Curves and Surfaces

Curves

- Implicit/Explicit
- Piecewise
- Parametric cubic curves
 - Basic ideas
 - Hermite
 - Bezier
 - B-Splines

Explicit/Implicit

- **Explicit Functions:** y = f(x) (e.g., y = 2x)
 - Only one value of y for each x
 - Not rotationally invarient
 - Difficult to represent a slope of infinity
- Implicit Equations: f(x,y) = 0 (e.g., $x^2+y^2-r^2 = 0$)
 - Need constraints to model part of a curve
 - I Joining curves together smoothly is difficult

Piecewise Parametric Curves

- Piecewise curves
 - Use multiple simple curves to model a complex curve in pieces
- Parametric Equations:

for
$$0 \square t \square 1$$
, $x = f(t)$, $y = g(t)$ (e.g., $x = 3 + 4t$, $y = 2 - 2t$)

- Easy to join curve segments smoothly
- Slopes are parametric tangent vectors

Piecewise Curves: Continuity

- G⁰: geometric continuity
 - Curve segments join together
- G¹: geometric continuity
 - I Tangent vectors equal directions at join point
- C1: parametric continuity
 - I Tangents have equal magnitude and direction
- C²: parametric continuity
 - Direction and magnitude of nth derivative equal

Parametric Cubic Curves

Use cubic curves

$$x = a_x t^3 + b_x t^2 + c_x t + d_x$$

 $y = a_y t^3 + b_y t^2 + c_y t + d_y$
 $z = a_z t^3 + b_z t^2 + c_z t + d_z$

■ Notation: **Q(t)** = **T C**, where

$$T = (t^{3} t^{2} t 1) C = (a_{x} a_{y} a_{z})$$

$$(b_{x} b_{y} b_{z})$$

$$(c_{x} c_{y} c_{z})$$

$$(d_{x} d_{y} d_{z})$$

Why Cubic?

- Lower: inflexible
- Higher: hard to control, expensive
- 4 coefficients ☐ 4 unknowns needed
 - e.g. endpoints, tangents, continuity
 - What they are determine the kind of curve

Types of Curves

- Hermite
 - 2 endpoints, 2 endpoint tangents
- Bezier
 - 2 endpoints, 2 other points defining tangents
- B-Splines
 - 4+ control points, Cⁿ continuous
 - approximates control points

Types of Curves

- Non-Uniform B-Splines
 - I Control points (knots) can be repeated
 - I Curve can be forced through control points
 - Sharp corners can be created
- Rational curves
 - 3D curves modeled in 4-space
 - Control points are (xw, yw, zw, w)
 - Weight can pull curve toward control points
 - Non-affine transforms (e.g., projection)

Defining Cubic Polys

$$Q(t) = TC = TMG$$

$$= (\ t^3 \ t^2 \ t \ 1) \qquad (\ m_{11} \ m_{12} \ m_{13} \ m_{14}) \ (\ G_1)$$

$$(\ m_{21} \ m_{22} \ m_{23} \ m_{24}) \ (\ G_2)$$

$$(\ m_{31} \ m_{32} \ m_{33} \ m_{34}) \ (\ G_3)$$

$$(\ m_{41} \ m_{42} \ m_{43} \ m_{44}) \ (\ G_4)$$

$$T \ Matrix \qquad \qquad Basis \ Matrix \qquad Geometry \\ Matrix$$

Defining Cubic Polys

i.e.
$$x(t) = T M G_x$$

= (t³ t² t 1) (
$$m_{11} m_{12} m_{13} m_{14}$$
) (g_{1x})
($m_{21} m_{22} m_{23} m_{24}$) (g_{2x})
($m_{31} m_{32} m_{33} m_{34}$) (g_{3x})
($m_{41} m_{42} m_{43} m_{44}$) (g_{4x})

Similarly for y(t) and z(t)

Defining Cubic Polys

- Basis matrix defines type of cubic
- **TM** □ 4 cubic polynomials
 - blending functions
 - Defined to achieve desired props for G
- Curve is weighted sum of elements of G
 - Weights are cubics in t

