3-D Mathematical Preliminaries

3D Coordinate Systems

Left-handed coordinate system

3-D Vectors

Have length and direction

$$
V=\left[\begin{array}{ll}
x_{v}, & y_{v}, \\
z_{v}
\end{array}\right]
$$

Length is given by the Euclidean Norm

$$
\|V\| \mid=\left(x_{v}{ }^{2}+y_{v}{ }^{2}+z_{v}{ }^{2}\right)
$$

Dot Product

$$
\begin{aligned}
& \mathrm{V} \cdot \mathrm{U}=\left[\mathrm{x}_{\mathrm{v}}, \mathrm{y}_{\mathrm{v}} \mathrm{z}_{\mathrm{v}}\right] \bullet\left[\mathrm{x}_{\mathrm{u}}, \mathrm{y}_{\mathrm{u}} \mathrm{z}_{\mathrm{u}}\right] \\
& =x_{v} x_{u}+y_{v} y_{u}+z_{v} z_{u} \\
& =\||V|| ||U| \mid \cos B
\end{aligned}
$$

Cross Product $\quad \mathbf{V} \mathbf{x} \mathbf{U}=\left[\mathbf{v}_{\mathbf{y}} \mathbf{u}_{\mathbf{z}}-\mathbf{v}_{\mathbf{z}} \mathbf{u}_{\mathbf{y}},-\mathbf{v}_{\mathbf{x}} \mathbf{u}_{\mathbf{z}}+\mathbf{v}_{\mathbf{z}} \mathbf{u}_{\mathbf{x}} \mathbf{v}_{\mathbf{x}} \mathbf{u}_{\mathbf{y}}-\mathbf{v}_{\mathbf{y}} \mathbf{u}_{\mathbf{x}}\right]$

$$
\mathbf{V} \times \mathrm{U}=-(\mathbf{U} \times \mathrm{V})
$$

Parametric Definition of a Line

Given two points: $\mathbf{P}_{\mathbf{1}}=\left(\mathbf{x}_{\mathbf{1}}, \mathbf{y}_{\mathbf{1}}, \mathbf{z}_{\mathbf{1}}\right), \mathbf{P}_{\mathbf{2}}=\left(\mathbf{x}_{\mathbf{2}}, \mathbf{y}_{\mathbf{2}}, \mathbf{z}_{\mathbf{2}}\right)$

$$
\begin{aligned}
& x=x_{1}+t\left(x_{2}-x_{1}\right) \\
& y=y_{1}+t\left(y_{2}-y_{1}\right) \\
& z=z_{1}+t\left(z_{2}-z_{1}\right)
\end{aligned}
$$

Given a point $\mathbf{P}_{\mathbf{1}}$ and a vector $\mathbf{V}=\left[\mathbf{x}_{\mathbf{v}}, \mathbf{y}_{\mathbf{v}}, \mathbf{z}_{\mathbf{v}}\right]$

$$
x=x_{1}+t x_{v y} \quad y=y_{1}+t y_{v}, \quad z=z_{1}+t z_{v}
$$

Short form: $\mathbf{L}=\mathbf{P}_{\mathbf{1}}+\mathbf{t}\left[\mathbf{P}_{\mathbf{2}}-\mathbf{P}_{\mathbf{1}}\right]$ or $\mathbf{L}=\mathbf{P}_{\mathbf{1}}+\mathbf{V t}$

Equation of a plane: $A x+B y+C z+D=0$

Normalized Form:
$A^{\prime} x+B^{\prime} y+C^{\prime} z+D^{\prime}=0$
where $\quad A^{\prime}=A / d, \quad B^{\prime}=B / d, \quad C^{\prime}=C / d, \quad D^{\prime}=D / d$ $d=\left(A^{2}+B^{2}+C^{2}\right)$

Distance between a point and the plane is given by $\mathbf{A}^{\prime} \mathbf{x}+\mathbf{B} \mathbf{y} \mathbf{+} \mathbf{C} \mathbf{\prime} \mathbf{z}+\mathbf{D}^{\prime} \quad$ (sign indicates which side)
[$\mathbf{A}, \mathbf{B}, \mathbf{C}$] is the normal vector
Proof: Given P_{1} and P_{2} in the plane, $\left[P_{2}-P_{1}\right]$ is in the plane and

$$
\begin{aligned}
{[\mathrm{A}, \mathrm{~B}, \mathrm{C}] \cdot\left[\mathrm{P}_{2}-\mathrm{P}_{1}\right] } & =\left(A x_{2}+B y_{2}+C z_{2}\right)-\left(A x_{1}+B y_{1}+C z_{1}\right) \\
& =(-D)-(-D) \\
& =0
\end{aligned}
$$

Derivation of Plane Equation

To derive equation of the plane given three points:
$\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}$
$\left[P_{3}-P_{1}\right] \times\left[P_{2}-P_{1}\right]=N$, orthogonal vector

Given a point $\mathbf{P}=(\mathbf{x}, \mathbf{y}, \mathbf{z})$
$\mathbf{N} \bullet\left[\mathbf{P}-\mathbf{P}_{1}\right]=\mathbf{0}$
if \mathbf{P} is in the plane.

