CHAPTER IX

SUMMARY AND CONCLUSIONS

§1. Summary of Work

This dissertation has attempted to accomplish many things in autonomous robot

vehicle navigation. These include:

e Global planning in the context of a priori knowledge

Reactive/reflexive navigation in response to sensor information

Perceptual strategies to provide navigational guidance

Spatial uncertainty management

e A framework to tie these components together

This chapter first reviews the work performed for each of the above items. Future
research areas are then described. A discussion of the general contributions resulting
from the work in this dissertation is then presented. A brief commentary on what the

future holds for mobile robotics concludes the chapter.

§1.1 Global planning

Global planning is accomplished through the use of digitized maps or blueprints,
embedded with additional knowledge regarding terrain type, landmarks, etc. A convex
decomniposition algorithm operates on the original map to produce a meadow map, a
connectivity graph tying together the individual convex regions. Two variations of an
A* search algorithm are available to search for a “reasonable” global path through the

modeled world. Chapter 4 describes the algorithms, rationale, and many advantages of
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the meadow map representation. These include: the flexibility to produce short, safe, and
other types of paths; the ease of embedding information to guide perceptual processing,
the reasonable storage requirements; and the ability to conduct multi-terrain navigation
in a straightforward manner.

The initial coarse path is improved through the use of strategies which tighten and
straighten the unrefined path. Both this and the extension of this method to incorporate
multiple terrain types are significant advances over previous work in this domain. The
navigator’s path planning techniques, both for single and multi-terrain navigation are
described in detail in Chapter 4. The A* search strategies provide rapid initial path de-
termination. The path strategies developed, for both tightening and straightening the raw
path, produce high quality paths which previous methods, using similar representations,
were unable to accomplish.

The global path planning component of the AuRA architecture is complete. The
navigator, mapbuilder, feature editor, and long-term memory (LTM) component are
fully implemented. The mission planner exists in a rudimentary version and is an area
that holds great promise for future research (see below).

Good sources for navigational knowledge include building blueprints, aerial maps, and
the various mapping agencies (e.g. Defense Mapping Agency). The data used to construct
the landmark models for guiding perceptual processing can come from engineering draw-
ings (e.g. for lJampposts or fire hydrants). Spectral data pertinent to landmarks can be
dynamically acquired from histogram processes running on images of the landmarks. In
general, however, knowledge acquisition is a difficult and laborious task. Much additional
research is needed to make this work easier (see Section 2).

Even if portions of the data within the a prior: knowledge base are incorrect or
inaccurate, in many instances the system performance will still be robust. Actually,
navigation with little if any e priori knowledge is quite feasible, simply by having a
means of goal recognition, a rough idea of the goal’s location, and avoiding obstacles
as the robot moves. In this manner, all obstacles are treated as unmodeled and high-
level path planning is circumvented. Localization is of no concern as there is no world
map to correlate against and schema-based navigation is the fundamental navigational
principle. Efficiency, reliability, and safety, however, are sacrificed somewhat when the a

priort knowledge is absent.
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§1.2 Reactive/reflexive navigation

The true role of the global planner is to provide a context in which the pilot can select
appropriate motor behaviors (schemas) to satisfy the navigational subgoals. These motor
behaviors are exemplified by move-ahead, move-to-goal, avoid-obstacle, stay-on-
path and follow-the-leader schemas. Each of these motor schemas is associated with
one or more perceptual schemas/strategies that provide the sensor data essential for the
successful completion of the particular motor task. Each individual motor schema, ideally
operating in a concurrent manner, contributes a velocity vector germane to its particular
motor task. These are then summed by the move-robot motor schema and transmit-
ted to the motor control subsystem to update the robot’s current direction and speed.
Chapter 5 describes the motivation for schema usage, the potential field methodology
used, and simulation results. Chapter 8 demonstrates, via experimentation, the utility
of motor schema based navigation.

