total length over
concrete was lengthened while the distance over gravel short-

ened (safety margin 1 foot).
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(b)
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Figure 38: Another multi-terrain path planning example
Start in lower right, goal in lower left.
a) Initial raw path - crosses two transition zones, grass to
gravel, gravel to concrete.
b) Improved but unrelaxed path. Grass to gravel crossing is
at midpoint of transition zone.
c) Final relaxed path - note the repositioning of the grass to

gravel crossing.
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Figure 39: Yet another multi-terrain path planning example.
Start in lower right, goal in upper left.
a) Initial raw path.
b) Improved but unrelaxed path.
c¢) Final relaxed path.
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connectivity graph of these meadows. The base level defines the context of the world
map against which sensory acquired information to be applied. These meadows are
moved into STM by the meadow instantiator process (Sec. 3.2). The overlying STM top
level contains a sensory-based model built up by the cartographer as the robot travels
through the world. A local frame of reference based on the current pilot leg is used for
this level. The STM manager incorporates the sensor data as it is received into this top

layer. The details of each level follow.

The instantiated meadow level is crucial for the correct selection of motor schemas by
the pilot. Basically it contains pointers to the parent LI'M meadows and tags indicating
if the meadow is the start, end, on-path, adjacent, or other type of meadow. This en-
ables the retrieval of terrain characteristics, potential landmarks and other information
pertinent to the robot’s current position in the world without a time-consuming search
of LTM. The provision of context for the sensory built top-level of STM is also of major
significance. The top level of STM, consisting of a regular grid embedded with sensor
information, should be viewed as an overlay on these meadows (Fig. 40). Thus, when
the pilot needs to reorient the path for whatever reason, spatial occupancy information
from the sensor (top) level can be moved into the base-level instantiated meadows. The
meadow “fracturing” process that is performed by the pilot, when the need arises (de-
scribed in Section 6.2 below), recomputes locally the robot’s path based on information
from both sensor data (represented in high-level STM) and LTM models. This is more
efficient than reinvoking the navigator to compute a global path anew.

The top level of STM uses a grid representation of space. It is based on extensions of
the method used by Moravec and Elves [92,45] for interpreting sonar data. Navigational
space is tessellated into a grid, with each square containing information regarding the
occupancy of the area (whether it is free space or filled with an obstacle). This map is
built up from sensor readings acquired from the robot as it travels. These readings taken
from the robot’s egocentric frame of reference must be combined into a robot position-
independent representation. The frame of reference used for the grid representation is a
“local-global” coordinate system. It does not correspond directly to the robot’s egocentric
vantage point nor does it match the LTM global world model. It is a local model of the
world that is built solely from egocentric sensor measurements taken from the vehicle.

The resulting grid must be correlated against the lower instantiated meadow level of
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STM (which is represented in world coordinates from LTM) so that the robot’s bearings
can be measured against known world features. The uncertainty in the top level of
STM is expressly represented through the use of a numerical value whose absolute value
increases for a particular cell based on confirmatory sensor data and decreases based on
contradictory data. The STM manager, described below, handles the maintenance of this
level of STM.

The spatial resolution of the top-level grid is typically 64 feet by 64 feet. Its structure
need not be square but was so decreed, for the first implementation. As the path leg is
generally longer in one dimension a 128 by 32 grid might be more appropriate for future
generations of AuRA. This grid moves through navigational space each time the robot

undertakes a new leg on its journey. The cells consist of the following data:

e Occupancy Value
range: —1 (highly probable to be unoccupied and hence unnavigable)

to 1 (highly probable to be occupied. 0 denotes no information - (as in (45])

¢ Symbolic tags
Again with certainty level (range 0 to 1) This would include not only LTM land-
marks but also path edge information and terrain-type identifier where appropriate.

Several may be active for each cell.

A major problem for this approach, as discussed by Brooks [25] and handled by
Smith and Cheeseman [118], is the incorporation of multiple measurements from different
uncertain positions into a single representation (i.e. the STM regular grid). There is no
simple solution. In this case, the assumption must be made that the position from which
the robot is currently taking its measurements is relatively well known. Fortunately, the
STM representation need only be used when reflexive motor schema-based navigation
fails, which should be relatively rare.

