Internet Addressing and Naming

CS 7260
Nick Feamster
January 10, 2007
Announcements

• Course mailing list
 – cs7260-course at mailman.cc.gatech.edu
 – https://mailman.cc.gatech.edu/mailman/listinfo/cs7260-course

• Wiki should be up soon (we hope)

• TA: Keshav Attrey (attrey@cc.gatech.edu)
Today: Addressing and Naming

• Internet **Addressing**
 – **Step 1:** Connecting a single network
 – **Step 2:** Connecting networks of networks
 • IPv4 Addressing
 – Structure
 – Scaling problems and CIDR (1994)
 – Allocation and ownership
 – Longest prefix match and Traffic Engineering
 – Issues and design questions
 – More scaling problems and solutions

• Internet **Naming**
 – Today: DNS and the naming hierarchy
 – Research: Flat names

• Paper discussion: Jung *et al.*
Bootstrapping: Networks of Interfaces

- LAN/Physical/MAC address
 - Unique to physical interface (no two alike)
 - Flat structure

- Frames can be sent to a specific MAC address or to the broadcast MAC address

What are the advantages to separating network layer from MAC layer?
ARP: IP Addresses to MAC addresses

• Query is IP address, response is MAC address
• Query is sent to LAN’s broadcast MAC address
• Each host or router has an ARP table
 – Checks IP address of query against its IP address
 – Replies with ARP address if there is a match

Potential problems with this approach?

• Caching is key!
 – Try arp –a to see an ARP table
Interconnecting LANs: Bridging

- Receive & broadcast (“hub”)
- Learning
- Spanning tree (RSTP, MSTP, etc.)
Learning Bridges

- Bridge builds mapping of which port to forward packets for a certain MAC address
 - If has entry, forward on appropriate port
 - If no entry, flood packet

Potential problems with this approach?
Virtual LANs (VLANs)

• A single switched LAN can be partitioned into multiple “colors”
• Each color behaves as a separate LAN
• Better scaling properties
 – Reduce the scope of broadcast storms
 – Spanning tree algorithms scale better
• Better security properties
IPv4 Addresses: Networks of Networks

- 32-bit number in “dotted-quad” notation
 - www.cc.gatech.edu --- 130.207.7.36

<table>
<thead>
<tr>
<th>130</th>
<th>207</th>
<th>7</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000010</td>
<td>11001111</td>
<td>00000111</td>
<td>00100100</td>
</tr>
</tbody>
</table>

Network (16 bits) Host (16 bits)

- **Problem:** 2^{32} addresses is a lot of table entries
- **Solution:** Routing based on network and host
 - 130.207.0.0/16 is a 16-bit *prefix* with 2^{16} IP addresses
Pre-1994: Classful Addressing

Class A
- Network ID: 0
- Host ID: 8
- /8 blocks (e.g., MIT has 18.0.0.0/8)

Class B
- Network ID: 10
- Host ID: 16
- /16 blocks (e.g., Georgia Tech has 130.207.0.0/16)

Class C
- Network ID: 110
- Host ID: 24
- /24 blocks (e.g., AT&T Labs has 192.20.225.0/24)

Class D
- Network ID: 1110
- Multicast Addresses

Class E
- Network ID: 1111
- Reserved for experiments

Simple Forwarding: Address range specifies network ID length
Problem: Routing Table Growth

- Growth rates exceeding advances in hardware and software capabilities
- Primarily due to Class C space exhaustion
- Exhaustion of routing table space was on the horizon
Routing Table Growth: Who Cares?

• On pace to run out of allocations entirely

• Memory
 – Routing tables
 – Forwarding tables

• “Churn”: More prefixes, more updates
Possible Solutions

• Get rid of global addresses
 – NAT

• Get more addresses
 – IPv6

• Different aggregation strategy
 – Classless Interdomain routing
Classless Interdomain Routing (CIDR)

Use two 32-bit numbers to represent a network. Network number = IP address + Mask

Example: BellSouth Prefix: 65.14.248.0/22

IP Address: 65.14.248.0 “Mask”: 255.255.252.0

Address no longer specifies network ID range. New forwarding trick: Longest Prefix Match
Benefits of CIDR

- **Efficiency:** Can allocate blocks of prefixes on a finer granularity
- **Hierarchy:** Prefixes can be *aggregated* into supernet. (Not always done. Typically not, in fact.)

