CHAPTER V

MOTOR SCHEMA BASED MOBILE ROBOT NAVIGATION

Path planning and navigation, at the execution level, can most easily be described
as a collection of behaviors. Don’t run into things! Go to the end of the sidewalk then
turn right! Stay to the right side of the sidewalk except when passing! Waich out for the
library - the turn is just beyond it! Follow that man! This collection of commands con-
stitutes some of the possible behaviors for an entity trying to move from one location to
another. Traditional control structures - those that use an inflexible and rigid approach
to navigation ~ do not provide the essential adaptability necessary for coping with un-
expected events. These events might include unanticipated obstacles, moving objects, or
the recognition of a landmark in a seemingly inappropriate location. These unexpected
occurrences should influence, in an appropriate manner, the course which a vehicle (or
person) takes in moving from start to goal.

A potential solution can be drawn from models that have been developed in the
domains of brain theory and robotics. Schemas, a methodology used to describe the
interaction between perception and action, can be adapted to yield a mobile robot system
that is highly sensitive to the currently perceived world. Motor schemas operating in a
concurrent and independent, yet communicating, manner can produce paths that reflect
the uncertainties in the detection of objects. Additionally they can cope with conflicting
data arising from diverse sensor modalities and strategies.

The purpose of this chapter is to provide insights into the design of a control system
based on motor schemas for mobile robots. Section 1 describes the motivations for the
use of schema theory in this domain — drawing from work in both brain theory and
robotics. Section 2 discusses the tack taken for a motor-schema-based control system
in the Autonomous Robot Architecture (AuRA), utilizing a mobile robot equipped with

ultrasonic and video sensors; specifically the role of the pilot and the motor schema
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manager. Section 3 presents the results of simulations using schemas that specify different
behaviors and draw on simulated sensor input. Section 4 describes the implementation

of the motor subsystem in AuRA. A summary and evaluation concludes this chapter.

§1. Motivation

The concept of schemas originated in psychology [19,99,109] and neurology [57,48].
Webster [138] defines a schema as “a mental codification of experience that includes a
particular organized way of perceiving cognitively and responding to a complex situation
or set of stimuli”. The model used for this paper draws on more recent sources: the
applications of schema theory to brain modeling and robotics. As brain theory can
unequivocally be called a sound basis for the study of intelligent behavior, the first part
of this section will present the contributions of brain science that influenced the design
of the schema control system described below. Roboticists for some time have drawn on
schema theory, not always in the form envisioned by brain theoreticians. The previous
work in robotics that relates to the schema-based approach to navigation is described in

the final part of this section.

§1.1 Brain Theory and Psychology

The action-perception cycle (Fig. 43) provides a principal motivation for the applica-
tion of schema theory [95]. Sensor-driven expectations provide the plans (schemas) for
appropriate motor action, which when undertaken provide new sensory data that is fed
back into the system to provide new expectations. This cycle of cognition (the altering
of the internal world model), direction (selection of appropriate motor behaviors), and
action (the production of environmental changes and resultant availability of new sensory

data) is central to the way in which schemas must interact with the world.

Most significantly, perception should be viewed as action-oriented. There is no need
to process all available sensor data, only that data which is pertinent to the task at hand.
The question for the roboticist would be: how do we select from the wealth of sensor data
available that which is relevant? By specifying schemas, each individual component of
the overall task can make its demands known to the sensory subsystem, and thus guide

the focus of attention mechanisms and limited sensory processing that is available.
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Guided by Arbib’s work [6,5] in the study of the frog and its machine analog Rana
Computatriz, the frog prey selection mechanism serves as a basis for analysis, In partic-
ular, Arbib and House [8] have developed a model for worm acquisition by the frog in
an obstacle-cluttered environment (a spaced fence - Fig. 44). Although Arbib and House
describe two models to account for the behavior of the frog, the second is the most readily
applicable to the mobile robot’s domain (the first model is based on visual orientation).
In their work, they describe primitive vector fields (Fig. 45): a prey-attractant field, a
barrier-repellent field, and a field for the animal itself. These fields, when combined, yield
a model of behavior (Fig. 46) that is consistent with experimental observations of the
frog.

In the mobile robot system described below, analogs of these fields are used (prey-
attractant = move-to-goal, barrier-repellent = avoid-static-obstacle). Additionally,
new fields are added to describe additional motor tasks (stay-on-path, avoid-moving-
obstacle, etc.)

