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Abstract

A visual target designation and tracking system is being developed within the context of the Au-
tonomous Scout Rotorcraft Testbed Project at Georgia Tech. This paper describes both the algorithms
and the hardware being used for this purpose by the Mission Equipment Package Technology Area
Team. Preliminary results using two simple tracking algorithms are presented.

1. Introduction

This paper presents the approach being used to achieve target designation and tracking capabilities
for a walking person in an outdoor environment from an autonomous helicopter platform. The overall
project, referred to the Autonomous Scout Rotorcraft Testbed (ASRT), has as a goal the construction
of a vertical takeoff and landing (VTOL) air vehicle with the ability to conduct reconnaissance and
surveillance missions. A typical mission will require the ASRT vehicle to take off and fly to an operator
designated search area. Once in the search area, the vehicle will follow commands from an operator
located at a remote ground station to search for a human-sized moving target. Upon designation of
the target the helicopter will then switch to an autonomous tracking mode while providing the person’s
position and stabilized imagery to the ground station. Finally, the vehicle must fly to a prescribed location
and perform a vertical landing when commanded to do so.

Our approach to target tracking and designation involves the use of various visual sensors for differing
conditions, including a low-light level camera for night operations, and a color ccd camera for daytime.
Several different algorithms will be used to provide robust tracking 8. Some of the component systems,
including Teleos AVP-100 and SENSAR PV-1, are commercially available while others are being developed
locally at the Georgia Institute of Technology for use within this project. This paper describes how we
are integrating these systems, taking advantage of their different tracking capabilities. Also presented in
this paper are preliminary results using some of these methods.

2. Related Work

Extensive research has been conducted in the area of target tracking. Instead of attempting to
provide an exhaustive reference, only representative work that is closely related to our objectives with
the ASRT project is reviewed.

David et al  have present a real-time automatic target acquisition and tracking system in the context
of dynamic battlefield environments. Their system, like ours, operates on natural environments which
makes the tracking process much more difficult because of dynamic target obscurants like vegetation and
dust. Their system uses real-time image processing hardware to track multiple tank-sized targets. They
use a combination of best-first-search and probability-based algorithms for target tracking.



Samy !0 discusses different approaches to target tracking for natural textured backgrounds in real-
time. He presents an overview of feature extraction and texture measures approaches. Other researchers,
including Gilbert et al ®, and Hager et al 7 have developed real-time tracking systems using dedicated
and non-dedicated hardware respectively.

In addition, Zheng and Chellapa ' explore the detection of motion from imagery acquired from
moving platforms. They address the difficulties created by the relative motion of the imaging device,
and present a subpixel accuracy image registration algorithm to compensate for it. Their work estimates
camera rotation and translations by matching feature points obtained using Gabor wavelet models. After
the images are compensated for camera motion, they track the target using a motion-based approach.

3. ASRT Project Overview

The Autonomous Scout Rotorcraft Testbed (ASRT) project is a pilot project sponsored by the
U.S. Army, with one of the two development efforts being conducted at the Georgia Institute of Tech-
nology. The goal of the overall project is to demonstrate autonomous scout rotorcraft operation of an
unmanned air vehicle asset, providing an opportunity to send unmanned systems to look over/behind
a hill and in the shadows of a hostile environment, and providing increased situational awareness for
an aerial scouting team. The ASRT project is intended to promote new applications for robust flight
control laws, integrated mission execution strategies, application of modeling and simulation, and vehicle
robotics. In addition the program will define current difficult technical barriers, contribute to future full
scale manned concepts with tests using unmanned flights of high risk concepts, and advance the state of
the art for future autonomous vehicles. Other references to this project include 63,

In this paper, we are primarily concerned with one of the subsystems within the ASRT project, the
Mission Equipment Package (MEP). The objectives of the MEP include:

e Providing operator support in recognizing and designating a human-sized target,

e Autonomously tracking the target for periods of up to 30 minutes.

e Providing both day and night tracking capability.

e Displaying and recording real-time. stabilized day/night imaging from the helicopter on the ground
station

In our system, we use the SENSAR PV-1 system to provide real-time image stabilization. This
system consists of special-purpose hardware that supports pyramid-based algorithms. The use of pyramid
structures in image processing and tracking has been presented by Burt !, and Clark ? among others.

4. Tracking Strategies

Our tracking strategy is based on the combination of several component subsystems. These include
SENSAR’s PV-1, Teleos AVP-100, and an SGI Indy workstation running other motion-based tracking
algorithms.
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Figure 1: MEP Ground Station Architecture




Figure 1 shows how these systems work together on the ground station. Video coming from the air
vehicle via the video link is sent as input to the PV-1 system which provides real-time image stabilization.
After the target has been designated by the operator, the stabilized video is then sent to the Teleos AVP-
100 and to the Indy workstation for tracking. The output from these tracking systems is displayed and
archived as necessary.

