Color \& Graphics

The complete display system is:
\| Model
\| Frame Buffer
| Screen
II Eye
|| Brain

Color \& Vision

We'll talk about:
| Light
| Visions
|| Psychophysics, Colorimetry
\| Color
Perceptually based models
Hardware models

Light

1. Vision = perception of electromagnetic energy

- Very small portion of EM spectrum is visible

Vision: The Eye

- A dynamic, biological camera!
\| a lens
I a focal length
I an equivalent of film

The lens must focus directly on the retina for perfect vision

Vision: The Retina

| The eye's "film"

- Covered with cells sensitive to light
\| turn light into electrochemical impulses
- Two types of cells
\| rods
\| cones

Vision: Rods

Sensitive to most wavelengths (brightness)
About 120 million in eye

- Most outside of fovea (center of retina)

Used for low light vision

Absorption function:

Vision: Cones

Three kinds
\| R sensitive to long wavelengths
\| G to middle
\| B to short
About 8 million in eye
Highly concentrated in fovea
II B cones more evenly distributed than others
Used for high detail color vision

Vision: Cones

The absorption functions of the cones are:

Psychophysics

Spectral Energy Distribution

\| measure intensity of light at unit wavelength intervals of electromagnetic spectrum from $\sim 400 \mathrm{~nm}$ to ${ }^{\sim} 700$ nm

Psychophysics

- Dominant Wavelength \cong hue
- Excitation Purity \cong saturation
- Luminance \cong intensity
| Lightness: luminance from a reflecting object
|| Brightness: luminance from a light source
- To mix colors
| mix power distributions!

Color Mixing: Additive

Luminous objects emit s.e.d.

- Linearly add s.e.d.'s

e.g. Monitors, lights

Color Mixing: Subtractive

| Reflective objects absorb (or filter) light

- Can't subtract s.e.d.'s

E.g., ink, film, paint, dye

Colorimetry

Based on matching colors using additive color mixing
|| Tristimulous Values

- Metamers
|| Different s.e.d.'s that appear the same
\| Same tristimulous values

Colorimetric Color Models

|| Generated color match functions
\| match each wavelength, multiple people
|| some colors require negative red!

- CIE produced two device independent models:
| 1931: Measured on 10 subjects (!) on samples subtending 2 (!) degrees of the field of view
|| 1964: Measured on larger number of subjects subtending 10 degrees of field of view

Color Match Functions

CIE 1931 Imaginary Primaries

Defines three new primary "colors"
II X, Y and Z
\| Mixtures positive valued
|| Y's fon corresponds to luminance-efficiency function
To define a color

|| weights x, y, z for the X, Y, Z primaries
(e.g. color $=x X+y Y+z Z$)

CIE 1931 Chromaticity

X, Y and Z form a three dimensional color volume
$\| Y$ is luminance, others aren't intuitive

- Factor luminance by normalizing $x+y+z=1$
- Chromaticity values:
l $x^{\prime}=x /(x+y+z)$
II $y^{\prime}=y /(x+y+z)$
|l $z^{\prime}=1-x^{\prime}-y^{\prime}$

CIE 1931 Chromaticity Diagram

|| Chromaticity diagram
\| Plot of x^{\prime} vs. y^{\prime}

- Additive color mixing
\| linear interpolation
- Color gamuts
|| range of possible colors for a device
II convex hull of primary colors
$C=$ standard illuminant
 approximates sunlight

CIE 1931 Chromaticity Diagram

- Dominant Wavelength/Hue:
\| inscribe line from C through color (A) to edge of diagram (H)
Saturation
1 distance C-A distance C-H
- Complements
\| inscribe line through C to the edge of the diagram (H^{\prime})
What if edge is bottom?

Hardware Models: RGB

(Additive Color)

- (red, green, blue)
- Parameters vary between 0 and 1

Hard to achieve intuitive effects:

- Hue is defined by the one or two largest parameters
- Saturation controlled by varying the collective minumum value of R, G and B
- Luminance controlled by varying magnitudes while keeping ratios constant

[^0]
Hardware Models: CMY, CMYK (Subtractive Color)

- (cyan, magenta, yellow, +blacK)
- All parameters vary between 0 and 1

The CMY Cube

- $K=\min (C, M, Y)$
- subtract K from each

Intuitive Hardware Models: HSV

- (hue, saturation, value)
\| value roughly luminance
I hue: ($0 . . .360$), saturation/value: ($0 . . .1$)

- Simple xform of RGB
- What do hexagonal and triangle cross sections look like?

Intuitive Hardware Models: HLS

- (hue, lightness, saturation)

II lightness roughly luminance
I hue: (0...360), saturation/value: (0...1)
HIsspace

- saturated colors at $I=0.5$
- tints above, shades below
- What do hexagonal and triangle cross sections look like?

Problem: V/L!= Luminance

- Fully saturated colors (same v / I) have far different Y values in XYZ (Sun 17" monitor, 1991):

Colour	RGB	XYZ	Chromaticity
White	111	0.9511 .0001 .088	0.3130 .329
Red	100	0.5890 .2900 .000	0.6700 .330
Green	010	0.1790 .6050 .068	0.2100 .710
Blue	001	0.1830 .1051 .020	0.1400 .080
Cyan	011	0.3620 .7101 .088	0.1680 .329
Magenta	101	0.7720 .3951 .020	0.3630 .181
Yellow	110	0.7680 .8950 .068	0.4440 .517

Problem: None of these models are perceptually uniform

|| Perceived distance between two colors not proportional to linear distance

- Uniform Color Spaces
\| Non-linear deformations
\| OSA Uniform Color Space (limited range)
\| CIELUV

\| CIELAB

Issue: Device-independent color

\| Must use CIEXYZ
II ie. Apple Colorsync
| RGB $=(0.3,0.2,0.55)$ tells you what computer generates, not what the monitor will display!
\| Depends on phosphors, room lighting, monitor adjustment

- Moving between devices (and media)
\| Go through XYZ
\| Must know properties of devices

[^0]: The RGB Cube