A form of environmental learning is also feasible when information regarding obstacles
or features of high certainty could be moved from STM into LTM for future reference.
This is left for future AuRA implementations.

Certain other information is stored in STM. This includes the route-list developed by
the navigator. Event flags are also present indicating items such as the deposition of the

route by the navigator as well as route completion by the pilot. Current leg pointers are
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also maintained here. These flags are used for inter-process synchronization. Bounds for
STM extent are also present. A point estimate of the robot’s position is also maintained

based on shaft encoder data (independent of the spatial error map).

§5.2 STM meadow instantiator process

The meadow instantiator is a separate process running under the control of the car-
tographer. Its operation is fairly straightforward. On start-up it initializes the base-level
of STM. It then waits until the navigator has placed a route into STM and has set the
route-deposited flag. Meadows are then moved into STM based on the first leg of the
route. The meadow instantiator then waits until the pilot signals it has completed its
leg. The old meadows are then deinstantiated (made inactive) but not removed from
STM (unless available memory requirements necessitate it). The next leg of the naviga-
tor’s route is fetched and the relevant inactive meadows already in STM are reactivated,
while any new meadows needed are accessed from LTM. This process repeats until the

navigator’s route is completed.

§5.3 STM Manager

The STM manager’s role is to modify short-term memory based on arriving inter-
preted sensor data. The approach of Moravec and Elves [92] for incorporating multiple
sensor readings from different spatial locations into a single grid representation is used.
Although their work to date deals solely with ultrasonic data, information from other
sensor modalities such as vision can be incorporated.

No single sensor reading is sufficient to guarantee that the existence of an obstacle or
other environmental object is present. Instead, multiple readings from different locations
are merged using a probabilistic approach to build up certainty in the position of an ob-
stacle. The ultrasonic reading does not give a precise environmental location of an object.
Due to the nature of the sonar scan, only a wedge of possible locations is available. The
multiple readings are folded together to yield a measure of the uncertainty of occupancy
or free space for each grid square [92]. The STM manager is built around code imported
from CMU (Moravec and Elves’ work). Only minor modifications have been made to
enable it to be tied into the AuRA architecture. Figure 41 shows a typical map built up
in STM from multiple sonar readings of the UMASS robot lab.
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The STM manager accepts arriving reports from the interpreter processes in the
perception subsystem and incorporates this data into the STM grid. This perceived
world model is built up concurrently and independently of the motor schema manager.
It is referred to by the planning system only upon failure of the motor schema manager
to achieve the specified pilot goal. This is detected by the exceeding of a hard real-
time deadline for goal attainment or by the robot’s velocity dropping to levels that are
deemed too slow for successful completion. The pilot then draws on this data, merging it
into the instantiated meadows in STM and then fracturing the meadows (Figure 42) to
allow local navigational replanning. This meadow fracturing strategy used for local path

reorientation by the pilot is described below in Section 6.2.

§6. Mission planner and pilot

AuRA’s planning subsystem consists of the mission planner, navigator, pilot and
motor schema manager. Motor schema based navigation is described in Chapter 5 and
the experimental motor schema system is described in Chapter 8. What remains to be

discussed in this section are the implementation details of the mission planner and pilot.

§6.1 Mission planner

The mission planner’s implementation for the first pass design of AuRA is at best
rudimentary. Reviewing the goals of the mission planner, they are: to perform spatial
reasoning, the determination of navigation and pilot parameters and modes of operation,
the selection of optimality criteria and the handling of navigator failure. As the mission
planner serves as the interface to the human commander, a natural language front-end
facility is also desirable. The mission planner’s chief function is to provide a series of
specific subgoals, based on a high-level request, for the navigator to act upon. These

requests might include such things as:

e Survey or reconnoiter an area

(search for something lost, make reports on unusual events, etc.)

e Obtain a particular list of items found in different locations

(requiring the determination of where the items are and then an appropriate order-
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Figure 42: Meadow fracturing
The two polygonal obstacles with relatively high certainty are
extracted from the top-level grid and are embedded in the low-
level instantiated meadows. This enables the pilot (Sec. 6.2)
to recompute the path within a local context, thus avoiding
reinvoking the navigator.
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ing for their retrieval)

Currently, the mission planner performs none of these functions other than acting
as the interface to the commander (without natural language ability). All goal ordering
is established by the human agent and is passed through the mission planner without
interpretation. The mission planner also provides a facility to set the parameters that
affect navigator and pilot operation interactively, but does not interpret the “mission” to
automatically determine those settings.