This model, in conjunction with expectation-driven sensing, provides a basic correlate
with the functioning of the brain (albeit the frog brain). Although the brain has been
handling visually guided detours since time immemorial, the benefits of using a neuro-
science model would wane if it proved impractical for a mobile robot. In the sections
following, the practicality of this approach is demonstrated, especially regarding the de-
composition of the task to a form which is readily adaptable to distributed processing.
This is essential if the real-time demands of mobile robot environmental interaction are

to be met.

§1.2 Robotics

Schema theory as applied to robotics has almost as many different definitions as
there are developers. In the realm of robotic manipulators, Lyons’ schemas [78] and
Geschke’s servo processes [50], (a schema analog), are used as approaches to task level
control. Overton [101] has described the use of motor schemas in the assembly domain.
The UMASS VISIONS group, guided by Hanson and Riseman, has applied perceptual
schemas to the interpretation of natural scenes; Weymouth’s thesis [140] and Draper’s
paper [41] are prime examples of this work. Although AuRA will, in the future, include

perceptual schemas running in the context of the VISIONS system, perceptual schemas
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Figure 44: A depiction of a frog prey-selection scenario.
The two large blackened circles at the bottom of the figure
denote the frog’s eyes, the smaller circles are fence-posts, and
the darkened rectangle a supply of worms.

(reprinted from [8] with permission)
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Figure 45: Primitive vector fields associated with Figure 44.
a) Prey-attractant field.
b) Barrier repellent field.
c) Frog representation field.

(reprinted from [8] with permission)
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Figure 46: Resultant frog-

prey selection vector field.
(reprinted from (8] with permission)
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as they appear in the VISIONS system are not a principal concern of this chapter.

One of the simplest and most straightforward definitions for a schema is “a generic
specification of a computing agent” [78]. This definition fits well with the concept of
a behavior (an individual’s response to its environment) — each schema represents a
generic behavior. Schema-based control systems are significantly more than a collection
of frames or templates for behavior, however. The way in which they are set into action
and interact immediately distinguish them from simpler representational forms. The
instantiations of these generic schemas provide the potential actions for the control of
the robot. A schema instantiation (SI) is created when a copy of a generic schema is
parameterized and activated as a computing agent.

Lyons further defines a motor schema as a control system or motor program which
describes a task. Overton [101] describes a motor schema as “a control system which
continually monitors feedback from the system it controls to determine the appropriate
pattern of action for achieving the motor schema’s goals (these will, in general, be subgoals
within some higher-level coordinated control program)”. This more constrained definition
is also in accord with the system described below. Sensory perception provides the
feedback to affect individual instantiations of motor schemas, each SI thus providing an
appropriate behavior which collectively determine the overall system’s behavior. Some
other definitions for motor schema include an “interaction plan” [7] or “unit of motor
behavior” [77].

Other work in the path planning domain, although not schema based, bears a re-
semblance to the schema control system. Brooks [24] uses a planning system with a
“horizontal decomposition” which effectively emulates multiple behaviors. Although re-
lated, there is still a rigid layering present which distinguishes it from a schema-based
approach. Payton [107] describes a multi-behavior approach for reflexive control of an
autonomous vehicle. The association of virtual sensors with a selected set of reflexive
behaviors bears a similarity to the schema-based approach. An arbitrary choice of be-
havior, however, based on a priority system, is made during execution, without provision
for a mechanism to combine the results of concurrent behaviors. Kadonoff et al [60]
also incorporate multiple behaviors for the control of a mobile robot and similarly arbi-
trate between these behaviors, proposing a production system for arbitrating competitive

strategies and the use of an optimal filter for the treatment of complementary strategies.
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The schema system described below is strongly influenced by Krogh'’s [68] generalized
potential fields approach and to a lesser degree by Lyons’ [79] tagged potential fields.
It bears a superficial resemblance to the integrated path planning and dynamic steering
control system described by Krogh and Thorpe [69]. Potential fields are used, in each case,
to produce the steering commands for a mobile robot. A major distinction between their
system and our schema model lies in the tracking of the individual obstacles (individual
Sls for each obstacle, important for the treatment of uncertainty) and the incorporation
of additional behaviors such as road following and treatment of moving obstacles. The
state of each obstacle’s SI is dynamically altered by newly acquired sensory information.
The potential functions for each SI reflect the measured uncertainty associated with the
perception of each object. The schema approach is not limited to obstacle avoidance, but

is versatile enough for road following, object tracking and other behavioral patterns.

