
Intro to OpenGL, Intro to Modeling

1

This class

z Recap of first lecture
z Overview of 3D Graphics
z Building Interactive Applications using

OpenGL in Java using GL4Java
z Assignment #1
z Representation and Modeling of Objects

y Polygonal, CSG, Volumetric, Implicit

Recap from last class

z Take away:
y Basic organization and history of raster

graphics hardware
x Structure of graphics cards
x Architecture of CRT displays

y Basic terminology
y Artifacts of CRT technology on quality of

rendered image

Intro to OpenGL, Intro to Modeling

2

3D Graphics: Overview

z Take away:
y Global vs. local illumination

x The major distinction between graphics algorithms

y Global: unsolved, active research problem
x 2 well known approaches: ray-tracing, radiosity
x Slow, offline algorithms

y Local: widely used, less realistic
x OpenGL, other immediate packages
x Typically relies on gross approximations
x Fast, interactive algorithms

Global vs. Local Illumination

z Global
y Model interactions between light and objects
y Impossible in practice!

x Still active research problem

y Basic idea: “Follow the light”

z Local
y Consider each object independently

Intro to OpenGL, Intro to Modeling

3

Ray Tracing

z “Trace” rays around scene
y Can’t follow photos from light source to eye
y Rather, trace from eye into scene

x Models direct interactions
x Complex interactions are approximated by

“ambient” term

y Basis for modern offline algorithms
x Films such as Toy Story

Radiosity

z Attempt to model complex interactions
using heat transfer equations
y Basic techniques limited to perfect diffusers
y No sharp highlights or reflections

z Realistic looking ambient interiors

Intro to OpenGL, Intro to Modeling

4

Local Illumination

z Interaction of object and lights
y Objects are completely defined
y No object-object interaction

z Phong model
y Gross simplification, no physical basis: Hack!

x Bland, plastic look

y Basis of modern local illumination hardware

z “What looks good and is fast?”

Local Illumination

z Add on algorithms for
y Shadows
y Complex surfaces

x Texture mapping
x Bump mapping
x Environment mapping

z All are approximations

Intro to OpenGL, Intro to Modeling

5

z Conceptual Application Model

Application
Model

Application
Program

Graphics
System

I/O hardware

ie. OpenGL
+

GL4Java on
X, NT, Mac, ...

Building Interactive Applications using
OpenGL in Java using GL4Java

Wait for something to happen

React to it!

Application Control Flow

z Interactive programs are event driven

z What are events?
y User input
y Window system, application generated

Intro to OpenGL, Intro to Modeling

6

OpenGL

z 3D graphics library
y Output only: render graphics

x Only knows about “graphics contexts”

z Platform independent: No support for
y Window creation

x GLX, GLW, …
x Hidden in GLUT (C/C++) or Java (GL4Java)

y Input

OpenGL

z Immediate mode pipeline
y Collection of state

x Xforms, materials, lighting, textures, modes, …

y Feed fragments in
x Triangles, points, lines, quads, …

y Operate on each immediately
x Xform, cull, shade, texture, rasterize, …
x No memory of fragments

Intro to OpenGL, Intro to Modeling

7

GL4Java: Java OpenGL bindings

z OS independent Java/OpenGL programs:
y Multiple windows for OpenGL rendering.
y Java AWT-style events.
y Other features

x Support for animation and timing.
x Utility routines to generate various objects (built on the

GLUT toolkit).
x Support for bitmap and stroke fonts.
x Support for texture loading.

Input

z Uses standard AWT event mechanisms

Intro to OpenGL, Intro to Modeling

8

Assignment #1

z Hand out today, due Friday August 29th
z Purpose:

y Learn how to write Java/OpenGL programs
y Handle input, simple non-trivial output

Representation and Modeling

z Take away:
y Different approaches are appropriate for

different situations
x Polygonal, CSG, Volumetric, Implicit

y Rendering usually (but not always) requires a
polygonal model

x e.g., Volume rendering hardware exists

Intro to OpenGL, Intro to Modeling

9

Polygonal Modeling

z Most common representation
y Object == collection of flat polygonal faces
y May be closed or not

z Simple to render
y Basis for most modern hardware

z Hard to model complex objects
y Hard to update, modify objects

Polygonal Objects

z Many possible data structures can be used
z Typically

y Collection of vertices, V
y Collection of edges (refer to V), E
y Collection of faces (refer to E), F

z Other attributes associated with each
y Color or material, normal, geometric

properties, 1 or 2 sided, texture info, etc.

Intro to OpenGL, Intro to Modeling

10

CSG (Constructive Solid Geometry)

z User representation
y Define objects by combining primitive objects

using set operations and linear xforms
x Cones, spheres, cubes, …
x Union, difference, intersection

z Compact and elegant when appropriate
y CAD, machining

Volumetric Representations

z Divide space into regions
y “Voxel” == smallest cubic element

z Label each as in or out of object
z Appropriate when data is in this form

y Medical visualization (e.g., MRI data)

z Representations (octree, …) used to
accelerate other algorithms
y Organize polygonal scenes for ray tracing, …

Intro to OpenGL, Intro to Modeling

11

Implicit Representation

z E.g., x2 + y2 + z2 = 1
z Used in scientific processes
z Limited use for modeling

y Few models can be represented this way
y Hard to manipulate, render

z As before, useful for optimizing other
algorithms
y Bounding volumes for collision detection, …

