
Rendering

CS4451 Fall 2002 1

9/23/02

Rendering

� Rasterizing Lines and Polygons
� Hidden Surface Remove
� Multi-pass Rendering with Accumulation Buffers

9/23/02

2

4

1 2 3 4 5 6

3

5

6

1 P1 = (X1,Y1)

P2 = (X2,Y2)

P = (X,Y)

SLOPE =
RISE

RUN
=

Y2-Y1

X2-X1

Basic Math Review

Slope-Intercept Formula For Lines

Given a third point on the line:
 P = (X,Y)

Slope == (Y - Y1)/(X - X1)
 = (Y2 - Y1)/(X2 - X1)
Solve for Y

 YY = [(Y2-Y1)/(X2-X1)]X +
 [-(Y2-Y1)/(X2-X1)]X1 + Y1

or
 Y = mx + b

Rendering

CS4451 Fall 2002 2

9/23/02

Basic Math Review:
Other Helpful Formulas

Length of line segment between P1 and P2:
L = √ [(X2-X1)2 + (Y2-Y1)2]

Midpoint of a line segment between P1 and P3:
P2 = ((X1+X3)/2 , (Y1+Y3)/2)

Two lines are perpendicular iff:
M1 = -1/M2

9/23/02

Basic Math Review:
Parametric Form of a 2D Line

Given points P1 = (X1, Y1) and P2 = (X2, Y2)
X = X1 + t(X2-X1)
Y = Y1 + t(Y2-Y1)

When
t = 0 we get (X1,Y1)
t = 1 we get (X2,Y2)

As 0 < t < 1, we get all points between (X1,Y1) and
(X2,Y2)

Rendering

CS4451 Fall 2002 3

9/23/02

Basic Line Algorithm

Must:
1. Compute integer coordinates of pixels which lie on or near a line.
2. Be efficient.
3. Create visually satisfactory images.

Lines should appear straight
Lines should terminate accurately
Lines should have constant density
Line density should be independent of line length and angle

4. Always be defined.

9/23/02

Procedure DDA(X1,Y1,X2,Y2 :Integer);
Var Length, I :Integer;

X,Y,Xinc,Yinc :Real;

Begin
Length := ABS(X2 - X1);
If ABS(Y2 - Y1) > Length Then

Length := ABS(Y2-Y1);
Xinc := (X2 - X1)/Length;
Yinc := (Y2 - Y1)/Length;
X := X1;
Y := Y1;

� Creates good lines, but problems ...

For I := 0 To Length Do
Begin

Plot(Round(X), Round(Y));
X := X + Xinc;
Y := Y + Yinc

End {For}
End; {DDA}

Simple DDA Line Algorithm
{Based on the parametric equation of a line}

Rendering

CS4451 Fall 2002 4

9/23/02

6 7 8 9 10 11 12 13

9

10

11

12

13

DDA Example

Render the line from (6,9) to (11,12):
Length := Max of (ABS(11-6), ABS(12-9)) = 5
Xinc := 1
Yinc := 0.6

Values computed are:
 (6,9),
 (7,9.6),

(8,10.2),
(9,10.8),
(10,11.4),

 (11,12)

9/23/02

+x-x

-y

+y

Fast Lines Using The Midpoint Method

Assumptions: line between points (0,0) and (a,b) with slope 0 ≤ m ≤ 1
i.e. lies in first octant:

Recall: y = mx + B (m is the slope, B is the y-intercept)
⇒ m = b/a and B = 0
⇒ y = (b/a)x + 0
⇒ f(x,y) = bx - ay = 0

Rendering

CS4451 Fall 2002 5

9/23/02

(xi + 1, yi + 1/2 + e)
e

(xi +1,yi + 1/2)

P = (xi, yi) S = (xi + 1, yi)

T = (xi + 1, yi + 1)

Fast Lines (cont.)

Two choices for next pixel (T or S),
want the pixel closer to line!