§2. Approach

Motor schemas, when instantiated, must drive the robot to interact with its envi-
ronment. On the highest level, this will be to satisfy a goal developed within the plan-
ning system; on the lowest level, to produce specific translations and rotations of the
robot vehicle. The schema system enables the software designer to deal with conceptual
structures that are easy to comprehend and handle. The task of robot programming is

fundamentally simplified through the use of a divide and conquer strategy.

§2.1 Schema-based Navigation

AuRA’s pilot is charged with implementing leg-by-leg the piecewise linear path devel-
oped by the navigator. To do so, the pilot chooses from a repertoire of available sensing
strategies and motor behaviors (schemas) and passes them to the motor schema manager
for instantiation. Distributed control and low-level planning occur within the confines of
the motor schema manager during its attempt to satisfy the navigational requirements.
As the robot proceeds, the cartographer, using sensor data, builds up a model of the
perceived world in short-term memory. If the actual path deviates too greatly from
the path initially specified by the navigator due to the presence of unmodeled obstacles

or positional errors, the navigator will be reinvoked and a new global path computed.
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If the deviations are within acceptable limits, (as determined by higher levels in the
planning hierarchy), the pilot and motor schema manager will, in a coordinated effort,
attempt to bypass the obstacle, follow the path, or cope with other problems as they
arise. Additionally, the problem of robot localization is constantly addressed through the
monitoring of short-term memory and appropriate find-landmark schemas, Multiple

concurrent behaviors (schemas) may be present during any leg, for example:

¢ Stay-on-path (a sidewalk or a hall)
® Avoid-static-obstacles (parked cars, trees, etc.)

¢ Avoid-moving-obstacles (people, moving vehicles, etc.)

Find-intersection (to determine end of path)

Find-landmark(building) (for localization)

The first three are examples of motor schemas, the last two perceptual schemas. To
provide the correct behavior, a subset of perceptual schemas must be associated with each
motor schema. For example, in order to stay on the sidewalk, a find-terrain(sidewalk)
perceptual schema must be instantiated to provide the necessary data for the stay-on-
Path motor schema to operate. If the uncertainty in the actual location of the sidewalk
can be determined, the SI’s associated velocity field, applying pressure to remain on the
sidewalk, will reflect this uncertainty measure. The same holds for obstacle avoidance: if
a perceptual schema for obstacle detection returns the position of a suspected obstacle
and the relative certainty of its existence, the actual avoidance maneuvering will depend
not only on whether an obstacle is detected but also on how certain we are that it
exists. Differing strategies within each SI will determine how to manage the perceptual
uncertainty. If an event is potentially fatal, even large amounts of perceptual uncertainty
would produce motor behavior, but erring in the direction of safety.

An example illustrating the relationship between motor schemas and perceptual cer-
tainty follows. The robot is moving across a field in a particular direction (move-ahead
schema). The find-obstacle schema is constantly on the look-out for possible obstacles
within a subwindow of the video image (windowed by the direction and velocity of the
robot). When an event occurs, (e.g. a region segmentation algorithm detects an area that

is distinct from the surrounding backdrop or an interest operator locates a high-interest
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point in the direction of the robot’s motion), the find-obstacle schema spawns off an
associated perceptual schema (static-obstacle SI) for that portion of the image. It is
now the static-obstacle SI's responsibility to continuously monitor that region. Any
other events that occur elsewhere in the image spawn off separate static-obstacle Sls.
Additionally an avoid-static-obstacle SI moitor schema is created for each detected
potential obstacle.

The motor schema SI hibernates waiting for notification that the perceptual schema
is sufficiently confident in the obstacle’s existence to warrant motor action. If the percep-
tual schema proves to be a phantom (e.g. shadow) and not an obstacle at all, both the
perceptual and related motor Sls are deinstantiated before producing any motor action.
On the other hand, if the perceptual SI's confidence (activation level) exceeds the motor
SI’s threshold for action, the motor schema starts producing a repulsive field surround-
ing the obstacle.! The sphere of influence (spatial extent of repulsive forces) and the
intensity of repulsion of the obstacle are affected by the distance from the robot and the
obstacle’s perceptual certainty. Eventually, when the robot moves beyond the perceptual
range of the obstacle, both the motor and perceptual SIs are deinstantiated. In summary,
when obstacles are detected with sufficient certainty, the motor schema associated with
a particular obstacle (its SI) starts to produce a force tending to move the robot away
from the object. Fig. 47a shows a typical repulsive field for an avoid-static-obstacle
SI. The control of the priorities of the behaviors, (e.g. when is it more important to fol-
low the sidewalk than to avoid uncertain but possible obstacles) is partially dependent
on the uncertainty associated with the obstacle’s representation. Other isolated motor
schema velocity fields are shown in Fig. 47b-d. Various combinations of motor schemas
are illustrated in Fig. 48. Recognize the fact that although the entire field is expensive
to compute, each active motor SI need only determine the velocity vector at the robot’s
current location relative to the environmental object, making the computation very rapid.
Further, as the SIs are activated in parallel, even better performance is attainable.