![Diagram showing CIDR with AT&T and customers 1 and 2]

Customer 1: 12.20.231.0/24
Customer 2: 12.20.249.0/24
AT&T: 12.0.0.0/8
Internet: 12.0.0.0/8
Forwarding: Longest Prefix Match

- Forwarding tables in IP routers
 - Maps each IP prefix to next-hop link(s)

- *Destination-based* forwarding
 - Each packet has a destination address
 - Router identifies longest-matching prefix

Forwarding Table:

- 68.208.0.0/12
- 68.211.0.0/17
- 68.211.128.0/19
- 68.211.160.0/19
- 68.211.192.0/18
- ...

Destination Address: 68.211.6.120

More on construction of forwarding tables in next lecture.
1994-1998: Linear Growth

- About 10,000 new entries per year
- In theory, less instability at the edges (*why?*)

Source: Geoff Huston
Around 2000: Fast Growth Resumes

Claim: remaining /8s will be exhausted within the next 5-10 years.
Fast growth resumes

Significant contributor: Multihoming

Dot-Bomb Hiccup

Rapid growth in routing tables

Source: Geoff Huston
Multihoming Can Stymie Aggregation

- “Stub AS” gets IP address space from one of its providers
- One (or both) providers cannot aggregate the prefix

Verizon does not “own” 10.0.0.0/16. Must advertise the more-specific route.
Hacky Hack: LPM to Control Traffic

A

10.1.0.0/17
10.1.0.0/16

B

10.1.0.0/16
10.1.0.0/17

C

Traffic for 10.1.0.0/17

D

Traffic for 10.1.0.0/17

10.1.128.0/17
10.1.0.0/16

10.1.0.0/16
10.1.128.0/17
The Address Allocation Process

- Allocation policies of RIRs affect pressure on IPv4 address space

http://www.iana.org/assignments/ipv4-address-space

AfriNIC
APNIC
ARIN
LACNIC
RIPE

Georgia Tech
/8 Allocations from IANA

- MIT, Ford, Halliburton, Boeing, Merck
- Reclaiming space is difficult. A /8 is a bargaining chip!
Address Space Ownership

% whois -h whois.arin.net 130.207.7.36
[Querying whois.arin.net]
[whois.arin.net]

OrgName: Georgia Institute of Technology
OrgID: GIT
Address: 258 Fourth St NW
Address: Rich Building
City: Atlanta
StateProv: GA
PostalCode: 30332
Country: US

NetRange: 130.207.0.0 - 130.207.255.255
CIDR: 130.207.0.0/16
NetName: GIT
NetHandle: NET-130-207-0-0-1
Parent: NET-130-0-0-0-0
NetType: Direct Assignment
NameServer: TROLL-GW.GATECH.EDU
NameServer: GATECH.EDU
Comment:
RegDate: 1988-10-10
Updated: 2000-02-01

RTechHandle: ZG19-ARIN
RTechName: Georgia Institute of Technology Network Services
RTechPhone: +1-404-894-5508
RTechEmail: hostmaster@gatech.edu

OrgTechHandle: NETWO653-ARIN
OrgTechName: Network Operations
OrgTechPhone: +1-404-894-4669

- Regional Internet Registries ("RIRs")
- Public record of address allocations
- ISPs should update when delegating address space
- Often out-of-date
I have transit in 2 cities...I've been using non-contiguous IPs, so there's been no opportunity for aggregation. Having just received my /20 from ARIN, I'm trying to plan my network. Let's say I split the /20 into 2 /21's, one for each city…

Missed opportunities for aggregation: non-contiguous prefixes
Multiple geographic locations within the same prefix
Two Problems

<table>
<thead>
<tr>
<th>IP space</th>
<th>Geography</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close/Identical</td>
<td>Far</td>
<td>Too Coarse-grained</td>
</tr>
<tr>
<td>Far</td>
<td>Close/Identical</td>
<td>Too Fine-grained</td>
</tr>
</tbody>
</table>

Case #1 [coarse-grained]:
- single prefix, multiple locations
- contiguous prefixes, multiple locations

Case #2 [fine-grained]:
- discontiguous prefixes, same location
Method

GOAL: Associate an IP prefix with a set of locations

- CoralCDN[^1]
- Web clients
- Content servers

- IPs from Routeviews

- IPs

- DNS names

- Location (PoP)

[^1]: http://www.coralcdn.org
[^2]: http://www.scriptroute.org
[^3]: http://www.routeviews.org

traceroute

Uses naming conventions of routers – city names embedded in DNS names
Case #1: Coarse-Grained Prefixes

