
Real-time Cooperative Behavior for
Tactical Mobile Robot Teams

Subsystems Specification / A002

October 1998

Prepared by:
Georgia Tech College of Computing and
Georgia Tech Research Institute

Georgia Institute of Technology
Atlanta, Georgia 30332

Prepared for:
TACOM
Warren, Michigan 48397-5000
Contract No. DAAE07-98-C-L038

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
ATLANTA, GEORGIA 30332

1

1 INTRODUCTION

This document constitutes the subsystem specifications and is submitted to TACOM as
deliverable A002. It contains a description of the overall system architecture to be used within
Georgia Tech’s research for the DARPA Tactical Mobile Robotics Program. It further provides
functional specifications for each of the major system components. More specific details regarding
interfaces will be provided in future interface control documents to be submitted according to the
prescribed deliverables schedule of the contract.

Configuration
Editor

Communications
Expert

User Data
Logging

Hummer
Groundstation

MissionLab
Console

Runtime Data
Logging

Reactive
Behaviors

Hardware
Drivers

Low-level
Software

Robotic
Hardware

"Robot" "Robot" "Robot" "Robot"

RUNTIME

EXECUTIVE

PREMISSION

IPTIPT IPT IPT

IPT

IPT

Real-time
Specification

Figure 1: System Architecture

2

Figure 1 depicts the overall system architecture being developed for this effort. It contains 3
major subsystems: Executive, Premission, and Runtime. The executive subsystem is the major
focus for operator interaction. It provides an interface to both the runtime simulators and actual
robot controllers, as well as the premission specification facilities and the physical operator
groundstation itself. The premission subsystem’s role is to provide an easy-to-use interface for
designing robot missions and a means for evaluating overall usability. The runtime control system,
which is located on each active robot, provides the execution framework for enacting reactive
behaviors, acquiring sensor data and reporting back to the executive subsystem to provide
situational awareness to the team commander. Additionally, a separate support system is provided
for interprocess communications. Section two of this document provides the functional
specifications for each of these subsystems and their underlying components.

In Figure 1, typical communication paths between components are shown. Wherever separate
threads of execution exist, this communication is implemented with IPT, to be described later. In
other cases, communication may take the form of dedicated point-to-point links or conventional
parameter-passing during the invocation of processes.

The figure shows a “robot” as the combination of reactive behaviors, appropriate hardware
drivers, both actuator-specific and sensor-specific low-level software, and the robot hardware itself.
This assemblage of components provides a uniform, hardware-independent interface to the
executive subsystem which is equally suitable for simulated robots. The runtime system consists of
one or more instances of these assemblages, with four shown in this particular case, corresponding
to the robots already purchased for the project.

Figure 2: MissionLab Console (mlab).

3

2 SUBSYSTEM COMPONENT SPECIFICATION

This section provides functional specifications for each of the major system components.

2.1 Executive Subsystem

The executive subsystem consists of the MissionLab console, faster-than-real-time simulator,
and runtime data logging components.

2.1.1 MissionLab Console

The MissionLab console (mlab) (Figure 2) serves as the central interface for the execution
of a mission. The mlab program presents results of either simulations or actual robotic missions
directly to the operator. It requires the use of the interprocess communications subsystem (IPT),
described below, to maintain contact with the robots and other active processes. The
MissionLab console provides the following capabilities:

 Loads precompiled robot control programs and overlay description files

 Configures the display

- generating obstacles for simulations

- altering the scale of the display

- changing the virtual time for simulations

- scaling the size of the display (zooming)

 Provides a Command interface that permits interactive step-by-step command issuance by
the operator using CMDL, a structured English language

Figure 3: Teleautonomous operation in MissionLab. Dialog boxes allow operator to specify
direction and “personality.”

4

- has the ability to execute, stop, pause, restart, rewind, single step, and abort missions during
execution

- has the ability to use team teleautonomy by directing robots to particular regions of interest
or by altering their societal personality (Figure 3).

 Provides display options

- leave trails where the robots have been

- highlight obstacles that affect the robot

- show instantaneous directional reaction of robot to its environment

The MissionLab console also provides a display (Figure 4) that shows either:

1) The output of a simulated robotic mission that is run faster than real-time and can serve to
determine whether or not a premission specification has been successfully completed.