As mentioned above, the role of the PV-1 system is to provide real-time stabilization of the video
signal comming from the vehicle. This system posses dedicated special-purpose hardware to construct
image pyramids. The image alignment process computes optical flow using local correlation estimates on
these structures and then constructs a parametric model to minimize the difference between images °.

The Teleos AVP-100 is real-time tracking system which has the capability to produce motion mea-
surements within a subimage that is selected under software control. The user can select the subimage
size and dynamically control the region of interest. The development of a custom tracking algorithm
using this system is currently underway.

As mentioned before, a motion-based tracking algorithm will be running on the SGI Indy worksta-
tion. Two different motion algorithms have already been developed and tested using imagery from the
demonstration test site at Berry College in North Georgia that has been stabilized using the PV-1 system.
Both of these algorithms were developed during earlier stages of the project. The goal of the first method
is to track the target in real-time; the second one is concerned with extraction of motion-based objects.
Each of these algorithms is presented, along with preliminary results, in the remainder of this paper.

4.1 Method One: A Real-Time Tracking Algorithm

As we mentioned previously, the goal when developing this algorithm was to achieve real-time target
tracking using a non-dedicated workstation. This requirement severely reduces the amount of computation
that can be performed between two consecutive frames. In order to meet this constraint two commitments
were made. First, only local processing of the each window was conducted (sub-windowing). Second,
complex feature extraction or segmentation of the image was avoided.

Using this approach, the operator can dynamically locate the center of this region anywhere within
the image during the target designation phase. The actual size of the subimage is variable and changes
according to the amount of motion detected within it. Basically, the algorithm simply computes image
differences between two consecutive frames and then tracks the centroid of the difference from frame
to frame. The size of the region of interest varies along both dimensions according to the respective
variances over the computed image difference.

As customary, the image difference between two frames f, g over a given region is defined as
where
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and the window is centered at x, y.

We further define
&, ) = { 1, d(i,7) > ¢

0, otherwise

where € is some threshold. This is done to eliminate some of the noise that is always present in images
and to obtain a binary image.



Next, we compute the centroid of the window. This is the pair (z,y) where
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The centroid is interpreted to be an estimate of the center of the moving object, and the center of the
window is repositioned to be at (z,y) for the next iteration of the algorithm. Also, the variance along
each dimension is computed. These are defined as
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The size of the window along the x-axis for the next iteration is set to be 1.5 z,, and similarly the size
along the y-axis is set to be 1.5y,. This is done so that the size of the window will increase or decrease
according to the amount of motion detected within it. The size of the window along either dimension is
restricted to be within a range specified by the user (in our implementation the minimum along either
dimension was set to be 10 pixels and the maximum 70). This allows the user to limit the minimum and
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maximum size of the tracking window.

If the number of non-zero valued pixels inside the window falls below some threshold (10 pixels is the
default), the target is declared lost and the window is placed at the center of the image with maximum
size along both dimensions.

4.2 Method Two: Extracting Motion-based Objects

As noted earlier the previous algorithm does not recognize or identify its targets; it only follows
movement. We now describe an algorithm developed by Zheng and Chellapa ! used for this method. It
starts from the observation that more can be done than just thresholding to reduce noise. The key point
is that if a point in an image is moving, then it is very likely that some or all of its neighbors are moving
too. Thus we can discard isolated points in the difference image. They also point out that the threshold
value should not be a constant. Instead it should vary accordingly to the local contrast of the image. As
the contrast increases, the threshold should also increase. Thus they classify a point as a moving point if

min{d(i,7),d(i,7)} > maz{yD(¢,7),€}
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~ is the relative threshold
w is the neighborhood of (i,j)

In other words, a given point is punished for having neighbors with low values in the difference image
and for being in a high contrast area.



Their algorithm tries to detect the moving object on each image. They let £ be the points of the
object in a given image. Thus if we consider three consecutive images fi, f and f3, then we could detect
S1 = Q1 UQ, by means of the method just described. There is a problem though, since points that belong
to an object tend to have similar intensities, at least locally. In practice Sy is not detected but rather
a subset of it. The subset not usually detectable is the one where the points that happened to move to
a location that was previously occupied by a point with the same or very similar intensity value. Thus
formally, using the previously described method to detected moving points, the set detected is

51 = Sl — 51/
where the displacement from €2 to Q; is assumed to be (uy,vy) and
Si'={00, )| (i,7) € 1 NQy and fi1(i,5) = fi(i —uy,j—v1)}

Similarly
Sy =8y — 5o
and
Sl ={(4,5) ]| (1,7) € Q2N Q3 and fo(i,7) = fa(i — uz,j — v2)}
where we assume that the displacement from Q3 to Q3 is (ug, vs)

It is easy to see that if (uy,v1) = (u2,v2) = (u, v) then
(1,7) € S1 = (i+u,j+v) €S,

and that
(T2,92) = (1 + w, 41 +v)
where (22, y2), (1, y1) are the centers of mass of f; and fs.