Multiple instantiations of a single schema are frequently the case. Each generic “skele-
ton” is parameterized when instantiated. Consequently, it is entirely possible that two

different instantiations of the same generic schema produce significantly different fields

'The obstacle is first grown in a configuration space manner [76] to enable the robot to be treated

Lenceforth as a point for path planning purposes.
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Figure 47: Isolated motor schema SI vector fields
a) Avoid-static-obstacle.
b) Move-to-goal.
c) Move-ahead.
d) Stay-on-path.

(Figure continued on following page).
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Figure 47 continued.
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Figure 48: Several combined motor schemas

a) Move-ahead SI + two avoid-static-obstacle SIs.

b) Move-ahead SI + stay-on-path SI.

c) Move-ahead SI + stay-on-path SI + one avoid-static-
obstacle SI.

d) Move-to-goal SI + stay-on-path SI + two avoid-static-
obstacle SIs.

(Figure continued on following page).
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under similar sensory conditions (as in the case of path following for a sidewalk or hall
discussed above). The parameters set at instantiation may depend on the sensory events
that triggered the instantiation or from information retrieved by the pilot from LTM.

If each schema functions independently of each other, how can any semblance of real-
Istic and consistent behavior be achieved? Two components are required to satisfactorily
answer this question. First, a combination mechanism must be applied to all the SI-
produced vectors. The result is then used to provide the necessary velocity changes to
the robot. The simplest approach is vector addition. By having each motor SI create
a normalized velocity vector, a single move-robot schema monitors the posted data
for each SI, adds them together, makes certain it is within acceptable bounds and then
transmits it to the low-level robot control system. In essence, the specific velocity and
direction for the robot can be determined at any point in time by summing the output
vectors of all the active individual SIs. As each motor SI is a distributed computing
agent, preferably operating on separate processors on a parallel machine, and needs only
to compute the velocity at the point the robot is currently located and a few points in
its projected track (and not the entire velocity field), real-time operation is within reach.

The second component of the response to the question posed in the previous paragraph
is communication. Potential fields can have problems with dead spots or plateaus where
the robot can become stranded. By allowing communication mechanisms between the Sls,
the forces of conflicting actions can be reconciled. Lyons [78] proposes message passing
between ports on one SI and connected ports on another SI as a schema communication
mechanism. Alternatively, a blackboard mechanism is used in the VISIONS Schema Shell
(discussed below). In either case, communication mechanisms can solve problems that
might otherwise prove intractable. An example to illustrate this point follows.

The robot is instructed to move in a particular direction, stay on the sidewalk and
avoid static obstacles. Suppose that the sidewalk is completely blocked by an obstacle;
eventually the velocity would drop to 0 and the robot would stop (Fig. 49a). The fact
that the vehicle has stopped is detected by the stay-on-path SI through interschema
communication with the move-robot SI (the move-robot SI combines the individual
motor Sls and communicates the results to the low-level motor control system). The
stay-on-path SI, when created for this particular instance, was instructed to yield if an

obstacle blocks the path. The stay-on-path motor schema reduces its field (Fig. 49b)
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and allows the robot to wander off the sidewalk thus circumnavigating the obstacle. As
soon as the direction of the force produced by the offending obstacle indicates it has been
successfully passed, the stay-on-path field returns to its original state forcing the robot
back on the path (Fig. 49c).

Suppose, however, the stay-on-path SI was instantiated for a hall. Then, under no
circumstances, would the force field associated with the stay-on-path SI be reduced
or else the robot would crash into the wall. The robot would instead stop, and signal
for the navigator (higher level component of the planner) to be reinvoked and produce
an alternate global path that avoids the newly discovered blocked passageway. These
communication pathways are specified within the schema structures themselves.