2) An operator mission display screen where robots in the field report back their position and
relevant mission data that is shown on the mlab display to provide situational awareness
and context for higher level decisions regarding aborting, continuing, or biasing the mission
in various ways.

Figure 4: Display during execution of simulated mission (display of actual robot mission is
similar).

5

2.1.2 Runtime Data Logging

The executive subsystem also will include a runtime data logging capability that will be used to
provide a means to evaluate the performance and effectiveness of a mission. This will include
measures regarding the risks that the robots undertook during the mission, other related safety
factors, time and distance to completion, etc.

2.1.3 Hummer Groundstation

A mobile groundstation based on a commercial Hummer (Figure 5) carries the operator
environment to the field. It is capable of semi-autonomous operation, with actuated brake, throttle,
and steering. Sensor capablities include a gyro-compass and inclinometer, with provision for the
integration of GPS. The onboard controller is a PC-104 stack, with interfaces to all actuators as
well as additional isolated I/O.

A tailgate ramp will facilitate the deployment of smaller robots in a marsupial fashion. The
ramp could be actuated for either remote (teleautonomous) or fully-autonomous operation.

Figure 5: Hummer groundstation.

2.2 Premission Subsystem

The premission subsystem involves the specification, creation, and construction of behavior-
based robots suitable for specific missions. It provides a user-friendly graphical programming
environment and a series of language compilers used to transform the high-level iconic description

6

into executable code suitable for the executive subsystem. In addition, it will provide data logging
tools that are geared for usability studies leading to the enhancement of the user interface.

2.2.1 Configuration Editor

The configuration editor (cfgedit) provides a visual programming entry point into the system
(Figure 6). It is geared to average end-users and requires limited training to use. The interactive
iconic interface generates configuration description language (CDL) code which, when compiled
and bound to a particular architecture and robots, generates a meta-language. In this project this is
CNL, the configuration network language, that serves as a precursor to the C++ code that is
ultimately generated when the CNL code is compiled. This resulting C++ code forms the executable
code for the robot controller itself. Within the executive subsystem, this code is then directed either
to the simulation or the actual robots for execution.

Figure 6: Graphical configuration using cfgedit.

7

2.2.2 Communications Expert

The communications expert (under development) will provide mission-specific
recommendations for communications methods and topology (e.g., broadcast, point-to-point). It will
enable a user to automatically configure the communications links between robots necessary to
support a mission. This follows the same pattern as our earlier work in the design of a formation
expert used in the DARPA UGV Demo II program.

2.2.3 Usability Data Logging

Additional software is used to record user actions during premission planning. This includes
data such as the number and type of keystrokes and mouse clicks, time to create certain objects, and
other relevant data. These data are then used to interpret the skill by which a user is capable of
achieving within the system, and after subsequent usability analysis, is used to refine the design
interface itself. It is a support tool geared for formal usability studies (Figure 7).

Figure 7: Usability Laboratory.

2.3 Runtime Subsystems (1 per robot)

The runtime control code created by the premission subsystem and then tested in simulation
within the executive subsystem is then sent to the actual robotic systems for execution. Thus there is
one runtime subsystem located on each robot required for the mission. IPT provides interprocess
communication between the robots and the mlab console.

The runtime system consists of a set of reactive behaviors and sensor strategies to interpret and
react to the world; hardware drivers customized to interface designated robots to the MissionLab
system; low-level robot control code generally provided by the robot manufacturer; and the actual
robotic and sensor hardware.

2.3.1 Reactive Behaviors

A collection of reactive behaviors is compiled and downloaded to each robot for execution of
the mission. These reactive behaviors embody the mission specification designed within cfgedit.

8

They process sensor data as rapidily as possible and issue commands to the lower level software for
timely execution on the robot. These behaviors include activities such as obstacle avoidance,
waypoint following, moving towards goals, avoiding enemies, and seeking hiding places, all cast
into mission-specific reusable assemblages. Action-oriented perceptual code already supports both
Newton Labs Cognachrome real-time color vision systems and ultrasonic data. Team behaviors,
such as team teleautonomy, formation maintenance, and bounding overwatch are also bundled for
execution as necessary. The output of these behaviors is sent to the groundstation for monitoring
purposes as well as to the robot for execution.