Traffic does not enter AS as intended. Routing table entries map poorly to reachability.
One Prefix May Span Large Distances

50% of prefixes in /8-/15 span >100 miles

AS 4637: many /24s spanning more than 10,000 miles
Case #1: Coarse-Grained Prefixes

25% of contiguous prefix pairs had hosts from different locations

Traffic does not enter AS as intended. Routing table entries map poorly to reachability.
Case #2: Fine-Grained Prefixes

A

10.1.0.0/16
10.3.0.0/16
10.5.0.0/16

B

10.1.0.0/16
10.3.0.0/16
10.5.0.0/16

Single geographic location

Inflation of routing table size.
Increased routing table churn.
Take-home lessons

- **Case #1: Coarse-grained prefixes**
 - Negative effects on traffic control
 - Poor correlation with actual reachability
 - **Finding:** Single prefixes and contiguous prefixes can span very large distances
 - Potential for aggregation overstated

- **Case #2: Fine-grained prefixes**
 - Causes many routing table updates
 - Inflates routing table size
 - **Finding:** 70% of discontiguous prefix pairs from common AS and location
 - Changes to routing granularity warranted
IPv6 and Address Space Scarcity

• 128-bit addresses
 – Top 48-bits: Public Routing Topology (PRT)
 • 3 bits for aggregation
 • 13 bits for TLA (like “tier-1 ISPs”)
 • 8 reserved bits
 • 24 bits for NLA
 – 16-bit Site Identifier: aggregation within an AS
 – 64-bit Interface ID: 48-bit Ethernet + 16 more bits

– Pure provider-based addressing
 • Changing ISPs requires renumbering

Question: How else might you make use of these bits?
IPv6: Claimed Benefits

• Larger address space
• Simplified header
• Deeper hierarchy and policies for network architecture flexibility
• Support for route aggregation
• Easier renumbering and multihoming
• Security (e.g., IPv6 Cryptographic Extensions)
IPv6: Deployment Options

Routing Infrastructure
• IPv4 Tunnels
• Dual-stack
• Dedicated Links
• MPLS

Applications
• IPv6-to-IPv4 NAPT
• Dual-stack servers
IPv6 Deployment Status

Big users: Germany (33%), EU (24%), Japan (16%), Australia (16%)
IPv6 over IPv4 Tunnels

One trick for mapping IPv6 addresses: embed the IPv4 address in low bits

DNS: Mapping Names to Addresses

Client

Local DNS resolver

www.cc.gatech.edu

Recursive query

Iterative queries

www.cc.gatech.edu

NS troll-gw.gatech.edu

NS burdell.cc.gatech.edu

A 130.207.7.36

www.cc.gatech.edu

root, .edu

troll-gw.gatech.edu

burdell.cc.gatech.edu

Note the diversity of Georgia Tech’s authoritative nameservers
Some Record Types

- A
- NS
- MX
- CNAME
- TXT
- PTR
-AAAA
- SRV
Caching

• Resolvers cache DNS responses
 – Quick response for repeated translations
 – Other queries may reuse some parts of lookup
 • NS records for domains typically cached for longer
 – Negative responses also cached
 • Typos, “localhost”, etc.

• Cached data periodically times out
 – Lifetime (TTL) of data controlled by owner of data
 – TTL passed with every record

• What if DNS entries get corrupted?
Root Zone

• Generic Top Level Domains (gTLD)
 – .com, .net, .org,

• Country Code Top Level Domain (ccTLD)
 – .us, .ca, .fi, .uk, etc…

• Root server ({a-m}.root-servers.net) also used to cover gTLD domains
 – Increased load on root servers
 – August 2000: .com, .net, .org moved off root servers onto gTLDs
Some Recent gTLDs

• .info → general info
• .biz → businesses
• .name → individuals
• .aero → air-transport industry
• .coop → business cooperatives
• .pro → accountants, lawyers, physicians
• .museum → museums
Do you trust the TLD operators?

- Wildcard DNS record for all .com and .net domain names not yet registered by others
 - September 15 – October 4, 2003
 - February 2004: Verisign sues ICANN
- Redirection for these domain names to Verisign web portal
- What services might this break?
Protecting the Root Nameservers

Attack On Internet Called Largest Ever

By David McGuire and Brian Krebs
washingtonpost.com Staff Writers
Tuesday, October 22, 2002; 5:40 PM

The heart of the Internet sustained its largest and most sophisticated attack ever, starting late Monday, according to officials at key online backbone organizations.