Assume distance between
pixel centers is 1

Midpoint is (xi + 1,yi + 1/2)

e is difference between midpoint and where line crosses between
S and T

If e is positive, line crosses above the midpoint and is closer to T
If e is negative, line crosses below the midpoint and is closer to S
⇒ don’t need exact value of e

9/23/02

Fast Lines:
The Decision Variable

f(xi+1,yi+ 1/2 + e) = b(xi+1) - a(yi+ 1/2 + e) = b(xi + 1) - a(yi + 1/2) -ae
= f(xi + 1, yi + 1/2) - ae = 0

Let di = f(xi + 1, yi + 1/2) = ae; di is known as the decision variable.
Since a ≥ 0, di has the same sign as e.
Algorithm:

If di ≥ 0 then
Choose T = (xi + 1, yi + 1) as next point
di+1 = f(xi+1 + 1, yi+1 + 1/2) = f(xi +1+1, yi +1+1/2)

= b(xi +1+1) - a(yi +1+1/2) = f(xi + 1, yi + 1/2) + b - a
= di + b - a

else
Choose S = (xi + 1, yi) as next point
di+1 = f(xi+1 + 1, yi+1 + 1/2) = f(xi +1+1,yi +1/2)

= b(xi +1+1) - a(yi +1/2) = f(xi + 1, yi + 1/2) + b
= di + b

Rendering

CS4451 Fall 2002 6

9/23/02

Fast Line Algorithm

Calculate initial value for d0 directly from f(x,y) at (0,0):
d0 = f(0 + 1, 0 + 1/2) = b(1) - a(1/2) = b - a/2

Algorithm for a line from (0,0) to (a,b) in the first octant is:

x := 0;
y := 0;
d := b - a/2;
For i := 0 to a do Begin

Plot(x,y);

If d ≥ 0 Then Begin
x := x + 1;
y := y + 1;
d := d + b - a

End

The only non-integer value is a/2. How can we get rid of it?

Else Begin
x := x + 1;
d := d + b

End
End

9/23/02

Generalize for lines beginning at points other than (0,0)

Begin {Bresenham for lines with slope between 0 and 1}
a := ABS(xend - xstart);

b := ABS(yend - ystart);
d := 2*b - a;

Incr1 := 2*(b-a);
Incr2 := 2*b;
If xstart > xend Then Begin

x := xend;
y := yend

End
Else Begin

x := xstart;
y := ystart

End;

For I := 0 to a Do Begin
Plot(x,y);
x := x + 1;
If d ≥ 0 Then Begin

y := y + 1;
d := d + incr1

End
Else

d := d + incr2
End {For Loop}

End; {Bresenham}

Bresenham’s Line Algorithm

Rendering

CS4451 Fall 2002 7

9/23/02

11 12 13 14 15 16 17

9

10

11

12

13

14

15

16

6 7 8 9 10

Optimizations

� Detect cycles in the decision variable
� correspond to a repeated pattern of pixel choices

� Save pattern, reuse if a cycle is detected

 di= 2 -6 6 -2 10 2 -6 6 -2 10

9/23/02

P = { (xi , yi) } i=1,n E3

(x3,y3)

E2

(x2,y2)
E1(x1,y1)

Polygons

� Polygon: many-sided planar figure of vertices and
edges

� Vertices: represented by points (x,y)
� Edges: represented as line segments between two
points, (xi,yi) and (xi+1,yi+1)

Rendering

CS4451 Fall 2002 8

9/23/02

Convex and Concave Polygons

� Convex Polygon:
� Given P1, P2 inside polygon
� All P = uP1 + (1-u)P2, u in [0,1] is inside polygon

� Concave = not convex!

9/23/02

� P is inside a polygon iff a scanline intersects the polygon edges an
odd number of times moving from P in either direction

� Problem when scan line crosses a vertex:

42 3
1

Does the
vertex count
as two
points?

Or should
it count as
one point?

How do we know a point is "inside" a polygon?

Rendering

CS4451 Fall 2002 9

9/23/02

Count onceCount twice

oror

Max-Min Test

� Vertex = local max or min
� Count it twice, else count it once.

9/23/02

Filling Polygons

� Fill polygon 1 scanline at a time

� Set pixels inside polygon on each scanline to the
appropriate value

� Look only for those pixels at which changes occur

Rendering

CS4451 Fall 2002 10

9/23/02

2

4

6

8 For scan-line number 7 the sorted
list of x-coordinates is (1,3,7,9)

How do we know a point is
"inside" a polygon?

