Ray Tracing

Recall basic idea

Page «\#

The Adventures of 7 Rays

Illumination of a point

- Start with our illumination equation:

$$
I=I_{a} k_{a} O_{d}+\sum_{1 \leq i s m} f_{a t+i} I_{p i}\left[k_{d} O_{d}\left(N \cdot L_{i}\right)+k_{s}\left(R_{i} \cdot V\right)^{n}\right]
$$

ζ Change $R_{i} \cdot V$ to $N \cdot H_{i}$
See p 178 for why
For A5, drop k_{a} joogl doesn't use it, so scene is lit assuming $k_{a}=1$ Shadows and reflection?

Illumination of a point:

Shadows

If L_{i} hits an object before the light, we are in shadow
Add S_{i} component before $f_{\text {atti } i}$
110 if light i is blocked
II 1 if light i is not blocked
I Could be $0 . .1$ if blocked by transparent object

Illumination of a point:
 Reflection

Compute illumination of reflected ray I_{r}
$\|$ Add $k_{s} I_{r}$
Attenuate for distance

Illumination of a point:
 Transparency

- Compute illumination of transmitted ray I_{+}

May refract V to get I_{t}
Add $k_{t} I_{+}$
k_{t} is the transmission coefficient
Attenuate for distance

Illumination of a point

Final illumination equation:

$$
\begin{aligned}
I= & I_{\mathrm{a}} O_{d}+k_{s} I_{r}+k_{f} I_{t}+ \\
& \sum_{1 \leq 0 \leq m} S_{i} f_{a+t i} I_{\mathrm{pi}}\left[k_{\mathrm{d}} O_{\mathrm{d}}\left(N \cdot L_{i}\right)+k_{s}\left(N \cdot H_{i}\right)^{n}\right]
\end{aligned}
$$

Computing Intersections

Sphere/Ray Intersections

Sphere

I center $\quad S c=[X c, Y c, Z c]$
|| radius $\quad \mathrm{Sr}$
II surface points [$X s, Y s, Z s$] where $(X s-X c)^{2}+(Y s-Y c)^{2}+(Z s-Z c)^{2}=S r^{2}$
Ray
II $X=X 0+X d^{\star} \dagger$
II $Y=Y 0+Y d^{\star} \dagger$
|l $Z=Z 0+Z d^{\star} \dagger$

Sphere/Ray Intersections

Substitute Ray eq's into Sphere eq:
$\|\left(X 0+X d^{\star} t-X c\right)^{2}+\left(Y O+Y d^{\star} t-Y c\right)^{2}+$ $\left(Z O+Z d^{\star}+-Z c\right)^{2}=S r^{2}$
Simplify to get $A t^{2}+B t+C=0$, where
$A=X d^{2}+Y d^{2}+Z d^{2}$
$B=2(X d(X O-X c)+Y d(Y O-Y C)+Z d(Z O-Z d))$
$C=(X O-X c)^{2}+(Y O-Y c)^{2}+(Z O-Z c)^{2}-S r^{2}$

Sphere/Ray Intersections

Solve using quadratic formula
Discriminant (part under sqrt())
|| Negative: no intersection
|| Positive: two solutions, t0 and t1

Page «\#»

Sphere/Ray Intersections

Intersection point ri $=[X i, Y i, Z i]$
II Substitute t1 or t0 into ray eq's
Surface normal
$\| r n=[X n, Y n, Z n]$

$$
=(r i-S c) / S r
$$

Ray/Plane Intersection

Ray: $R_{0}=\left[X_{0}, Y_{0}, Z_{0}\right]$
$R_{d}=\left[X_{d}, Y_{d}, Z_{d}\right]$ (normalized)
where $R(t)=R_{0}+R_{d} t, t>0$
Plane: $A x+B y+C z+D=0$

$$
P_{n}=[A, B, C]
$$

for any $[x, y, z]$,
$A x+B y+C z+D=$ distance to plane

Ray/Plane intersection

Substitute Ray eq. into Plane eq.

$$
A\left(X_{0}+X_{d} t\right)+B\left(Y_{0}+Y_{d} t\right)+C\left(Z_{0}+Z_{d} t\right)+D=0
$$

- Solve for \dagger

$$
\begin{aligned}
t & =-\left(A X_{0}+B Y_{0}+C Z_{0}+C\right) /\left(A X_{d}+B Y_{d}+C Z_{d}\right) \\
& =-\left(P_{n} \cdot R_{0}+D\right) /\left(P_{n} \cdot R_{d}\right) \\
v_{d} & =A X_{d}+B Y_{d}+C Z_{d} \\
\text { If } & \text { if } 0, \text { parallel } \\
\text { If } & >0 \text {, plane facing away }
\end{aligned}
$$

Ray/Plane intersection

$v_{d}=A X_{d}+B Y_{d}+C Z_{d}$
If if 0 , parallel
II if >0, plane facing away
Calculate $t=-\left(\mathrm{AX}_{0}+\mathrm{BY}_{0}+C Z_{0}+C\right) / v_{d}$ $\|$ if $t<0$, plane intersects behind viewer
Use \dagger in ray eq. to compute intersection

Ray/Polygon Intersection

Compute intersection with polygon plane

Jordan Curve Theorem
II Line from intersection point of ray/plane
\| Count number of poly edges
Even: outside
Odd: inside

Ray/Polygon Intersection

- Practical details

II Project polygon onto 2D plane
Normal is [A B C], choose largest abs. Value
Area changes, topology doesn't
UV coordinates
\| Translate result so ray intersection point is at origin
\| Use +U axis as line to intersect
Look at lines that intersect it