This control regime maps well to a distributed processing system and affords a high
level of modularity that simplifies the addition and debugging of new perceptual or motor
schemas. Complex behaviors are constructed through the combination of multiple simple
behaviors. When suitable tools become available on the Sequent multiprocessor (i.e. the
Schema Shell [41,42]) an implementation of the motor schema manager should follow.
The experimental system described in Chapter 8 uses sequential evaluation of motor
schemas to emulate concurrent schema activity.

Summing the output of the individual velocity vectors produced by each schema
instantiation (SI) is a simplistic approach. The functions producing the velocity vectors
themselves, in their linear implementation, are also simple. Nonetheless, good results for
navigation have been obtained using these methods, both in simulation (Chapter 5) and
in experimentation (Chapter 8). It is advisable to look at other methods for combining
the outputs of the SIs and to consider other possibilities for the velocity formulations
of the SIs themselves, to study just how much can be gained through the use of more
complex functions and combination mechanisms.

The potential field methodology is not failsafe and reliance on a sensor-built world
model constructed by the cartographer is important for recovery in instances of local
potential minima or cyclic behavior. This intermediate planning level is invoked by

the pilot when anomalous behavior is detected, typically by exceeding a hard real-time
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deadline for path completion (cycle detection) or recognition that the robot’s velocity has
dropped to unacceptably low levels (local minima). Some of the navigational problems
can be circumvented by the addition of small amounts of noise to the navigational process,
moving the robot away from potential plateaus. Chapter 4 describes the roles of the pilot
for both schema selection and local navigation. A simulation illustrating this point is

presented in Chapter 5.

§1.3 Perceptual strategies/schemas

Action-oriented perception is the fundamental premise on which AuRA’s perceptual
strategies are based. By designing specific perceptual algorithms to solve particular nav-
igational tasks, the amounts of computation required for intelligent navigation becomes
tractable.

Vision is viewed within AuRA as a primary sensor modality. Chapter 6 details the
different vision algorithms used to provide HARV with navigational capabilities. Un-
fortunately, the processing speeds for sophisticated algorithms on existing hardware cur-
rently preclude its use for real-time navigation. Nonetheless, experiments were conducted
(Chapter 8), typically in lurch mode with the vehicle pausing during image processing,
showing the ability of the robot to follow paths and to avoid obstacles using vision.

A fast-line finding algorithm was developed for both path edge extraction and vehicle
localization purposes. The line-finder can be tuned to anticipated line orientation based
on the availability of a priori knowledge or the results of previous frames. The use of a
feedforward strategy to track features over time is typical of the vision algorithms.

As in all the vision work, this algorithm had to be accompanied by large amounts of

software to accomplish the navigational tasks. This included:

e Grouping strategies to interpret the results of the image processing in the context
of the navigational need (e.g. agglomeration of the line fragments to produce the

path edges).

e Utilization of both a priori knowledge and data obtained from previous frames to

reduce computational demand. (e.g. windowing the image).

o Interpretation of the output of the algorithm to produce intermediate results that

reflect the navigational goals (e.g. determination of center road line).
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e Conversion of the interpreted image into suitable motor commands (i.e. visual ser-

voing).
e Communication of those commands to the vehicle.

e Production of new image expectations based upon the motor commands given the
vehicle (e.g. where will the path appear in the next image now that the robot has

moved).

A fast region segmentation algorithm (Chapter 6) is also available and is used to
provide information for path following. Through knowledge of the spectral characteristics
of the path or landmark in question, these features can be successfully extracted. The
use of color will greatly enhance the ability of this algorithm. Chapter 8 describes an
experimental run using this technique.

The depth-from-motion algorithm described in Chapter 6 provides the location of ob-
stacles in the robot’s environment. These detected obstacles can then be instantiated as
avoid-obstacle motor schemas and subsequently conduct the robot’s navigation. Chap-
ter 8 presents experiments in both indoor and outdoor environments. This particular
approach, unlike fast line finding and fast region segnientation, is particularly susceptible
to problems in image registration. When this problem and others (such as the ability
to extract the focus of expansion reliably and accurately) are solved, considerably better
results are expected. Nonetheless, the ability of the algorithm to track feature points
over multiple frames is indicative of the significant potential for this approach to obstacle
avoidance.