Scan-Line Algorithm

� For each scan-line:
1. Find intersections of scan line with all edges
2. Sort intersections by increasing x-coordinate
3. Fill all pixels between pairs of intersections

9/23/02

Possible Problems

� Horizontal edges
� Ignore

� Vertices
� If local max or min, count twice, else count once
(Implemented by shortening one edge by one pixel)

� Calculating intersections is slow

Rendering

CS4451 Fall 2002 11

9/23/02

Edge Coherence

� Observations:
� Not all edges intersect each scanline
� If edge intersected in scanline i, will probably be
 intersected by scanline i+l

� Consider scanline s, the line y = s
 s = mxs + b
⇒ xs = (s-b)/m

� For scanline s + 1,
 xs+1 = (s+1 - b)/m = xs + 1/m

9/23/02

Active Edges

Not yet active edges

Ignored horizontal edge

Finished edge

Processing Polygons

� Polygon edges sorted according to minimum Y
� Scan lines processed in increasing (decreasing) Y order
� When current scan line reaches edge, it becomes active
� When current scan line passes edge, it becomes inactive

� Active edges sorted according to increasing X
� Fill the scan line between alternating edge intersections

Rendering

CS4451 Fall 2002 12

9/23/02

Pattern

Pattern filled polygon

Fill Patterns: Simple “textures”

� Defined as a 0-based, m x n array
� Pixel (x,y) is assigned the value found in:

� pattern((x mod m), (y mod n))

9/23/02

Halftoning

� Mimic greyscale on bitmapped displays
� Tradeoff resolution (addressability) for range of
intensities

� Patterns should be designed to avoid being noticed

Rendering

CS4451 Fall 2002 13

9/23/02

Dithering

� Another way to mimic grey on bit-mapped displays
� Ordered dither: turn pixel on or off at (x,y) based on

� desired intensity I(x,y) at that point
� an (n by n) dither matrix Dn

� Each integer 0 to n2 -1 appears once in the matrix Dn
e.g. D4 0 8 2 10

12 4 14 6
3 11 1 9
15 7 13 5

� let i = x MOD 4, j = y MOD 4
� if I(x,y) > D4(i, j) then (x,y) is turned on; otherwise it is not

9/23/02

Antialiasing

� Aliasing caused by finite addressability of CRT
� Approximation of lines with discrete points can result in
a staircase appearance or "Jaggies"

� Desired line

� Aliased rendering of the line

Rendering

CS4451 Fall 2002 14

9/23/02

Antialiasing - Solutions

� Aliasing can be smoothed out by using higher addressability.
� Problem: addressability usually fixed

� Solution: intensity is variable, so use it
⇒ two adjacent pixels can give impression of point part way between
⇒ perceived location of point dependent upon ratio of intensities

� An antialiased line has virtual pixels “located” at the proper
addresses

9/23/02

AA

B

C

e

B

C

e

A

B

C

e

A = 0.5 + e
B = 1 - abs(e+0.5)
C = 0

A = 0.5 + e
B = 1 - abs(e+0.5)
C = 0

A = 0
B = 1 - abs(e+0.5)
C = -0.5 - e

e > 0 0 > e > -0.5 e < -0.5

Antialiased Bresenham Lines

� Use the distance (e = di/a) value to determine pixel intensities.
� Three possible cases for the Bresenham algorithm:

� What about color?

Rendering

CS4451 Fall 2002 15

9/23/02

Xi Xi+1

Xj Xj+1

Antialiasing Polygons

� Polygon edges suffer from aliasing as lines
� Similar method can be used on the scan line fill

� If odd intersection between two pixels Xi < X < Xi+1
� pixel Xi is assigned the intensity (Xi+1 -X)
� pixel Xi+1 is assigned intensity 1.0

� At even intersection, reverse is true

9/23/02

Hidden Surface Elimination

(Visible Surface Determination)

Rendering

CS4451 Fall 2002 16

9/23/02

Approaches

1. Back-Face Removal

2. z-Buffer (Depth-Buffer)

3. Depth-Sort

4. BSP-Tree

5. Scanline Algorithm (see book)

9/23/02

1) Back-Face Removal (Culling)

� Remove unseen polygons from convex, closed
polyhedron (Cube, Sphere)

� Does not completely solve problem
� One polyhedron may obscure another

Rendering

CS4451 Fall 2002 17

9/23/02

P1

P2 P3

P4

P5

P6
P7

P8

Back Face Algorithm

� Idea. For each polygon:
� If surface normal faces toward eye, keep
� If surface normal faces away from eye, toss

� Adopt convention for vertex order
� ie. assume counter-clockwise w.r.t. front

� (P1, P2, P3, P4)

� Compute N

9/23/02

Back Face Algorithm

� Look at surface normal
� In World Coordinates

� If A xe + B ye + C ze + D < 0
 The polygon is a backface.