It is entirely possible that the trajectory of the robot can be computed for a small
distance rather than just its instantaneous velocity at the immediate location. Each motor
schema would have to interact with the move-robot SI, using the vector summation
output to determine the position of the robot relative to its perceptions for the next time
step. This is of particular significance if the sensor sampling rates are low. Trajectories
can be determined that reflect the robot’s perceptions at a given point in time, rather
than just reacting to current sensing. This is of value in determining when to activate
other schemas in anticipation of special problems or needs. Care must be taken in highly
dynamic environments (e.g. moving objects) so that the plans developed do not ignore
changes in the world that are evidenced only through perception.

Another approach explored is the addition of a background stochastic noise schema.
This SI produces a low-magnitude random direction velocity vector that changes at ran-
dom time intervals, but persists sufficiently long to produce a change in the robot’s
position if the robot’s velocity was otherwise zero. Its role is to perturb the velocity of
the robot slightly, removing the robot from undesirable equilibrium points, which arise
when the active motor SIs counterbalance each other. The behavior produced by this
schema corresponds to the “wander” layer in Brooks’ horizontally layered architecture
[24]. This schema would serve to remove the robot from any potential field plateaus or
ridges upon which the robot becomes perched (e.g. from a direct approach to an obstacle
- Fig. 50). Other traps common to potential field approaches (e.g. box canyons) can be
handled by establishing hard time deadlines for goal attainment. If these deadlines are

violated, the pilot would be reinvoked to establish an alternate route using STM data
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gathered by the cartographer during the route traversal.

It is worth noting that a single sensory event may have two or more SIs associated
with it. For example: if the robot is looking for a mailbox to get its bearings for local-
ization purposes, a perceptual schema for localization (ﬁnd-landmark) would process
portions of the image that are likely to be mailboxes. If the mailbox happens to be in
the path of the vehicle, a concurrent avoid-static-obstacle SI would view that object
not as a mailbox but rather as an obstacle, and would be concerned only with avoiding a
collision with it. This “divide and conquer” approach based on action-oriented perception
simplifies programming and overall system design. A more complex scenario appropriate

for a mobile robot appears in Fig. 51.

§3. Implementation Strategy

The implementation tool chosen for the motor schema system is the Schema Shell
[40,41,42), a system developed by the VISIONS group at UMASS for use in the perceptual
schema analysis of natural scenes. It currently runs on a Texas Instruments Explorer
workstation and is tied to the Computer Science Department’s VAXen over Chaosnet,.
The schema communication mechanism is blackboard-based. The Schema Shell system
is expected to be moved to the department’s newly acquired Sequent parallel processor.
Although the Explorer only simulates distributed processing, everything points towards
the availability of a truly distributed environment in the not too distant future.

The schemas themselves (in the Schema Shell) consist of a schema template and
multiple strategies. Associated with each instantiated schema is an object hypothesis
maintenance (OHM) strategy. This part of the ST monitors the blackboard for new
events (e.g. sensory data) that would produce changes in the SI’s posted output. Other
strategy components for each SI handle conflict resolution, cooperative enhancement,
initialization and other relevant factors. Not all strategies are necessary or desirable for
all schemas. Figure 52 shows a typical generic motor schema cast in the Schema Shell
format.

Pocock at the UMASS Laboratory for Perceptual Robotics is developing an alternative
schema-based robot control system [107] based on Lyons’ port automata formalization [78]

of schema theory. As it seriously addresses real-time distributed scheduling, it may prove
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Pilot issues instructions to follow sidewalk while avoiding obstacles.
Continue approximately 200 ft on sidewalk then turn right at lamppost onto intersection (first encoun-
tered). Watch for landmarks (mailbox on left, building edge on right) for localization.

Motor Schemas instantiated by pilot:

*

Stay_on(identify_terrain(sidewalk,GO%)) (assumes sidewalk is ahead to start).
Move_ahead(ZlO,start-heading) (nominal distance plus some slop).
Avoid_static-obstacles(ls,identify_obstacle(robot-heading,nil,m%))

Start maneuvering around when within 15 feet. Nil denotes static obstacle. 70% is threshold for
motor action,

Avoid_dynamic_obstacles(zo,identify_obstacle(robotVheading,-robot_heading,40%))
Start evasive action when head on approach within 20 feet.

Follow_dynamic_obstacle(s,start_heading,identify-obstacle(True,sta,rt_heading,gs%))
When an obstacle js moving in the correct direction, within 8 feet of the robot , follow it (regardless
of robot’s current heading).