Now, that we have all the definitions we can go back to the algorithm. The first thing to do is
to compute S;. Next, estimate €; by taking the closure of S;. The closure is constructed recursively
from S; by connecting any two points in it that have a common coordinate. Once the closure has been
computed, translate f; by (u,v) calling it fi, and compute its difference with f;. Finally, a point (i,j)
in the translated closure is determined to be a point of the moving object in image f; if its value in the
new difference image is below some threshold, i.e., | f{(i,7) — f2(i,j) |< € and either it belongs to Sy or
at least one of its 3x3 neighbors is in €2;.

In other words, what this algorithm does is the following. It computes the difference between f; and
f2, and attempts to filter out as much noise as possible. Then it computes the closure of this difference to
try to make up for the holes due to similar gray level of moving points. Next it computes the difference
between fy and f3, to estimate the displacement from f; to fy. Then it shifts f; by that displacement,
and finally looks for points in the closure that yield zeros in the new difference image.

The assumptions that this algorithms make about the object, more precisely the motion of its
center of mass and the relative position among points on it, suggest that this algorithm should work
reasonably well with rigid bodies, but if the object being tracked is non-rigid, then the assumptions
made do not hold any longer. The assumption that the displacement from ; to Q3 is (uy,v1) and
St =H(,7) ] (1,7) € 11N Qy and fi(i,j) = fi(i — uy,j — v1)} is equivalent to saying that we are
dealing with one rigid body in purely translational motion, or with more than one rigid body all with
the same translational motion. This algorithm was implemented to determine its performance when the
object being tracked is a human walking (a deformable, non-rigid object), and thus its assumptions do
not strictly hold.



5. Preliminary Results

Both algorithms have been run on video imagery of a human walking in outdoors environments, in-
cluding the demonstration site chosen for the ASRT Project. The video was stabilized using the SENSAR
system before being fed to the algorithms which were run on a non-dedicated SGI Indy Workstation. The
results obtained are presented below.

5.1 Method One

This real-time algorithm worked well as long as the SENSAR system could provide stabilized imagery
without introducing considerable translations from one frame to the next (i.e., saccadic motion). In
addition, the algorithm worked best when the area occupied by the target was neither too large nor too
small. If the area was too big, about 1/3 or more of the pixels on each dimension, the high frequency noise
introduced by the moving grass and leaves caused the algorithm to lose the target. On the other hand,
the algorithm could not extract the target from the background if its size was too small. This occurred
when the target size was less than 1/10 of the total number of pixels on each dimension. Figures 2 and
3 show typical results obtained using this algorithm.

Figure 2: Sequence obtained using real-time tracking algorithm.
This sequence illustrates the performance of the algorithm against a relatively static background. It
proceeds in time from right to left and from top to bottom. The detected target is shown within the box.

5.2 Method Two

The current implementation of this motion-based object tracking algorithm on the SGI Indy work-
station, does not run in real-time. The user can select the position to start tracking from within the
image, and then the algorithm collects a sequence of frames (six in our implementation), and then pro-



cesses them. The processing is further limited to a subwindow within the image (30 pixels along both
dimensions). In these experiments, it was observed that the algorithm tends to detect parts of the target,
even though sometimes it also selects sections of the environment. This behavior, however, can be easily
understood from the description of the algorithm, since it assumes that there is only a single moving
object. Figures 4 and 5 show typical results obtained using this algorithm.

6. Summary

This paper represents an early report on the visual target designation and tracking capabilities for
an autonomous helicopter. The basic components of the Mission Equipment Package tracking system
for the ASRT project have been described, including an overview of the interconnections between them
and the data flow among them. In addition, preliminary results were described and presented that were
obtained using two motion-based tracking algorithms operating on stabilized imagery of a human walking
in natural environments. It should be reiterated that these are early results in a project which will be
tested in the field in the Spring of 1996. Future publications will describe the evolution of this system as
new modules such as the Teleos system are integrated.
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Figure 3: Another sequence obtained using real-time tracking algorithm.
This sequence taken at the Berry College demonstration site illustrates the algorithm’s performance
against obscurants. The sequence proceeds in time form right to left and from top to bottom. Notice

how the size of the interest area defined by the white rectangle changes according to the size of the target
in the frame.



Figure 4: Sequence obtained using Zheng-Chellapa algorithm.

This sequence, also taken at the demo site, proceeds in time from top to right to left and from top
to bottom. Notice how features are not extracted sometimes due to high similarity between frames.
Occassionally features from the background get extracted as well.



TABIC T 2LNE STABICE 2iMG

Figure 5: Another sequence obtained using Zheng-Chellapa algorithm.
This sequence, also from the demo site, illustrates the performance of our implementation agains ob-
scurants. Notice how regions of the background environment are selected by the algorithm due to their
constant motion.