Ultrasonic data is the most efficient means for demonstrating schema-based naviga-
tional abilities. Unfortunately, due to the limited resolution and discriminatory power of
ultrasonic sensors, semantic interpretation is limited. Nonetheless, recognition of obsta-
cles and tracking behavior are both readily implemented using this sensor form. Chapter
6 discusses the use of ultrasound in AuRA while Chapter 8 describes the experimental
results obtained in the motor schema testbed used with HARV. Obstacle avoidance, wan-
dering, impatient waiting, follow-the-leader, and other interesting behaviors have been
demonstrated using this sensor modality.

Shaft encoders provide general directional ability as well as approximations of distance

traveled. Although it would be a mistake to rely too heavily on the encoders due to
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relatively large errors that arise during path execution, they can still provide, in most
cases, a reasonable coarse estimate of the robot’s whereabouts. This is especially useful
in the context of the uncertainty management subsystem described in chapter 7 and as
applied in the localization experiment in Chapter 8. Chapter 6 discusses some of the

general issues in using HARV'’s shaft encoders.

§1.4 Spatial uncertainty management

In order to provide expectations for the robot’s perceptions and to make the com-
putational requirements for perceptual processing more tractable, a means of managing
both positional and orientational uncertainty was developed. The spatial uncertainty
map consists of two components — the first a convex polygon representing the extent of
position uncertainty of the robot relative to the global map, and the second a compass
wedge explicitly representing the orientation uncertainty. Growth in uncertainty occurs
when the robot moves, based on statistical data reflecting the terrain type being tra-
versed. Reduction in uncertainty occurs through the recognition of landmarks and the
subsequent pruning of the spatial uncertainty map in a manner appropriate to the par-
ticular landmark. The spatial uncertainty map itself provides the basis for the Expecter
process to provide image windows for landmark recognition by active perceptual schemas.

The uncertainty map manager, responsible for both the growth and reduction of the
spatial uncertainty map, has been implemented in LISP. The ties connecting the LTM
structure (coded in C) have been completed. Chapter 7 presents the spatial uncertainty
management approach used within AuRA and Chapter 8 includes an experiment illus-
trating how vehicle localization is accomplished with this software.

Additional areas of uncertainty management, outside of the area of spatial uncertainty,
undoubtedly will need to be addressed as the AuRA architecture grows. The treatment

of symbolic uncertainty at the mission planner level, in particular, must be dealt with.

§1.5 The AuRA framework

AuRA, the Autonomous Robot Architecture, is the structure in which these individ-
val components are linked. Chapter 3 presents an overview of the AuRA architecture
and includes a discussion of the system issues involved. The overall architecture is quite

ambitious, ultimately incorporating the UMASS VISIONS scene interpretation system
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running on the UMASS Image Understanding Architecture. The first pass implementa-
tion of AuRA is much more modest, tying the available components together through
blackboard-like global data structures (clipboards) or through the use of other expedient
interim techniques. The AuRA’s system architecture is not complete at this time, con-
taining only a rudimentary mission planner, limited environmental knowledge embedded
in LTM, a partial set of pilot rules for schema selection, some limitations on the cur-
rent implementation of the uncertainty management subsystem, and limitations in the
interfaces between components. The scope of this project, however, extends several years

beyond this dissertation as the AuRA architecture becomes more fully integrated.

§2. Future research

Mobile robotics is a science in its infancy. Much remains to be done in almost all
areas. There are several aspects of future research that would be quite appropriate for

embedding in AuRA. These are discussed below.

§2.1 Additional sensors

AuRA’s modularity makes it straightforward to embed new sensors and sensor al-
gorithms. The use of inclinometers for vehicle orientation in a non-planar world would
assist in the difficult problem of image registration. A literal “hill-climbing” schema could
be embedded if the robot had the ability to measure its pitch and roll.

A laser range finder is highly desirable, but currently prohibitively expensive. Future
funding may enable its acquisition thus enhancing the vehicle’s ability to detect obstacles.