Avoid_dynamic_obstacles(S,identify-obstacle(robot _heading,’l‘rue,40%))

Start evasive action when within 5 feet for any dynamic obstacle (includes crossing dynamic ob-
stacles).

Turn_when(ﬁnd.landmark(lamppost 1+51t,90,90%)) - right 90 degrees.
Turn-when(ﬁnd.Alandma,rk(intersection,3a,90,90%)) — right 90 degrees.
Loca.lize(ﬁnd,landmark(mailbox_7,90%)).

Locnlize(ﬁnd_landmark(building_2a.edge3, 85%)) - prune spatial uncertainty map on landmark
recognition.

Stop_when(not (sidewalk.] = identify_terrain(ahead,go%))) — missed turn.

(Percentages denote thresholds for motor action).

Perceptual Schemas instantiated by pilot:

Identify_obstacle(robot-heading,obstncle_heading,certainty) Only detects obstacles in the way of
the robot (distinct from landmarks). Robot ‘heading and obstacle_heading are directional filters.
Certainty is threshold for identification. Returns obstacle position and type. 1 identify_obstacle
spawned for each strategy type above.

obstacle - generic - many spawned for each identify obstacle.

Returns certainty. Tracks motion over time.

types: static_obstacle and dynamic_obstacle (predicates)

obstacle_heading (nil if static), speed ( 0 if static).

Find.lnndmark(LTM,model,certainty) - 1 spawned per landmark.

Assumes robot’s current position for observation is available in global coordinates (spatial uncer-
tainty map). Certainty is threshold for recognition. Returns landmark location. Landmark is not
necessarily in direct track of robot, could be anywhere,

landmark(LTM_model) - many/landmark spawned off

Returns certainty,

Identify-termin(position,certa.inty) ~ Returns terrain type.

At end of Mmaneuver, deinstantiate all obstacle schemas.

Figure 51: Example mobile robot schema scenario
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MOVE-AHEAD Motor Schema

-> x-8xie ie 8; frame of reference is robot's initia! heading afterturn;

(make-motor-schema
tname “MOVE-AHEAD®
tdefaul t-argument-list (list ' ("heading™ 8))

tbody
(progn
(de-schema move-ahead (original-heading current-heading move-shead-force-table))
(de-strategy move-ahead ohm ()
(progn
(call-strategy "move-shead 'init)
(urite-to-windou "move-ashead oha")
(loop

(urite-to-uindou (eetf #!current-heading
(read-or-uait '(current—orlentation—-osaagep robot-position))))

(uri te-to-uindow (urite-to-blackboard
(tiet "move-ahead" (1ook-up-move-ahead-force #lcurrent-heading) (time-etamp))
‘vector-section)) ; urite resul tant force to vector section

3]
strategies for move-ahead
(de-strategy move-ahead init() .
(bui Id-move-ahead-force-table) 3 initialize lookup table

(setf ¥loriginal-heading (read-or-wait * (orlentation-messagep robot-position)))
(urite-to-uindow "move-ahead init done")

1 conflict in case of reverse direction— send message-to-mover-to-terminate
i contains {let of contradictory motions or evidence

t support in case of confirmed direction
i support contains list of related schemas use to confirm hypothesis

i e.g. to stop-uhen’s
}: End make-motor-schema

Figure 52: Example move-ahead schema as implemented in the Schema
Shell
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a useful tool for mobile robot research when completed. At that time, its relationship to
the VISIONS Schema Shell will be considered.

§4. Simulation

Simulations were run on a VAX 750 using the following motor schemas: stay-
on-path, move-ahead, move-to-goal, avoid-static-obstacle. Each simulation run
(Figs. 53-54) shows the sequence of resultant overall force fields based on perceived enti-
ties. These entities include path borders, goals, and obstacles. The grid size is 64 units by
64 units and the sensory sampling update time (once per second) is based on a nominal
velocity of 1 unit/second. The maximum vector length for display purposes has been
set to 2.0 normal velocity units. The actual vector magnitude within the obstacles is set
to infinity (a discrete approximation). All obstacles are currently modeled as circles (as
in Moravec’s tangent space [93]). The field equations for several of the motor schemas
appear below.

