
Scene Graphs

CS 4451 Fall 2002 1

Retained Mode Graphics

Two approaches to graphics

� Say “how”
� Immediate mode: explicit commands
� E.g., OpenGL

� Say “what”
� Retained mode: define and change model
� E.g., Inventor, Java-3D
� A3: JOOGL (Java Object Oriented Graphics Library)

Scene Graphs

CS 4451 Fall 2002 2

What’s in a Geometric Model

� Geometry
� Spatial layout
� Attributes

� Topology
� Connectivity
� Structure

� Application-specific data

Model part of app data structure

� App + graphical data structures
� App ds changes => graphical ds changes

=> update screen

� Modern libs let you integrate them
� Inventor, Java-3D

Scene Graphs

CS 4451 Fall 2002 3

Arm

Hand

Body

Hierarchy in Geometric Models

� Build model from pieces
� Define each in “natural’’ coordinates
� Relate them to logical parents
� Modularity

� Define a DAG
� Nodes: part of model
� Edges: relationships

Hierarchy Inheritance

� Transforms
� Nested Coordinate systems

� Attributes
� “red car”

Scene Graphs

CS 4451 Fall 2002 4

Recall Assignments 1 and 2

� You had (simple) RM data structures!
� 100 squares
� Hierarchy of 7 objects

� Multiple uses
� Rendering
� Picking

Retained Mode Packages

� Maintain graphical data structure
� Traverse graphical data structure
� Auto redisplay, picking, intelligent handling of

special nodes, optimizations

� Goal: Make your life easier!
� You should be thinking: this is what I would just be

doing anyway

Scene Graphs

CS 4451 Fall 2002 5

Consider OpenGL Display Lists

� glNewList(int, mode)
� glEndList()
� glCallList(int)

� int glGenLists(num)

Consider OpenGL Display Lists

� Provide some of this
� Contain geometry, attributes
� Hierarchy (DAG)
� Embed name stack commands for picking

Scene Graphs

CS 4451 Fall 2002 6

Why aren’t OpenGL DLs enough?

� “Simple replay, output only”
� No intelligent handling, no optimizations

� Lights? Cameras? Action?

� No editing or automatic repair
� Picking?

� Expensive to create/change
=> Not real hierarchy!
� C macros vs. procedures

More Problems with DLs

� Attributes, geometry mixed together
� Programmer must know where everything is

� Less opportunity for optimization

� Cannot integrate application data

Scene Graphs

CS 4451 Fall 2002 7

Object-Oriented Approach

� Inventor, Java-3D, Repo-3D
� Can be implemented in non-OO languages

� (SOOGL, CS4451 Fall 99, in C)

� Objects for each “object”
� Internal DAG nodes for structure
� Leaf nodes are “things”
� Properties attached to node

Major Objects

� Geometry
� Spheres, boxes, polygons, cameras, lights, …

� Properties
� Transformations
� Attributes (rendering style, color, etc.)
� Geometric Properties

� Groups
� Structure

Scene Graphs

CS 4451 Fall 2002 8

Rendering Graph into Window

� Special Object to attach a graph to a window
� “Root Group”, “View Platform”, etc…

� Need at least
� Camera
� Window
� Viewport

� JOOGL: subclass GLAnimCanvas, full viewport
� Add camera and “root of graph” group

Properties

� Every property has a default value

� Attached to nodes
� Define property value for graph rooted at current

node

� Time-varying properties support animation

Scene Graphs

CS 4451 Fall 2002 9

Advantage of Objects:
Indirection of method calls

� Property value?
� type get()

� Incorporate time directly
� type get(int time)

Always use Time-based Animation

� Base all animation on relative time
� E.g., move from A to B over 2 seconds
� E.g., flash red/green 4 times/second

� Adapts automatically to different machines
� Degrades gracefully

Scene Graphs

CS 4451 Fall 2002 10

Variations of properties (Obliq-3D)

� For every type of property (color,
transformation, float, int, …)
� Constant
� Synchronous time-based animation
� Arbitrary function

Example Graph

RootRoot

Node
Property

Scene Graphs

CS 4451 Fall 2002 11

Graph Traversal: Rendering

� Save/restore state

� Traverse multiple times

� Decide when to render

RootRoot

Graph Traversal: Handling Special
Nodes During Rendering

� Dynamic Properties

� Lights

� Camera

� Transparency

Scene Graphs

CS 4451 Fall 2002 12

Handling Transparency

� Interpolated transparency
� ie. OpenGL alpha values
� I = (1 - kt) IA + kt IB

� Screen door transparency

Naive Rendering Fails:
RM can possibly handle this

� Even if rendered after opaque
� If more than one, order matters!

Scene Graphs

CS 4451 Fall 2002 13

Graph Traversal: Picking

� How to incorporate OpenGL Picking?

Optimizations: Elision

� Pruning

� Culling

� LOD

Scene Graphs

CS 4451 Fall 2002 14

Optimization: Rendering

� State changes are expensive

� Display lists are expensive to create but faster
to draw

