Viewing

Aside: Transforms and OpenGL

Transforms go onto matrix "stacks"

All vertices xformed by top matrices

Viewing

Two stacks. Why?

Separate modeling \& viewing xforms

View Space
 (AKA Camera Coordinate Space)

What do we need to specify to define what is seen?
| Extrinsic
| Intrinsic

Specifying a basic view

Translate C to origin

Rotate UVN->XYZ

We want to take uinto $(1,0,0)$

$$
\text { vinto }(0,1,0)
$$

$$
\text { n into }(0,0,1)
$$

First derive n, u, and v from user input:

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 0 & 0 & -C_{x}
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 1 & 0 & -C_{y}
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 0 & 1 & -C_{z}
\end{array}\right)=T(-C) \\
& \text { (} 000 \\
& \text { 1) }
\end{aligned}
$$

Viewing

Rotate UVN

$\left(\begin{array}{lllll}u_{x} & u_{y} & u_{z} & 0\end{array}\right)$
$\left(\begin{array}{lllll}v_{x} & v_{y} & v_{z} & 0\end{array}\right)=R_{u v N}$
$\left(\begin{array}{lllll}n_{x} & n_{y} & n_{z} & 0 & \end{array}\right)$
$\left(\begin{array}{lllll}0 & 0 & 0 & 1\end{array}\right)$

ViewSpace Operations

- Backface culling
- Projection

Backface culling

N_{p} : the polygon normal
N : the view direction vector
$N_{p} \cdot N$

Projections

3D points project onto view plane where projector (line to COP) intersects VP Perspective Proj.
I COP in world
Parallel Proj.
II COP at infinity

The resulting view volumes

Parallel
II Infinite parallelpiped
Perspective
Semi-infinite pyramid

Limit them
\| Front and back clipping planes

Defining the Perspective View
 $x_{s} / d=x_{p} / z_{p}$
 $T_{\text {persp }}=$
 (1)0
 0)
 (010
 0)
 (0 01
 0)
 ($001 / \mathrm{d} 0$)

Parallel (Orthographic) View

$T_{\text {ort }}=$
$\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)$
(01000$)$
(0000)
(0001)

ScreenSpace

Clipping

Hidden surface removal (z-buffering) and rendering (rasterization+shading)
Done in a "canonical volume"
Simplifies efficient implementation

Canonical View Volumes

Simple Perspective Transform

1) Scale sides to 45 degrees
(d/h
0
0
2)

(0
d/h 0
0)
(0
(0
00
1)

Simple Perspective Transform
2) Map to canonical parallel volume
(10
0
0)
(01 0
0)
($00 f /(f-d)-d f /(f-d))$
(0) 1
0)

Viewing

Z accuracy over [0..1]

$$
z_{s}=\left(f\left(1-d / z_{v}\right)\right) /
$$

(f-d)

Figure 5.11
Illustrating the distortion in three-dimensional screen space due to the z_{v} to z_{s} transformation.

Advanced Viewing: PHIGS

Two coordinate systems
I World reference coordinate system (WRC)
\| Viewing reference coordinate system (VRC)

Arbitrary view reference point

Specify viewplane, view coords (WRC)
\| View Reference Point (VRP)
IView Plane Normal (VPN)
\| View Up Vector (VUV)
Specify window on the view plane (VRC)
II Max and min u,v values (window center (CW))
II Projection Reference Point (PRP)
Ignore VPD from book for now (but understand it!)

Specifying a view

Normalizing Transformation for Perspective Views

1. Translate VRP to origin
2. Rotate the VRC system so that VPN become z-axis, u become x-axis and v become y-axis
3. Translate so that the CoP given by the PRP is at origin
4. Shear such that the center line of the view volume becomes the z-axis
5. Scale so that the view volume becomes the canonical view volume

1. Translate VRP to origin

$\left(\begin{array}{lllll}1 & 0 & 0 & -V R P_{x}\end{array}\right)$
$\left(\begin{array}{llll}0 & 1 & 0 & -V R P_{y}\end{array}\right)$
$\left(\begin{array}{lllll}0 & 0 & 1 & -V R P P_{z}\end{array}\right)=T(-\mathrm{VRP})$
$\left(\begin{array}{lllll}0 & 0 & 0 & 1\end{array}\right)$

2. Rotate VRC

We want to take

$$
\begin{aligned}
& u \text { into }(1,0,0) \\
& \text { v into }(0,1,0) \\
& n \text { into }(0,0,1)
\end{aligned}
$$

First derive n, u, and v from user input:

2. Rotate VRC (cont.)

$\left(\begin{array}{lllll}u_{x} & u_{y} & u_{z} & 0\end{array}\right)$
$\left(\begin{array}{lllll}v_{x} & v_{y} & v_{z} & 0 &)\end{array}\right)=R_{\text {viC }}$
$\left(\begin{array}{lllll}n_{x} & n_{y} & n_{z} & 0 & \end{array}\right)$
$\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)$

3. Translate PRP to the origin

$\left(\begin{array}{lllll}1 & 0 & 0 & -P R P_{u}\end{array}\right)$
$\left(\begin{array}{lllll}0 & 1 & 0 & -P R P_{v}\end{array}\right)=T(-P R P)$
$\left(\begin{array}{lllll}0 & 0 & 1 & -P R P_{n}\end{array}\right)$
$\left(\begin{array}{lllll}0 & 0 & 0 & 1\end{array}\right)$
4. Shear such that the center line of the view volume becomes the z-axis

Direction of projection (DoP) $=$ CW - PRP
The center line of the view volume is DoP

Viewing

Shear (cont.)

Multiply DoP with a matrix to get ($0,0, \mathrm{DoP}_{z}$)

$$
\text { We want } S H^{\star} D \circ P=\quad\left(0,0, D \circ P_{z}\right)
$$

(1	0	SHx	0)
$\mathrm{SH}=($	0	1	SHy	0
(0	0	1	0
(0	0	0	1

$S H x=-D o P x / D o P z$
$S H y=-D o P y / D o P z$

5. Scale (cont.)

Scale is done in two steps:

1. First scale in x and y

$$
\begin{aligned}
& x \text { scale }=2 P R P_{n} /(u \max -u \min) \\
& y s c a l e=2 P R P_{n} /(v \max -v \min)
\end{aligned}
$$

2. Scale everything uniformly such that the back clipping plane becomes $z=-1$
xscale $=1 /\left(-\right.$ PRP $\left._{n}+B\right)$
yscale $=1 /\left(-\right.$ PRP $\left._{n}+B\right)$
zscale $=1 /\left(-\right.$ PRP $\left._{n}+B\right)$

Total Composite Transformation

$N_{\text {per }}=S_{\text {per }} S H_{\text {per }} T(-P R P) R T(-V R P)$

Use this to transform from the viewing to the world space, then project onto the viewplane.