The field equations for both the avoid-static-obstacle and stay-on-path schemas

are linear. An example showing the velocity produced by an obstacle (O) is given below:

Avoid-obstacle
Omagnituds =
0 for d> 8
=L «Gfor R<d<Ss
oo for d< R
where:

S = Sphere of Influence (radial extent of force from
the center of the obstacle)
R = Radius of obstacle
G = Gain
d = Distance of robot to center of obstacle
Oirection = along a line from robot to center of obstacle

moving away from obstacle
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More complex equations could be used (e.g. cubic as in [69]) but were deemed unnec-

essary in these early stages of the research.

Stay-on-path

Vmagm'tude =
P for d > (W /2)
W *Glor d<%
where:

W = Width of path

P = Off path gain

G = On path gain

d = Distance of robot to center of path

Viirection = along a line from robot to center of path heading toward centerline

Move-ahead

Vinagnitude = fixed gain value

Viirection = in specified compass direction

Move-to-goal

Vimagnitudze = fixed gain value

Vidirection = in direction towards perceived goal

In some of these simulations the uncertainty in perception was allowed to decrease
the sphere of influence of an obstacle. When a threshold was exceeded (50% certain), the
sphere of influence of the obstacle started increasing linearly as the certainty increased

up to its maximum allowable value. Another alternative is to increase the gain on the
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obstacle proportionately with the increase in certainty (up to its maximum).

Figure 53a illustrates the robot’s course on a sidewalk moving towards a goal. The
course is studded with 8 obstacles, only 7 of which are perceptible to the robot during
its journey (Fig. 53b). Note how the vector fields change as the robot encounters more
obstacles along the way (Figs. 53c-e). When it has successfully navigated obstacles and
they have moved out of range, their representation is dropped from short-term memory
and the associated motor schema is deinstantiated (Fig. 53e). The robot stays on the
path for the complete course successfully achieving its goal while avoiding each obstacle.
An expanded version could update long-term memory as a result of experience, thus
incorporating learning.

Figure 54 shows the robot’s path to a specified goal through a field of 9 obstacles. This
simulation prevents perceived objects that have too great an uncertainty from producing a
repulsive field. In this case, the uncertainty increases with the distance from the obstacle.
A decrease in uncertainty results in an increase in the sphere of influence of the obstacle.
Consequently, the uncertainties and the resultant obstacle fields change as the robot
moves through the course. Figures 54b-f use a move-to-goal SI while Figs. 54g-h use a
move-ahead SI. Actually the robot would operate under the control of a move-ahead
SI until the goal is perceived (assuming dead-reckoning or inertial guidance is not used).
At the moment of goal perception, the move-ahead SI would be deinstantiated and a

move-to-goal SI created in its stead.

§5. Motor subsystem

AuRA’s motor subsystem accepts the output from the motor schema manager’s
move-robot SI and produces the required velocity for the vehicle. Little has been
said thus far about the vehicle interface and other components of the motor subsystem
other than stating that this component of AuRA is largely vehicle dependent. In the
case of the UMASS Denning Research Vehicle (DRV), the motor controllers and motors
themselves have been provided by the manufacturer (Denning Mobile Robotics Inc. of
Woburn, Mass.). The interested reader is referred to the Denning documentation set (38]
for the details of the control circuitry.

Communication with the vehicle is another story. The robot runs a terminal emulation
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(a)_

Figure 53: Schema simulation run
This simulation shows 7 avoid-static-obstacle SIs, a move-to-goal SI, and
a stay-on-path SI.
a) Shows the layout of the obstacle ridden course.
b) Simulated robot path through course.
c-e) With the robot starting at the upper left, the robot’s progress through
the course can be observed. Note that the obstacles are added as they are
perceived by the sensory system. No a priori knowledge of their location is
assumed.
(Figure continued on following page).
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Figure 54: Another simulation run

This simulation includes 9 avoid-static-obstacle SIs and 1
move-to-goal SI.

a) Location of 9 obstacles.

b) Path of robot as it crosses from left to right around obsta-
cles to the goal.

¢ & d) Velocity fields based on robot’s perceptions as it moves
from left to right as shown in b).

This simulation includes an uncertainty measure for obstacles
which increases with the distance of the obstacle from the
robot. If the obstacle is relatively uncertain, its position is
shown but it produces no field (e.g. the two rightmost obsta-
cles in Fig. c). As the robot approaches, it becomes more
certain of the obstacles and starts to produce a repulsive field
surrounding the obstacle.

(Figure continued on following page).
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Figure 54 continued.

e & f) Continuation of sequence shown in Fig. 54 c-d.
g) Robot path using the same starting point as in Fig. 54b but a move-ahead SI replaces the

move-to-goal SI.

h) A typical vector field for the path shown in g)
between moving towards a specific goal (as in

here).