Around 5:00 p.m. EDT on Monday, a "distributed denial of service" (DDOS) attack struck the 13 "root servers" that provide the primary roadmap for almost all Internet communications. Despite the scale of the attack, which lasted about an hour, Internet users worldwide were largely unaffected, experts said.

Defense Mechanisms

- Redundancy: 13 root nameservers
- IP Anycast for root DNS servers {c,f,i,j,k}.root-servers.net
 - RFC 3258
 - Most physical nameservers lie outside of the US
Defense: Replication and Caching

<table>
<thead>
<tr>
<th>Letter</th>
<th>Old name</th>
<th>Operator</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ns.internic.net</td>
<td>VeriSign</td>
<td>Dulles, Virginia, USA</td>
</tr>
<tr>
<td>B</td>
<td>ns1.isi.edu</td>
<td>ISI</td>
<td>Marina Del Rey, California, USA</td>
</tr>
<tr>
<td>C</td>
<td>c.psi.net</td>
<td>Cogent Communications</td>
<td>distributed using anycast</td>
</tr>
<tr>
<td>D</td>
<td>terp.umd.edu</td>
<td>University of Maryland</td>
<td>College Park, Maryland, USA</td>
</tr>
<tr>
<td>E</td>
<td>ns.nasa.gov</td>
<td>NASA</td>
<td>Mountain View, California, USA</td>
</tr>
<tr>
<td>F</td>
<td>ns.isc.org</td>
<td>ISC</td>
<td>distributed using anycast</td>
</tr>
<tr>
<td>G</td>
<td>ns.nic.ddn.mil</td>
<td>U.S. DoD NIC</td>
<td>Columbus, Ohio, USA</td>
</tr>
<tr>
<td>H</td>
<td>aos.arl.army.mil</td>
<td>U.S. Army Research Lab</td>
<td>Aberdeen Proving Ground, Maryland, USA</td>
</tr>
<tr>
<td>I</td>
<td>nic.nordu.net</td>
<td>Autonomica</td>
<td>distributed using anycast</td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>VeriSign</td>
<td>distributed using anycast</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>RIPE NCC</td>
<td>distributed using anycast</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>ICANN</td>
<td>Los Angeles, California, USA</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td>WIDE Project</td>
<td>distributed using anycast</td>
</tr>
</tbody>
</table>

source: wikipedia
DNS Hack #1: Reverse Lookup

• Method
 – Hierarchy based on IP addresses
 – 130.207.7.36
 • Query for PTR record of 36.7.207.130.in-addr.arpa.

• Managing
 – Authority manages IP addresses assigned to it
DNS Hack #2: Load Balance

• Server sends out multiple A records
• Order of these records changes per-client
DNS Hack #3: Blackhole Lists

• *First*: Mail Abuse Prevention System (MAPS)
 – Paul Vixie, 1997
• *Today*: Spamhaus, spamcop, dnsrbl.org, etc.

Different addresses refer to different reasons for blocking

```
% dig 91.53.195.211.bl.spamcop.net
;;; ANSWER SECTION:
91.53.195.211.bl.spamcop.net. 2100 IN A 127.0.0.2

;;; ANSWER SECTION:
91.53.195.211.bl.spamcop.net. 1799 IN TXT "Blocked - see http://www.spamcop.net/bl.shtml?211.195.53.91"
```
Highlights from Today’s Paper

• Jung et al., *DNS Performance and the Effectiveness of Caching*, ACM IMC, 2001
• Three different traces: One from MIT, Two from KAIST
 – Joint analysis of DNS and TCP

What types of queries will this miss?
Highlights and Thought Questions

• Load-balancing with A-records does not incur penalty
 – Lower TTLs for A records do not affect performance
 – Wide-area traffic not greatly affected by short TTLs on A records
 – DNS performance relies more on NS-record caching
 – Sharing of caches among clients not effective. Why?

• Referrals responsible for client-perceived latency

• 50% of Lookups not associated with any TCP connection
 – 10% follow from a TCP connection. Why?

• Negative response caching doesn’t appear to be effective
 – What effect do DNSBLs have on this?

• Lots of junk DNS traffic
 – 23% of all DNS queries received no answer
 – Half of DNS traffic is for these unanswered queries
 – 15%-27% of traffic at the root is bogus