Color vision would greatly expand the possibilities for the fast region segmentation
algorithm. Much remains to be done to apply the use of color in the domain of action-

oriented perception.

§2.2 Extension to three dimensions

Much of this architecture is generalizable to robots capable of maneuvering in three
dimensions. This would include space and undersea vehicles. Reformulation of the poten-
tial field equations used by the motor schemas to three dimensions is straightforward. The

same would hold for the uncertainty management subsystem except for possible problems
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in accounting for vehicle drift in the presence of ocean currents or the like. The meadow
map representation, although capable of being extended to three dimensions may pose
some mathematical difficulties, but certainly bears investigation. Some preliminary work
on these extensions to provide for navigation in three dimensions is presented in [15].
Another area for exploration is a 3D ground-based world using the meadows as to-
pographical facets with representations of their slope for path planning purposes. This

would result in a piecewise planar world as opposed to a single ground plane.

§2.3 Learning

Several different levels of learning can be addressed within AuRA. The movement
of information stored in short-term memory to long-term memory is a form of learning,
as the representation persists after the robot has moved out of the area. In order to
do this effectively however, semantic interpretation of the objects in question must be
undertaken to distinguish whether the object to be learned is dynamic in nature (hence
will move and is thus inappropriate for embedding in LTM as it may not be present
the next time the robot is in the area) or is static and worth retaining in LTM. This is
not a simple task by any means. Continued investigation into scene analysis (e.g. the
VISIONS natural scene interpretation system) to provide both semantic interpretation
of previously unrecognized environmental objects as well as construction of world models
to guide sensor processing will potentially “open the eyes” of the robot.

Another form of learning involves the assimilation of motor skills. Just as robots are
currently taught using a teaching pendant in industrial environments, perhaps through
the combination of perceptual learning (e.g. by a reward/punishment regimen) with
trained motor behavior, the need for mathematical formulae to represent potential fields
at the programming level would disappear.

Adaptation of the gains on the motor schema outputs is also an important area for
the application of learning theory. In this manner, the robot can learn from its experience
as to which schema gains are best for a particular task. For a task requiring a delicate
balancing of schema outputs, such as door entry, the tuning of these outputs is important.

In one sense, learning already exists in several of the perception algorithms used within
AuRA. By utilizing the knowledge obtained from previous frames to guide subsequent

processing (e.g. path edge position), the robot has acquired a model of its environment.
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This information, however, is not currently used to update long-term memory represen-

tations and is discarded at the end of the navigational task.

§2.4 Homeostatic control

The niche is already present for homeostatic control within the AuRA framework
(Chapter 3). Certainly the need exists for robots capable of managing their own internal
resources, if they are to operate in environments that are too hazardous for man. By
equipping the vehicle with temperature and energy sensors, the motor schema approach
can be extended (as described in chapter 3) to include signal schemas. These signal
schemas would modify the dynamic motor behavior of the robot based on continuous
internal sensing. Instead of using worst-case analysis in the formulation of global plans,
dynamic replanning would occur based on available information. This would result not

only in safer robots, but also more efficient robotic systems.

§3. General contributions
The general contributions for this work include:

e Extensions of techniques for representing world knowledge to include

multi-terrain representations.

Previous approaches, typically using a regular grid representation, suffered from
high memory requirements, large search times, and digitization bias, all of which

are avoided with the meadow map approach (Chapter 4).

e The ability to conduct path planning in diverse terrain types in an effi-

cient manner.

By only resorting to path relaxation at terrain boundaries and by using the path
improvement strategies mentioned below, quality paths can be obtained at low

computational costs (Chapter 4).

e The invention of path improvement techniques that refine initially coarse

and unacceptable paths into “reasonable” paths.
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By adding tightening and straightening techniques to remove unnecessary twists and
turns in the raw global path, significant improvement over previous path planning
work using meadow maps is evidenced. These improvement strategies enhance the
navigator’s ability to produce safe or short paths depending on the mission planner’s

goals (Chapter 4).

The embedding of knowledge to guide uncertainty management and per-

ceptual processing into the long-term memory representation.

