

Asynchronous Programming
Under the Hood

Week 6

How to Implement Event
Dispatchers

 Recall:
 Record registered callbacks in a data structure (easy)
 Wait for an event to happen (easy)
 Call the callbacks when it happens (easy)

 What’s the problem?

Example:
Building an Event Dispatcher to Handle Timer
Callbacks

import time
import javax.swing as swing

class Timer:
 def __init__(self):
 self.callbacks = []

 def registerCallback(self, callback):
 self.callbacks.append(callback)

 def waitForEvent(self):
 while 1:
 time.sleep(5)
 for cb in self.callbacks:
 cb()

def myCallback():
 now = time.localtime(time.time())
 print "The time is now " + str(now[3]) + ":" + str(now[4]) + ":" + str(now[5])

if __name__ == "__main__":
 disp = Timer()
 disp.registerCallback(myCallback)
 disp.waitForEvent()
 swing.JFrame(”I’m running!").show()

Record callback functions in a list

In a loop, sleep for 5 seconds, wake
up, then fire all of the callbacks

Example:
Building an Event Dispatcher to Handle Timer
Callbacks

import time
import javax.swing as swing

class Timer:
 def __init__(self):
 self.callbacks = []

 def registerCallback(self, callback):
 self.callbacks.append(callback)

 def waitForEvent(self):
 while 1:
 time.sleep(5)
 for cb in self.callbacks:
 cb()

def myCallback():
 now = time.localtime(time.time())
 print "The time is now " + str(now[3]) + ":" + str(now[4]) + ":" + str(now[5])

if __name__ == "__main__":
 disp = Timer()
 disp.registerCallback(myCallback)
 disp.waitForEvent()
 swing.JFrame(”I’m running”).show()

The Problem: the waitForEvent() method has
to block waiting for the timer to expire.

The method never returns control back to the
main program.

Building Event Dispatchers

 There are actually two problems with the previous code
1. Any code that calls waitForEvent() hangs, because the waitForEvent()

method blocks indefinitely

2. The way waitForEvent() is implemented, it can only wait for one kind
of thing (time.sleep()). While the method is blocked waiting on the
timer to expire, it wouldn’t be able to block waiting for other kinds of
events (mouse, etc.)

First Solution: Multi-Way Polling

 A technique to let you block waiting for multiple sources of activity
at the same time

 In Unix: select(), poll()
 Depends on operating system-level support

 Only recently appeared in Java
 Not available in current version of Jython

 So we won’t talk about it any more!

Second Solution: Threads

 What you’d like to do is have a way for the main program to keep
running while the event dispatcher does its own thing

 Threads
 Separate flow of execution in your program
 Has its own “position” in the program

 Using threads to implement event dispatchers
 Your past programs have been “singly threaded”: one main thread
 “Multi threaded”: one thread can block waiting on an event to occur

without affecting the main thread
 Need to wait on more than one thing? Use another thread!

 This is basically how the Swing event dispatcher works

Example: A Threaded Event
Dispatcher

import time
import thread
import threading
import javax.swing as swing

class Timer:
 def __init__(self):
 self.callbacks = []
 self.thread = threading.Thread(target=self.waitForEvent)
 self.thread.start()

 def registerCallback(self, callback):
 self.callbacks.append(callback)

 def waitForEvent(self):
 while 1:
 time.sleep(5)
 for cb in self.callbacks:
 cb()

def myCallback():
 now = time.localtime(time.time())
 print "The time is now " + str(now[3]) + ":" + str(now[4]) + ":" + str(now[5])

if __name__ == "__main__":
 disp = Timer()
 disp.registerCallback(myCallback)
 swing.JFrame("hello").show()

Make a new thread to execute code

Start it running. Make it execute the
waitForEvent() method forever.

The second thread starts when the Timer
is created. No need to call waitForEvents()
here.

Example: A Threaded Event
Dispatcher

import time
import thread
import threading
import javax.swing as swing

class Timer:
 def __init__(self):
 self.callbacks = []
 self.thread = threading.Thread(target=self.waitForEvent)
 self.thread.start()

 def registerCallback(self, callback):
 self.callbacks.append(callback)

 def waitForEvent(self):
 while 1:
 time.sleep(5)
 for cb in self.callbacks:
 cb()

def myCallback():
 now = time.localtime(time.time())
 print "The time is now " + str(now[3]) + ":" + str(now[4]) + ":" + str(now[5])

if __name__ == "__main__":
 disp = Timer()
 disp.registerCallback(myCallback)
 swing.JFrame("hello").show()

Now the timer thread is executing here...