2.3.2 Hardware Drivers

In order for MissionLab to be able to build an executable program to run on a given robot, it
requires an ensemble of routines to set up, control, and receive feedback from the actual (or
simulated) robot. Some variation in capabilities is expected among the various robots that are
supported, but the expected set of routines for the TMR platforms (Pioneer AT and 97-20 “Urby”)
include:
 Movement commands

 move – direct to robot to go to another position
 drive – direct the robot to maintain a velocity
 turn – rotational equivalent of “move” (go to another orientation)
 steer – rotational equivalent of “drive” (change angle at constant rate)
 stop – stop all motion
 stopdrive – stop translational motors
 stopsteer – stop rotational motors

 Range measurement commands
 range_start – turn on ranging sensors
 range_stop – turn off ranging sensors
 range_read – take range readings

 Position feedback commands
 getxy – get current position in defined coordinate system
 setxy – set the defined coordinate system (establish origin)
 initxy – initialize position sensors

 System monitoring commands
 wait_for_drive_to_stop – block further activity while translational motors are active
 wait_for_steer_to_stop – block further activity while rotational motors are active
 drivestat – provide translational motor status
 steerstat – provide rotational motor status

 Initialization and termination
 open_robot – initialize robot and establish connection as required
 close_robot – terminate robot and relinquish connection as required

Additional drivers are required for sensors which are not tightly integrated into the onboard
robot control system (see PSOS and ARC below). These will include such vision-related
capabilities as specifying the characteristics of a target and requesting target tracking status (and
position, if available).

9

2.3.3 Low-level Software

Low-level software includes embedded software and firmware that is typically provided by the
vendors of robots and sensors in order to access the basic capabilities of those devices. For this
project, this classification includes PSOS, running on the robot controller, and ARC, running on the
vision system.

The onboard microcontroller of the Pioneer robot is equipped with the Pioneer Server
Operating System (PSOS) software. PSOS serves the serial communication port provided for the
receipt of commands and the return of status information. As such, most of the functions listed in
the previous section for the robot driver result in the transmission of a message to PSOS, which in
turn handles the request.

The Cognachrome vision system behaves similarly, with its serial port served by an embedded
operating system called ARC. This multitasking system allows the vision tracking parameters to be
changed and issues tracking results at specified intervals. ARC provides a C development
environment and runtime system for the generation and support of vision programs that exceed the
basic capabilities provided with the Cognachrome system.

2.3.4 Robotic Hardware

Although (as described earlier) the Hummer groundstation has a robotic capability, the primary
elements of robotic hardware for this project consist of the chosen robot platform itself and its most
complex sensor system, each of which has an internal microcontroller. The specifications of these
two components are described in this section.

2.3.4.1 Pioneer AT robot

The Pioneer AT “Outlaw” (Figure 8) is the 4-wheel drive, all-terrain version of the original
Pioneer robot, a product of ActivMedia Inc. that is manufactured by Real World Interface. Its
features include reversible-DC motor drives with wheel encoders, a magnetic compass, and onboard
sonar sensors for forward and side object ranging and mapping. A rear-looking sonar sensor will be
added.

Figure 8: Pioneer AT robot platform.

10

The Pioneer AT satisfies the platform and mobility specifications originally given for DARPA
BAA 98-08. The Pioneer specifications are given below, but do not include the impact of
accessories such as the pan-tilt-zoom vision system.

Pioneer AT Platform Specifications

Characteristic Published specification

Length 45cm

Width 50cm

Height 24cm

Weight 11.3kg

Run time 2-3 hrs

Body clearance 5.0cm

Translate speed max 1.5 m/sec

Traversable step max 8.9cm

Traversable gap max 12.7cm

Traversable slope max 60% grade

2.3.4.2 Newton Labs Cognachrome Vision System

Figure 9: Newton Labs Cognachrome system

11

The Cognachrome Vision System (Figure 9) is capable of tracking multiple objects in the
visual field, distinguished by color, at a full 60 Hz frame rate, with a resolution of 200x250 pixels.
The board can also perform more general-purpose processing on low-resolution 24-bit RGB frame
grabs from 64x48 to 64x250 pixels in resolution. Input to the Cognachrome Vision System is
standard NTSC, and the board also outputs a 60 Hz NTSC image of the objects it is tracking.