This rudimentary form reserves the rightful function of the original mission planner
design for a more complete implementation. The responsibility is passed upward to the
human commander and is not relegated to lower levels of the planning hierarchy. It
is hoped, and research interest exists at UMASS, that other researchers will complete
and/or enhance the capabilities of the existing mission planner. New versions should be

readily incorporable into AuRA.

86.2 Pilot

The pilot serves a dual purpose in the AuRA architecture. First and foremost is its
responsibility to analyze available data regarding the current navigator leg to be com-
pleted. From this information (gleaned from both LTM and STM) it selects appropriate
motor and perceptual schemas to be instantiated within the motor schema manager. The
pilot then suspends itself while the motor schema control system manages the actual path
traversal. The second role of the pilot is to handle failure of the motor schema manager
to reach its desired goal. This can be evidenced in two ways: by the cessation of motion
by the robot without goal attainment, or by a clock time-out signaling failure to reach
the goal within a pilot-established hard real-time deadline. The pilot then attempts to
reroute the path locally based on information stored in STM by the cartographer. Only
if this pilot-based reorientation procedure proves unsuccessful is the navigator reinvoked
to recompute a new global path in light of the newly discovered environmental blockage.

The following subsections describe these two roles of the pilot.

Pilot schema selection process

In order to provide appropriate motor action for a specific path traversal, the pilot

must access information that is present in both long- and short-term memory as well
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as the current goal that the navigator has established for the pilot. Long-term memory
contains the terrain characteristics, landmarks and other relevant characteristics which
the pilot is required to draw upon for motor schema slot-filling. Short-term memory
contains the instantiated meadows (Sec. 5.1) that are relevant for the current pilot leg.
Blackboard values specifying motion characteristics (velocity, acceleration, etc.) are also
drawn upon. These are generally set by the mission planner and possibly modified by
the homeostatic control system. The navigator’s subgoal is passed to both the pilot
and cartographer through global memory and is used by the pilot to establish the hard
real-time deadline for the navigator and to set failure limits for certain motor-schemas
(e.g. move-ahead). Information is extracted by the pilot from all these sources and
moved into a *fact-base* at the start of each pilot leg.

The approach used in the first pass implementation uses a simple set of rules and
a primitive inference engine to select appropriate motor schemas based on the current
navigational subgoal. A *rulebase* is maintained separately for the pilot’s use. The
rules contained therein are applied by the pilot to the current context (the *fact-base*).
The result is a list of parameterized motor and perceptual schemas (drawn from a set
of schema templates) customized for the particular navigational leg. Some schemas are
invariably produced (i.e. avoid-static-obstacle schema), while others are produced as
the current context dictates. Slot-filled find-landmark schema templates, in particular,
are produced by the pilot by application of the rules in the *rulebase* to the specific
landmark data in the *fact-base*. Activation conditions, useful perceptual schemas for
identification, and other related criteria are passed with the schema itself to the motor
schema manager.

These motor and perceptual schemas effectively exist in three forms: the naked un-
parameterized (but with specified defaults) schema templates, residing as structures in
LISP code in the schema database; parameterized, but as yet uninstantiated, schemas
passed from the pilot to the motor schema manager; and the schema instantiations them-
selves (SIs) existing within the motor schema manager. The schemas passed to the motor
schema manager undergo a transformation into a form compatible with the schema shell.
Only the information necessary to flesh out the schema shell SIs is passed from the pi-
lot to the motor schema manager, keeping the communication bandwidth at reasonable

levels.
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Local path reorientation

The other function of the pilot is to handle failure of the motor schema manager
to attain its specified goal. The potential field methodology is vulnerable to failure
due to local potential minima or isolated peaks (see Chapter 5). Although this should be
relatively rare due to the navigator’s selection of a path that avoids all modeled obstacles,
the presence of significant numbers of unmodeled obstacles can cause the potential field
based system to falter. When this occurs, as evidenced by exceeding a real-time deadline
to achieve the pilot’s established goal (for cycle detection) or by the vehicle’s velocity
dropping to too low a level, the pilot is reinvoked.