2D example

- Recall Q(t) = T M G
- Lines:

$$x(t) = (1-t) g_{1x} + (t) g_{2x}$$

- Blending functions
 - I -t + 1, t
- $M = [-1 \ 1]$

[1 0]

Aside: Derivatives

Parametric Curves

$$x = a_x t^3 + b_x t^2 + c_x t + d_x$$

 $y = a_y t^3 + b_y t^2 + c_y t + d_y$
 $z = a_z t^3 + b_z t^2 + c_z t + d_z$

Derivatives of Parametric Curves

$$dx/dt = 3a_xt^2 + 2b_xt + c_x$$

 $dy/dt = 3a_yt^2 + 2b_yt + c_y$
 $dz/dt = 3a_zt^2 + 2b_zt + c_z$

Hermite Curves

- $Q(t) = T M_H G_H$
 - **I** M_H is the Hermite Basis Matrix
 - **G**_H is the Hermite Geometry Matrix
- **G**_H: 4 triples that define the curve
 - 2 endpoints (**P₁ P₄**)
 - 2 endpoint tangents (**R**₁ **R**₄)
- What is **M**_H?

Hermite Basis Matrix M_H

- \blacksquare Given: P_1 , P_4 and R_1 , R_4
 - Recall: $x(t) = TM_HG_{Hx}$, $x'(t) = T'M_HG_{Hx}$
- Thus: $x(0) = P_{1x} = [0\ 0\ 0\ 1] M_HG_{Hx}$
 - $x(1) = P_{4x} = [1 1 1 1] M_H G_{Hx}$
 - $x'(0) = R_{1x} = [0\ 0\ 1\ 0] M_H G_{Hx}$
 - $x'(1) = R_{4x} = [3 \ 2 \ 1 \ 0] M_HG_{Hx}$

Hermite Basis Matrix

But,

Thus, $\mathbf{M_H}$ = inverse of above matrix

$$= \begin{bmatrix} 2 - 2 & 1 & 1 \\ [-3 & 3 - 2 & 1] \\ [0 & 0 & 1 & 0] \end{bmatrix}$$

Hermite Blending Functions

Q(t) = T M_H G_H
=
$$(2t^3 - 3t^2 + 1) P_1 + (-2t^3 + 3t^2) P_4 + (t^3 - 2t^2 + t) R_1 + (t^3 - t^2) R_4$$

Bezier Curves

- $Q(t) = T M_B G_B$
 - **M_B** is the Bezier Basis Matrix
 - **G**_B is the Bezier Geometry Matrix
- **G**_B: 4 control points
 - $\mathbf{P_1}$ 2 endpoints ($\mathbf{P_1}$ $\mathbf{P_4}$)
 - 2 points defining tangents (P₂ P₃), where

$$R_1 = 3(P_2 - P_1)$$

$$R_4 = 3(P_4 - P_3)$$

Bezier Curves

Bounded by convex hull of control points

Bezier Basis Matrix

But,

$$\begin{aligned} G_{B} = & \begin{bmatrix} P_{1} \\ P_{2} \end{bmatrix} & G_{H} = & \begin{bmatrix} P_{1} \\ P_{4} \end{bmatrix} & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} & G_{B} = M_{HB}G_{B} \\ & \begin{bmatrix} P_{3} \\ P_{4} \end{bmatrix} & \begin{bmatrix} R_{1} \\ R_{4} \end{bmatrix} & \begin{bmatrix} -3 & 3 & 0 & 0 \end{bmatrix} \\ & \begin{bmatrix} R_{4} \end{bmatrix} & \begin{bmatrix} 0 & 0 & -3 & 3 \end{bmatrix} \end{aligned}$$

Thus,
$$M_B = M_H M_{HB}$$

$$[-1 \ 3 \ -3 \ 1]$$

$$= [3 \ -6 \ 3 \ 0]$$

$$[-3 \ 3 \ 0 \ 0]$$

$$[1 \ 0 \ 0 \ 0]$$

Bezier Blending Functions

■ The Bernstein Polynomials

Q(t) = T M_B G_B
=
$$(1-t)^3 P_1 + 3t(1-t)^2 P_2 + 3t^2(1-t) P_3 + t^3 P_4$$