
1

3-D Clipping and other things

Window on Viewplane

Interface Window

Viewport

Aside: Windows and Viewports

2

Choose Window in
World Coordinates

Xform window to Canonical View
& Clip

Scale to size of
Viewport

Translate to proper position
on screen (Interface Window)

Window to Viewport Xform

Notes on Window to Viewport

z Inverse relationship between window
and viewport
y As the window increases

in size, the image in the
viewport decreases in
size and vice versa

z Beware of aspect ratio

3

(10, 30) (50, 30)

(10, 80) (50, 80)

Desired
Viewport

Example

1 0
0 1
0 0 1

 0 0
0 0
0 0 1

1) Scale to correct
 size

2) Translate to
 proper coordinates

Culling Revisited

z Trivial accept/reject of whole objects
y Fast, simple approach

x Maintain bounding sphere
x Fast, simple check against canonical volume

z Only clip polygons of remaining objects
y Can’t skip clipping of trivially accepted

objects in practice

4

(xr, yt)(xl, yt)

(xl, yb) (xr, yb)

A point is visible if

xl < X < xr
and

yb < Y < yt

2D Clipping

z Line visible if both endpoints in window
z “Brute Force Method”

y Solve simultaneous equations for
intersections of lines and edges

Cohen-Sutherland Algorithm

z Region Checks: Trivially reject or accept
lines and points

z Fast for large windows (everything is inside)
and for small windows (everything is outside)

z 4-bit outcodes:
y Bit 1 <-- sign bit of (yt-Y) -- point is above window
y Bit 2 <-- sign bit of (Y-yb) -- point is below window
y Bit 3 <-- sign bit of (xr-X) -- point is to right of window
y Bit 4 <-- sign bit of (X-xl) -- point is to left of window

5

1001 1000 1010

0001 0000 0010

0101 0100 0110

Bit 1: Above
Bit 2: Below
Bit 3: Right
Bit 4: Left

Cohen-Sutherland Clipping
(cont.)

z Trivially accept a line if:

z Trivially reject a line if:

Line AD: 1) Test outcodes of A and D --> can’t accept or reject.
 2) Calculate intersection point B, which is conceptually on
 the window side of the dividing line. Form new line
 segment AB and discard the rest of the line because it is
 above the window.
 3) Test outcodes of A and B. Reject.

Example:

A

D
B

C

E F G
H

Clipping Lines Not Accepted or
Rejected (“divide and conquer”)

6

Sutherland-Hodgman
Polygon Clipping

z Clip against each edge of the window
one edge at a time

z New set of vertices after each clip
y The number of vertices usually changes and

will often increase.

P4 I2

P1
I1

P3

P2

P4
I2

I1
P1

Polygon Clipping Algorithm

z Window determines a visible and invisible region
z Edge from i to i+1 one of four types:

y Exit visible region - save the intersection
y Wholly outside visible region - save nothing
y Enter visible region - save intersection and endpoint
y Wholly inside visible region - save endpoint

7

Polygon clipping issues

z Final output, if any, is always considered a
single polygon
y Might be multiple pieces

z Extra edge may not be a problem
y Always occurs on a window boundary
y Can be eliminated if necessary

Clip
Top

Clip
Right

Clip
Bottom

Clip
Left

Pipelined Polygon Clipping

z Clip against each edge independently

z Arrange clipping stages in a pipeline
y Input polygon clipped against one edge
y Retained points passed to next stage

z Can avoid intermediate storage

8

3D Canonical Parallel View Volume

Extension of 2-D algorithm, 6-bit outcode

Bit 1 - above view volume y > 1

Bit 2 - below view volume y < -1

Bit 3 - right of view volume x > 1

Bit 4 - left of view volume x < -1

Bit 5 - behind view volume z < -1

Bit 6 - front of view volume z > 0

 Y axis

+1

-1

-Z-1

3D Canonical Perspective View Volume

Extension of 2-D algorithm, 6-bit outcode

Bit 1 - above view volume y > -z

Bit 2 - below view volume y < z

Bit 3 - right of view volume x > -z

Bit 4 - left of view volume x < z

Bit 5 - behind view volume z < -1

Bit 6 - front of view volume z > zmin

 Y axis

+1

-1

-Z-1

Back
Clipping
Plane
z=-1

Front
Clipping
Plane

y=-z

y=z

9

Canonical View Volume

z Trivially accept
y Both endpoints have a code of all zeros

z Trivially rejected
y logical AND of the codes is not all zeros.

z Otherwise Calculate intersections.

Intersection Calculation
(Perspective Volume)

On the y = z plane
From parametric equation of the line:

y0 + t(y1 - y0) = z0 + t(z1 + z0)

Solve for t
t = (z0 - y0) / ((y1 - y0) - (z1 - z0))

Calculate x and y
Already know z = y

10

Clipping in Homogeneous
Coordinates

z Two reasons:
y Efficiency

y Correctness

Picking

z Goal: To use the mouse (2D) to select
3D objects

z Analytical method
y gluUnproject

y expensive

11

What are we trying to find?

z The objects that lie on the line that
projects to the mouse position

Screen corresponds to
Canonical View Volume

z What sliver lies under the mouse?

12

Scale Sliver to Screen:
gluPickMatrix

z After Viewing Transform

z Before Clipping

How to know what gets drawn?

z OpenGL Selection Modes (Picking and
Feedback) (chapter 13)
y glRenderMode, glSelectBuffer

z Add “names” to rendering stream
y glInitNames, glLoadName, glPushName, glPopName

