
Illumination and Shading 9/19/02

CS4451: Fall 2002 1

Illumination and Shading

Illumination and Shading

z Illumination Models
y Ambient
y Diffuse
y Attenuation
y Specular Reflection

z Interpolated Shading Models
y Flat, Gouraud, Phong
y Problems

Illumination and Shading 9/19/02

CS4451: Fall 2002 2

Illumination Models:
Ambient Light

z Simple illumination model
I = ki

z Use nondirectional lights
I = Iaka

z Ia = ambient light
intensity

z ka = ambient-reflection
coefficient

z Uniform across surface

Diffuse Light

z Account for light position
y Ignore viewer position

z Proportional to cosQ
between N and L
 I = Ipkd cosQ

= Ipkd (N ·L)
z Model:

I = Iaka + Ipkd (N ·L)

Illumination and Shading 9/19/02

CS4451: Fall 2002 3

Attenuation: Distance

z fatt models distance from light
I = Iaka + fattIpkd (N ·L)

z Realistic
fatt= 1/(dL

2)

z Hard to control, so OpenGL uses
fatt= 1/(c1 + c2dL + c3dL

2)

Attenuation:
Atmospheric (fog, haze)

z zf and zb: near/far depth-cue plane
z sf and sb: scale factors
z Idc: depth cue color
z Given zf > z0 > zb

interpolate sf > s0 > sb

z Adjust intensity
I’ = s0I + (1 - s0)Idc

Illumination and Shading 9/19/02

CS4451: Fall 2002 4

Colored Lights
(slightly different, but equivalent, to book)

z Od: diffuse color
y (OdR, OdG, OdB)

z Compute for each component
z i.e. red compenent is

IR = IaRkaOdR + fattIpRkdOdR (N ·L)

z Note: use Od for
ambient and diffuse

Specular Reflection:
Phong Model

z Account for viewer position
y Create highlights

z Based on cosna = (R ·V)n

y Larger n, smaller highlight

z ks: specular reflection coef.

I = IakaOd + fattIp [kdOd (N ·L) + ks (R ·V)n]

N
R

V

L

aQQ

Illumination and Shading 9/19/02

CS4451: Fall 2002 5

Multiple Light
Sources

z Obvious summation over m lights:

I = IakaOd + S fattiIpi [kdOd (N ·Li) + ks (Ri ·V)n]
1£0£m

z Compute one color for polygon
y Use polygon normal in lighting eqs.

z Every pixel is assigned same color

z Fast and simple
z Shade of polygons independent

Shading Models:
Flat Shading

Illumination and Shading 9/19/02

CS4451: Fall 2002 6

z Compute vertex normals
y Average normals of abutting polygons

z Use vertex normal in lighting eqs.
z Linearly interpolate vertex

intensities
y Along edges
y Along scan lines

N1

N2

N3N4 Navg

V1
V2

V3V4

A

Gouraud Shading

B
Vis

Illumination and Shading 9/19/02

CS4451: Fall 2002 7

z Often appears dull, chalky
y Lacks accurate specular

component
x If included, will be averaged

over entire polygon

z Mach banding
y Artifact at discontinuities in

intensity or intensity slope

Gouraud Shading

Illumination and Shading 9/19/02

CS4451: Fall 2002 8

Phong Shading

z Linearly interpolate vertex normals
y Compute lighting eqs. at each pixel

x Normals must be backmapped to WC

z Can use specular component

Illumination and Shading 9/19/02

CS4451: Fall 2002 9

Illumination and Shading 9/19/02

CS4451: Fall 2002 10

Closeup: Flat, Gouraud, Phong

z Polygonal
silhouette

z Perspective distortion

Problems with Interpolated Shading

V1
V2

V3V4

A B
Vis

Illumination and Shading 9/19/02

CS4451: Fall 2002 11

z Scanline/orientation dependent
y Creates temporal aliasing when used to

render animation frames:

Problems with Interpolated Shading

48

= ?

z Shared vertices

z Unrepresentative vertex normals
y Missed specular highlights
y Missed geometry

Problems with Interpolated Shading

A

C

B

Illumination and Shading 9/19/02

CS4451: Fall 2002 12

Lighting, in practice

z Full lighting equation:

I = IakaOd + S fattiIpi [kdOd (N ·Li) + ks (Ri ·V)n]

z Ignore specular for now
z Each surface: Od, ka, kd, vi (i=0..n), N
z Each light: Ia or d, fatt (c1, c2, c3), PL

(position)

1£0£m

At a given point

z Start with ambient: IakaOd
y R/G/B using IaR, IaG, IaB, OdR, OdG, OdB

z For each Light, compute: fattIp kdOd (N ·Li)
y Position (PP), normal (NP)
y L vector
y dL

y fatt= 1/(c1 + c2dL + c3dL
2)

y R/G/B using IpR, IpG, IpB, OdR, OdG, OdB

Illumination and Shading 9/19/02

CS4451: Fall 2002 13

Light Intensity Values

z Ia, Id
yRepresent intensity
yHave R,G,B components
yDo not need to fall in the 0..1 range!

x Often need Id>1
x Final computed I £ 1

Specular

z A light might have a diffuse and specular
specification, say Is
y Allow slightly different colors, more control

x Remember, it’s a hack anyway!

z Is would have RGB parts, as with Ia, Id
z Illumination formula becomes

I = IakaOd + S fatti [IpdikdOd (N ·Li) + Ipsiks (Ri ·V)n]
1£0£m