� After Normalizing/Perspective Projection?
� What is (xe, ye, ze)?

Rendering

CS4451 Fall 2002 18

9/23/02

2) z-Buffer (Depth-Buffer)

� Look at each pixel
� Pixel shows closest object in world

� We have all info to compute z(x,y)

9/23/02

 Y axis

-Z

+1

-1

-1

 Y axis
+1

-1

-Z-1

Back
Clipping
Plane
z=-1

Front
Clipping
Plane

y=-z

y=z

Which Z?

� Recall canonical view volumes:

Rendering

CS4451 Fall 2002 19

9/23/02

(x1,y1,z1)

(x2,y2,z2)
(x3,y3,z3)

Computing Pixel z-values

� Vertically: zi+1 = zi + ∆zv, ∆zv = (z1-z3)/(y1-y3)
� Horizontally: zi+1 = zi + ∆zh, ∆zh = (z1-z3)/(x1-x3)

� Perspective projection gives
z-values for vertices of
polygons. To find the z-
values for the boundary and
interior pixels you do a
linear interpolation

9/23/02

z-Buffer Algorithm

� Initialize:
� Each z-buffer location ⇐ Max z value
� Each frame buffer loc. ⇐ background color

� For each polygon:
� Compute z(x,y), depth at the pixel (x,y)
� If z(x,y) < z buffer value at pixel (x,y) then

� z buffer(x,y) ⇐ z(x,y)
� pixel(x,y) ⇐ color of polygon at (x,y)

Rendering

CS4451 Fall 2002 20

9/23/02

z-Buffer

� Advantages
� Linear performance
� Polygons may be processed in any order
� Hardware implementation ⇒ very fast

� Disadvantages
� Lots of memory (nowadays … so what?)
� Problems with linear interpolation under perspective
� Modifications needed for antialiasing, transparency,
translucency effects

9/23/02

3) Depth Sort

� Sort polygons by distance
� Paint in back-to-front order
� Problems?

Rendering

CS4451 Fall 2002 21

9/23/02

4) Binary Space Paritition (BSP) Trees

Easy way to sort the polygons relative to eye-point
To Build a BSP Tree

1. Choose a polygon, T, and compute the equation of the plane it
defines.

2. Test all the vertices of all the other polygons to determine if they
are in front of, behind, or in the same plane as T. If the plane
intersects a polygon, divide the polygon at the plane.

3. Polygons are placed into a binary search tree with T as the root.
4. Call the procedure recursively on the left and right subtree.

9/23/02

+X -X

C

B

A

D

E

+ZF

BSP Tree Example

Rendering

CS4451 Fall 2002 22

9/23/02

Traversing the BSP-Tree

� Traverse the BSP tree such that the branch decended first is the
side that is away from the eyepoint. This can be determined by
substituting the eye point into the plane equation for the polygon
at the root.

� When there is no first branch to descend, or that branch has been
completed then render the polygon at this node.

� After the current node's polygon has been rendered, descend the
branch that is closer to the eyepoint.

9/23/02

Traversing the BSP Tree Example

EYE 1

+X -X

C

B

A

D

E1

+Z
F2

E2
F1

EYE 2

A

C

F1 D

E2 F2

B

E1

Rendering

CS4451 Fall 2002 23

9/23/02

Splitting Triangles

� If all our polygons are triangles when we always divide a triangle
 into more triangles when it is intersected by the plane.

� Possible for the number of triangles to increase exponentially but
in practice it is found that the increase may be as small as two fold

� A heuristic to help minimize the number of fractures is to enter the
triangles into the tree in order from largest to smallest.

9/23/02

Accumulation Buffers

� Multi-pass rendering
� For anitaliasing, depth of field, soft shadows, motion
blur

� Render scene multiple times, different params
� Viewpoint (antialiasing, depth of field)
� Time (motion blur)
� Light position (soft shadows)

� Accumulate rendered images into accum buffer
� Using ops such as + and * to “add with weight”