While the main thread executes here!

A Word of Caution...

 Be careful about the data that threads modify!
 You want to ensure that two threads can never modify the same

data at the same time
 An example from the real world (from Lorenzo Alvisi):

 “Milk” and “Fridge” are the shared data structures in this example

Jack Jill
Look in fridge, out of milk

Leave for store
Arrive at store Look in fridge, out of milk
Buy milk Leave for store

Arrive home, put milk away Arrive at store
Buy milk
Arrive home, put milk away

Oh no!

Solution: Locks

 Scary CS term:
 Locks provide a way to synchronize threads
 Read: they make sure only one thread at a time is running in code that

mucks with data that is used by multiple threads

 Create a new lock object you’ll use to protect a region of code that
shouldn’t be mucked with by multiple threads at the same time:
 self.lock = threading.Lock()

 Acquire the lock before reading or writing data that might be
accessed by another thread:
 self.lock.acquire()

 Release the lock when you’re done:
 self.lock.release()

import threading, time, random

class Counter:
 def __init__(self):
 self.count = 0;

 def increment(self):
 self.count = self.count + 1
 return self.count

counter = Counter()

class Worker:
 def __init__(self, name):
 self.thread = threading.Thread(target=self.run)
 self.thread.start()
 self.name = name

 def run(self):
 for i in range(10):
 value = counter.increment()
 time.sleep(random.randint(10, 100) / 1000.0)
 print self.thread.getName(), "finished", value

 for i in range(10):
 w = Worker(i)

Example: a Counter Class

import threading, time, random

class Counter:
 def __init__(self):
 self.count = 0;

 def increment(self):
 self.count = self.count + 1
 return self.count

counter = Counter()

class Worker:
 def __init__(self, name):
 self.thread = threading.Thread(target=self.run)
 self.thread.start()
 self.name = name

 def run(self):
 for i in range(10):
 value = counter.increment()
 time.sleep(random.randint(10, 100) / 1000.0)
 print self.thread.getName(), "finished", value

 for i in range(10):
 w = Worker(i)

Example: a Counter Class

The Problem: Multiple workers may try to run
this line of code at the same time.

Worker 1 looks up the value of self.count and adds 1 to
it.

Worker 2 does the same thing. Gets the same value that
Worker 1 sees.

Both then assign to self.count. Effective result is that one
increment has been lost.

import threading, time, random

class Counter:
 def __init__(self):
 self.lock = threading.Lock()
 self.count = 0;

 def increment(self):
 self.lock.acquire()
 value = self.count = self.count + 1
 self.lock.release()
 return value

counter = Counter()

class Worker:
 def __init__(self, name):
 self.thread = threading.Thread(target=self.run)
 self.thread.start()
 self.name = name

 def run(self):
 for i in range(10):
 value = counter.increment()
 time.sleep(random.randint(10, 100) / 1000.0)
 print self.thread.getName(), "finished", value

 for i in range(10):
 w = Worker(i)

Example: a Thread-Safe Counter

This is the critical section of code. Protect it with a lock!

Another Word of Caution...

 You have to synchronize just enough code to make it safe
 If you don’t synchronize enough, you’ll get hard-to-track errors
 If you synchronize too much, you do away with the advantage of

threads in the first place (only one thing’s running at a time)
 Good practice: use different locks to protect different resources

 Gives maximum concurrency

 Worse case: deadlock
 You can use locks in a way that prevents any code from running!
 Happens when you are using more than one lock:

 Thread 1 holds Lock A, and is trying to acquire Lock B
 Thread 2 holds Lock B, and is trying to acquire Lock A
 Neither can progress

Why Learn About Threads?
 If everything you do has an event-based programming model, you probably

don’t need to know about threads
 But not everything has this model...

 Without events, you’ll often have to write code that blocks waiting on
something to happen
 Put it in a thread, and keep the rest of your program going

 Can “wrap” this in an event dispatcher to make it look like any other event
source (like the Timer class)

 Examples of things that might block:
 Network I/O: Reading from the network is even slower. Plus, the other guy

might never respond.
 Waiting for some time to pass. See the Timer class before.

 Threads are necessary for things like this!

16