. Contrast this against Fig. e to see the distinction
e) or just moving in a general direction (as shown
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program on its MC68000 processor. This provides a small library of functions that
are accessible when a terminal is directly attached to the vehicle. To have the robot
communicate with a host computer required the development of a primitive library coded
in C and documented in [12]. These routines invoked device drivers, coded by Laboratory
for Perceptual Robotics co-worker R. Ellis, which were essential in effective and reliable
communication with the host VAX. Most of the primitive functions (many based on the
DRV counterparts) are listed in Appendix B. These routines are the ones that generally
would need to be recoded for a different set of robotic hardware.

In most instances the asynchronous communication protocol is adequate for the task
at hand. The major deficit lies in the transmission of the ultrasonic data over a serial
line. Typical time for a single package of ultrasonic data (24 readings) to be sent to the
host is on the order of 2-3 seconds. Using a time-shared VAX caused an even greater
variability in real-time response. One solution was to boost the process priority to very
high levels, effectively shutting or slowing down the other user processes. Although this
makes response times more predictable, when dealing with multiple AuRA processes
running on the same VAX other components of the overall system suffer. When the
system is moved to the Sequent in the future, many of the host processing problems should
evaporate. Nonetheless, recoding of HARV’s on-board terminal emulator to package the

ultrasonic data in a more compact format would still be advisable.

§6. Summary

Motor schemas serve as a means for reactive/reflexive navigation of a mobile robot.
This schema-based methodology affords many advantages. These include the use of dis-
tributed processing, which facilitates real-time performance, and the modular construc-
tion of schemas for ease in the development, testing and debugging of new behavioral and
navigational patterns. Complex behavioral patterns can be emulated by the concurrent
execution of individual primitive Sls.

The use of velocity fields to reflect the uncertainty associated with a perceptual process
1s another important advance. By allowing the force produced by a perceived environ-
mental object to vary in relationship to the certainty of the object’s identity (whether

it be an obstacle, goal path, or whatever), dynamic replanning is trivialized. Since the
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sensed environment produces the forces influencing the trajectory of the robot, when the
perception of the environment changes, so do the forces acting on the robot, and conse-
quently so does the robot’s path. This is all accomplished at a level beneath the a priors
knowledge representations.

It is interesting to note that what might appear to be a naive approach, the summing
of the individual vector outputs of the Sls, works quite well, both in simulations and the
experimental results described in Chapter 8. Certainly as the velocity increases, so does
the need to account for the velocity of the robot itself in the generation of its trajectory.
More complex formulations have been forwarded by both Khatib [64] and Krogh [68] for
obstacle avoidance using potential fields. These and other approaches for both potential
field formulation and combination mechanisms surely merit additional investigation.

There are times when this methodology of low-level reactive planning will fail, as
it suffers from the pitfalls common to potential fields. Failure is detected when the
robot’s velocity drops to unacceptably low levels (in the case of potential field minima)
or by exceeding a hard real-time deadline (in the case of cyclic behavior). At those
times, the pilot is reinvoked to conduct a “local-global” form of planning (see Chapter
4). The pilot draws on information present in short-term memory including instantiated
meadows that are relevant to this particular leg and a sensor-based world model built by
the cartographer. This form of replanning should only be needed rarely as navigational
planning helps to ensure avoidance of modeled obstacles. Generally only unmodeled
obstacles can lead to the breakdown of schema-based navigation. Higher level knowledge
then must be invoked to maneuver the robot out of its dilemma. Most of the time
however, schema-based navigation is more than adequate for the task.

A working motor-schema-based navigation system has been implemented as part of
the AuRA architecture and is used to conduct actual robot experiments validating the
concepts shown only as simulations in this chapter. Many different behaviors have been
produced using our mobile robot HARV. These include avoidance, exploration, hall fol-
lowing, navigation amidst obstacles, door entry, impatient waiting, “drunken sailor” sin-
gle wall following, and follow-the-leader behaviors. Experiments demonstrating these
simple to more complex activities are described in Chapter 8. The current experimen-
tal testbed is not implemented on a multiprocessor, but it is anticipated that when the

schema shell is transferred to the Sequent multiprocessor, the motor schema manager
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will soon follow. Work is currently underway in extending the two-dimensional schema

system to three dimensions [15], ultimately providing navigational capabilities in both

the aerospace and undersea domains.