Affine Transformations

Linear transformations (rotation, scale, shear,...) plus translation
I Represented as matrices
Objects defined in local coordinates
\| Transformed to other reference frames
E.g., world coordinates

Transform objects by xforming vertices

Homogeneous Coordinates

Represent transformations as matrices
\| easier to manipluate and use
. How to represent translation?
\| Use 3×3 matrices for 2D xform, 4×4 for 3D
Represent points as $1 x 3$ or $1 x 4$ vectors
|| point $P=(x, y, 1)$ or $(x, y, z, 1)$

Homogeneous 3-D Coordinates

(\mathbf{T} is any transformation, \mathbf{P} is any point)
TP = T(x,y,z,1) = (x', y', z',w)

Homogenize the result:

$$
\mathbf{P}_{h}=\left(x^{\prime} / w, y^{\prime} / w, z^{\prime} / w, \mathbf{1}\right)
$$

Translations

Translation = moving an object
Translate object
I translate each vertex
Translate point
I add translation (tx, ty) to vertex ($\mathrm{x} 1, \mathrm{y} 1$)

Translation

(1	0	0	t_{x})	(x)
(0	1	0	t_{y})	(y)
(0	0	1	t_{z})	(z)
(0	0	0	1)	(1)
	T			P

Rotation About the Origin

$$
\begin{aligned}
& \sin (A+B)=y 2 / r \\
& \cos (A+B)=x 2 / r \\
& \sin A=y 1 / r, \cos A=x 1 / r
\end{aligned}
$$

From the double angle formulas $\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\square y 2 / r=(y 1 / r) \cos B+(x 1 / r) \sin B$ $y 2=x 1 \sin B+y 1 \cos B$
Similarly
$x 2=x 1 \cos B-y 1 \sin B$

3D Rotations

About the z axis	$R_{z}(\beta) P=(\cos \beta$	$-\sin \beta$	0	0)	(x)
	$(\sin \beta$	$\cos \beta$	0	0)	(y)
	(0)	0	1	0)	(z)
	(0	0	0	1)	(1)
About the x axis	$\mathrm{R}_{\mathrm{x}}(\beta) \mathrm{P}=(1$	0	0	0)	(x)
	(0	$\cos \beta$	$-\sin \beta$	0)	(y)
	(0	$\sin \beta$	$\cos \beta$	0)	(z)
	(0)	0	0	1)	(1)
About the y axis	$R_{y}(\beta) P=(\cos \beta$	0	$\sin \beta$	0)	(x)
	${ }_{\gamma}(0$	1	0	0)	(y)
	$(-\sin \beta$	0	$\cos \beta$	0)	(z)
	(0)	0	0	1)	(1)

Scaling

Scaling = changing the size of an object
Scale object
II scale each vertex

Scale point

II multiply scale factor (sx, sy) by vertex ($\mathrm{x} 1, \mathrm{y} 1$)

Scale

$\left(s_{x}\right.$	0	0	$0)$	(x)
$(0$	s_{y}	0	$0)$	(y)
$(0$	0	s_{z}	$0)$	(z)
$(0$	0	0	$1)$	(1)
		S		P

$$
S P=\left(s_{x} x, s_{y} y, s_{z} z\right)
$$

Shears

Original Data y Shear x Shear
e.g., GRAPHICS \square x shear \square GRAPHICS

Shears
$S H_{x y} P=\left(\begin{array}{llll}1 & 0 & s h_{x} & 0\end{array}\right) \quad(x)$
(0 $\left.1 \begin{array}{lll}0 & s h_{y} & 0\end{array}\right)$
0) (y)
$\begin{array}{lll}0 & 0 & 1\end{array}$
0) (z)
$\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)$
(1)
$S H_{x y} \mathbf{P}=\left(x+\operatorname{sh}_{x} z, y+\operatorname{sh}_{y} z_{1}, s_{z} z\right)$

Composite Transformations

if

$$
\mathbf{P}^{\prime}=\mathbf{M}_{\mathbf{1}} \mathbf{P} \text { and } \mathbf{P}^{\prime \prime}=\mathbf{M}_{\mathbf{2}} \mathbf{P}^{\prime}
$$

then

$$
\mathbf{M}_{\mathbf{3}}=\mathbf{M}_{2} \mathbf{M}_{\mathbf{1}} \text { and } \mathbf{P}^{\prime \prime}=\mathbf{M}_{\mathbf{3}} \mathbf{P}
$$