Landmarks, terrain statistical data, spectral characteristics, etc., can be tied to
the LTM representation through the use of the feature editor. The hybrid free-
space vertex-graph representation (meadow map) saves information on both the
obstacles and free space, unlike several other representation strategies (e.g. pure
vertex graph and Voronoi diagrams), making the addition of further knowledge

much easier (Chapter 4).

Decomposition of reactive/reflexive behaviors into a set of simple motor

schemas which when combined react intelligently to sensory events.

By having individual motor schemas produce outputs that are relevant to the overall
system goal, intelligent navigation can be achieved. The pilot selects these schemas
based upon the current navigational subgoal, and parameterizes them to fit the

task at hand (Chapter 5).

Making path execution amenable to distributed processing by allowing
multiple concurrent schema instantiations operating asynchronously to

produce the motor control for the robot.

The individual schema instantiations can run on separate processors each posting
their output on a blackboard which is monitored by the move-robot SI. The

combined results are then forwarded to the motor subsystem for execution (Chapter

5).
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e Applying potential field methodology to sensory-based navigation and
incorporating the uncertainty in perception into the resultant velocity
fields.

Representing a motor goal by a velocity field is an important means for accom-
plishing a variety of tasks. Fields have been specified for obstacle avoidance, goal
attraction, path following, etc. The computation to produce the resultant vector
is quite simple and can be performed rapidly (Chapter 5). Experimental results in

Chapter 8 bear out these conclusions.

e The embedding of action-oriented perceptual strategies specific to the

task within the motor schema itself.

Action-oriented perception can only be accomplished by associating perceptual
techniques with specific motor skills. A further advantage is the added capability
to use multiprocessing for perception due to the natural partitioning of perceptual

tasks based upon specific motor needs (Chapters 5 and 6).

e The application of new visual perception techniques to the navigation
problem (i.e. path finding, obstacle avoidance and localization) includ-
ing fast line finding, fast region segmentation and a depth-from-motion

algorithm.

Experimental results using these techniques are presented in Chapter 8. Some of the
algorithms are quite robust (e.g. fast line finding) while others are more sensitive to
environmental conditions such as camera roll (e.g. depth-from-motion). Much has
been learned from both the successes and difficulties encountered by the application

of these algorithms to navigation (Chapter 6).

e A new technique for the management of spatial uncertainty.

By explicitly representing the degree of location and orientation uncertainty relative
to the a priori world map information, the ability to establish expectations for per-
ceptual processing is gained. The use of specialized uncertainty growth techniques
based on empirical terrain data and uncertainty reduction techniques based on

landmark recognition provide the feedback necessary for uncertainty management

(Chapter 7).
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e The AuRA framework itself which ties together, in a cybernetic context,

the individual components of the architecture.

Schema-based navigation and action-oriented perception are the principal tenets on

which AuRA is founded (Chapters 3, 5, and 6).

84. Directions

The field of mobile robotics foretells a bright and promising future. As inroads are
made into this artificial intelligence problem, more and more applications will arise.
Already there exist sentry robots, industrial cleaning robots, and mobile robots that
operate in the manufacturing domain. The military is strongly supporting research into
autonomous vehicles for battlefield, resupply, and reconnaissance operations.

There seems to be some innate fascination in people regarding autonomous machines.
Even though Hollywood has come to treat autonomous robots as a solved problem
(e.g. R2D2), the mystique continues. What perhaps is most important to the future
of this field is that researchers do not resort to a series of contrived demonstrations to
prove that their robots work. We, as artificial intelligence researchers, must learn from
the mistakes that our predecessors in the 1950s and 60s made, especially in promising
too much too soon.

The key, in my estimation, is to make steady progress through fundamental research,
both in perception and motor control. Too much emphasis on applications will detract
from the real issues involved. Fortunately, there exist excellent mobile systems (animals),
provided by God, that can be studied to yield insights into the mobility problem. The
biological successes that already are in place should not be ignored by the roboticist.

In conclusion, if our expectations are realistic, the support is consistent, and work in

other domains is drawn upon, a new era in intelligent machines awaits.