The pilot, upon motor schema manager failure, attempts to reach the navigator’s
subgoal by moving obstacles from the STM grid representation into the instantiated
meadows so that they now serve as modeled obstacles for the path planner. These newly
discovered obstacles are first merged into the border created by the instantiated meadows.
The same algorithms used by the cartographer to build LTM are then used to decompose
these instantiated meadows into a new series of convex regions. The navigator’s path
finding algorithm is then run within this limited context. The new series of path legs
gives the robot a new approach towards negotiating these unmodeled obstacles. If a path
is unattainable, the navigator is reinvoked to find a new path on a global basis. This
level of planning within the pilot is “local-global” as it draws both upon the perceived
world model as well as the instantiated meadows taken from LTM. Figure 42 illustrates
this process.

It should be remembered, however, that this role of the pilot should be infrequently
used. Nonetheless, due to the fact that potential fields are susceptible to local sensing

problems, techniques to handle this difficulty must be available.

§7. Summary

In order to produce a reasonable path through a partially modeled environment, a
hybrid vertex-graph free space representation was chosen for a long-term memory model
of the world. This meadow map decomposes free space into a group of connected convex

regions. Data for landmark recognition, localization, uncertainty modeling, and the like,
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can be associated with these regions or their obstacles through the use of a feature
editor. Although LISP might be a preferable language due to its symbol manipulation
capabilities, all coding was done in C to insure rapid processing to meet the demand for
real-time response.

Multiple terrain situations are accommodated by extending the basic algorithms to in-
clude the construction of transition zones. These zones assure minimum distance traversal
when the robot changes terrain types, minimizing the increase in positional uncertainty
inherent in this maneuver. When facet models are applied to the meadows to reflect
topography, and the ground plane assumption discarded, this method will become even
more powerful for navigation in outdoor terrain.

It is conceivable that this map could be acquired dynamically by interaction with the
environment as has been demonstrated by work with HILARE at LAAS [52] and Neptune
at CMU [92]|. Environmental acquisition via learning will not be addressed in the near
future in our work, although other UMASS researchers may be involved in this research.

The output of the map-builder is utilized in part by the navigator component of
the planner process whose duty it is to build a collision-free path through the partially
modeled world represented in LTM. An A* search is conducted through the midpoints
(A*-1) or triads (A*-3) of the bordering passable convex regions to arrive at a coarse
path. The A*-3 method offers a tighter initial path at the expense of a greater search
space. In a highly cluttered environment, this can be of value. Generally, the A*-1 search
method works almost as well and is less costly to produce.

The resulting raw path is then subjected to path improvement strategies which tighten
and straightén the path subject to parameters specified by the mission planner. These
path improvement strategies are extremely important for producing quality paths and
are an important contribution to the overall path planning process. They allow for the
production of short paths, safe paths, or other types of paths, attempting to optimize
across a set of paths more freely than other representations might allow. This flexibility
offers distinct advantages over a Voronoi diagram or vertex graph approach to world rep-
resentation. Certainly the regular grid’s search space makes it computationally infeasible
for all but the simplest domains. The regular grid’s susceptibility to digitization bias
(quadtrees even more so) also make it a less desirable representation. The flexibility to

accommodate diverse new representations, without any changes to the underlying path
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planning representation is another of the advantages of our approach. The meadow map,
in our estimation, is the best general purpose navigational representation, and as such
will, in various forms, continue to be a major force in mobile robot navigation.
Regarding implementation, the navigator, mapbuilder, and LTM representational
structure for AuRA are all complete. Knowledge acquisition is ongoing, especially re-
garding 3D landmark models. There is always more knowledge to be added. The mission
planner is currently rudimentary, serving as a command interface. The pilot and STM
are not yet fully integrated. For the experimental system in Chapter 8, the schema hand-
off from the pilot to the schema system requires user intervention. The rulebase has a
limited set of rules for schema generation and will be expanded in the near future. The
STM instantiator process is complete, as is the first pass version of the STM manager.
These exist as separate processes running under the control of the cartographer. The
meadow fracturing process will require additional work on the obstacle extraction from
STM component for its implementation, but as this is used only in the relatively rare

circumstance of schema navigation failure, it is not a top priority.