NOTE: in general, $\mathbf{M}_{\mathbf{2}} \mathbf{M}_{\mathbf{1}} \neq \mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{2}}$

Composite Transformations

Problem:
|| scale transformation moves the object being scaled
i.e. scale the line $[(2,1),(4,1)]$ by $2 x$

Composite Transformations

Notice: scale line $[(0,1),(2,1)]$ by $2 x$ \square left end does not move

$(0,0)$ is a fixed point for the scaling transformation
Use composite transformations to create scale transformations with different fixed points

Fixed Point Scaling

Scale by 2 with fixed point $=(2,1)$
II Translate the point $(2,1)$ to the origin
I Scale by 2
\| Translate origin to point $(2,1)$

More Fixed Point Scaling

Scale by 2 with fixed point $=(3,1)$
II Translate the point $(3,1)$ to the origin
I Scale by 2
\| Translate origin to point $(3,1)$

Rotation About a Fixed Point

Rotation Of \varnothing Degrees About Point (x, y)
II Translate (x, y) to origin
\| Rotate by \varnothing
\| Translate origin to (x, y)

Rotation About An Arbitrary Axis

1. Translate one end of the axis to the origin
$\mathbf{U}=\left[P_{2}-P_{1}\right]=\left[u_{1}, u_{2}, u_{3}\right]$
Some useful values:
$a=\left(u_{1}{ }^{2}+u_{3}{ }^{2}\right)$
$b=\left(u_{1}{ }^{2}+u_{2}{ }^{2}\right)$
$c=\left(u_{2}{ }^{2}+u_{3}{ }^{2}\right)$
$\cos \beta=u_{3} / a$
$\sin B=u_{1} / a$

2. Rotate $-\beta$ degrees about the y-axis

3. Rotate $-\mu$ degrees about the x-axis

4. Rotate R degrees about the z-axis

U is aligned with the z -axis Apply the original rotation, 且
5. Apply the inverses of the transformations in reverse order.

Rotation About an Arbitrary Axis
 $\mathbf{T}^{-1} \mathbf{R}_{\mathrm{y}}(\beta) \mathbf{R}_{\mathrm{x}}(-\boldsymbol{\mu})$ 圆 $\mathbf{R}_{\mathrm{x}}(\boldsymbol{\mu}) \mathbf{R}_{\mathrm{y}}(-\beta) \mathbf{T}$

Alternate view of the Rotation Matrix

Given P_{1}, P_{2}, P_{3}
$P_{1} P_{2}$ is direction, $P_{1} P_{3}$ is "up"
$R_{c c}=\left(\begin{array}{lllll}\left(r_{1 x}\right. & r_{2 x} & r_{3 x} & 0\end{array}\right)$
$\left(\begin{array}{llll}r_{1 y} & r_{2 y} & r_{3 y} & 0\end{array}\right)$
$\left(\begin{array}{llll}r_{1 z} & r_{2 z} & r_{3 z} & 0\end{array}\right)$
$\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)$

Alternate view of the Rotation Matrix

Z axis rotates to be aligned with $P_{1} P_{2}$
$R_{z}=\left[\mathbf{r}_{3 x}, \mathbf{r}_{3 y}, \mathbf{r}_{\mathbf{3 z}}\right]=$ normalized $\mathrm{P}_{\mathbf{1}} \mathrm{P}_{\mathbf{2}}$
X axis rotates to be normal to P_{1}, P_{2}, P_{3} plane $R_{x}=\left[\mathbf{r}_{1 x}, \mathbf{r}_{\mathbf{1 y}}, \mathbf{r}_{\mathbf{1 z}}\right]=$ normalized $\mathrm{P}_{\mathbf{1}} \mathrm{P}_{\mathbf{3}} \times \mathrm{P}_{\mathbf{1}} \mathrm{P}_{\mathbf{2}}$
Y axis rotates to be normal to $R_{x} R_{z}$ plane
$R_{\mathbf{y}}=\left[\mathbf{r}_{\mathbf{2 x}}, \mathbf{r}_{\mathbf{2 y}}, \mathbf{r}_{\mathbf{2 z}}\right]=$ normalized $\mathrm{R}_{\mathbf{z}} \times \mathrm{R}_{\mathbf{x}}$

Transformations as a Change of Coordinate System

Objects modelled in local coordinates
\| Xforms that move objects into world coordingates are called modeling xforms
If xform \mathbf{M} takes points from $\mathbf{C S}_{\mathbf{1}}$ to $\mathbf{C S}_{\mathbf{2}}$
$\mathbf{M}^{\mathbf{- 1}}$ takes origin of $\mathbf{C S}_{\mathbf{1}}$ to $\mathbf{C S}_{\mathbf{2}}$