In the Pioneer configuration, the Cognachrome Vision System outputs tracking data over serial
ports to either the Pioneer microcontroller or another onboard computer. Number of tracking
channels, number of objects to track per channel, and statistics to calculate per channel are all
configurable.

Newton Labs Cognachrome Specifications

Characteristic Published Specification

Size 2.5" x 6.25" x 1.25" (64mm x 160mm x 32mm)

Weight 8 oz (230 g)

Power

 5v (digital) 400ma

 5v (analog) 110ma

 12v (analog) 20ma

Video input and output NTSC

Tracking Resolution 200 x 250 pixels

Tracking statistics, per object Centroid (x,y)
Area
Angle of orientation of major axis
Aspect ratio

Number of tracking channels 3 (Each of the three color channels can track
multiple objects of the given color)

Maximum simultaneous objects tracked Approximately 25 (tracking performance will
fall below 60 Hertz after 5 to 7 objects,
depending on size and statistics computed)

2.4 Interprocess communications subsystem (IPT)

IPT is an object oriented InterProcess communications Toolkit that uses a message-based
paradigm to connect various processes, or modules, in a system together. IPT was developed at
Carnegie Mellon University to provide communication support for the UGV Demo II program.

12

Modules use IPT to establish connections between themselves and to send and receive messages.
These connections can be considered as direct lines of communications setting up point-to-point
links between modules without going through any “center.”

Each message has an instance number and a type. The instance number can be used to keep
track of the sequencing of messages, and the type contains information about how the message is
formatted. Message data can be formatted to allow unpacking into C or C++ structures. Messages
can be handled by user defined handling routines or by searching through a message queue.

A central communications process called the IPT server is the means by which all modules
initiate communications. The IPT server has three jobs
1. To establish a consistent mapping between message type names (which are strings) and message

type ID’s (which are integers). This mapping means that each message will have associated with
it a four-byte integer rather than an arbitrarily long type name. Having the server make this
mapping ensures consistency across all modules that the server works with.

2. To act as a telephone operator connecting modules together. A module can thus request a
connection to another module by name without having to know what machine that other module
is on or how to connect to that other module.

3. To act as a central repository for log information. For example, individual IPT modules can be
run in “logging mode.” In logging mode an IPT module will send the headers of all messages it
sends and receives to the IPT server. A system developer can use this log information to track
down problems in the system. Once modules are connected, the server doesn’t take up any more
CPU cycles. It doesn’t die, because IPT is a dynamic system. Modules are allowed to connect
and disconnect throughout the lifetime of the system, and the server needs to be around in order
to make and break these connections in an orderly fashion.

2.5 Real-time specification (MetaH)

MetaH is a language for specifying software and hardware architectures for real-time, securely
partitioned, fault-tolerant, scalable multiprocessor systems. MetaH allows developers to specify
how a system is composed from software components like processes and packages and hardware
components like processors and memories. An associated toolset performs syntactic and semantic
checks and also other functions such as real-time schedulability analysis and application
composition.

Figure 10 : Relationship of MissionLab and real-time specification tools.

13

The MetaH schedulability analysis tool builds and solves real-time schedulability models for
any specified architecture. The schedulability analysis determines whether every processor and
every inter-processor channel will be feasibly scheduled in every mode of operation. The
schedulability model includes all executive and kernel overhead times.

Figure 10 illustrates our approach to providing timing analysis, using the MissionLab and
MetaH toolsets. The warfighter uses MissionLab to specify a mission behavior for a team of robots,
where MissionLab supports concepts and an interface that are meaningful to, and powerful for, this
user for this purpose. MissionLab translates these specifications into lower-level behavioral code,
which would be passed to the MetaH toolset along with performance data. The MetaH toolset uses
such information to perform a real-time schedulability analysis to determine schedule feasibility and
resource utilizations.

