Multihoming and Multi-path Routing

CS 7260
Nick Feamster
January 29. 2007
Today’s Topic

• **IP-Based Multihoming**
 – What is it?
 – What problem is it solving? (Why multihome?)
 – How is it implemented today (in IP)?
 – Traffic Engineering
 – How many upstream ISPs are enough?

• Problems with IP-based multihoming
 – Inbound route control
 – Routing table growth

• Another approach: **host-based multihoming**
What is Multihoming?

• The use of redundant network links for the purposes of external connectivity

• Can be achieved at many layers of the protocol stack and many places in the network
 – Multiple network interfaces in a PC
 – An ISP with multiple upstream interfaces

• Can refer to having multiple connections to
 – The same ISP
 – Multiple ISPs
Why Multihome?

- Redundancy
- Availability
- Performance
- Cost

Interdomain traffic engineering: the process by which a multihomed network configures its network to achieve these goals
Redundancy

• Maintain connectivity in the face of:
 – Physical connectivity problems (fiber cut, device failures, etc.)
 – Failures in upstream ISP
Performance

- Use multiple network links at once to achieve higher throughput than just over a single link.
- Allows incoming traffic to be load-balanced.

30% of traffic

70% of traffic
Multihoming in IP Networks Today

• **Stub AS**: no transit service for other ASes
 – No need to use BGP

• **Multi-homed stub AS**: has connectivity to multiple immediate upstream ISPs
 – Need BGP
 – No need for a public AS number
 – No need for IP prefix allocation

• **Multi-homed transit AS**: connectivity to multiple ASes and transit service
 – Need BGP, public AS number, IP prefix allocation
BGP or no?

• Advantages of **static routing**
 – Cheaper/smaller routers (less true nowadays)
 – Simpler to configure

• Advantages of **BGP**
 – More control of your destiny (have providers stop announcing you)
 – Faster/more intelligent selection of where to send outbound packets.
 – Better debugging of net problems (you can see the Internet topology now)
Same Provider or Multiple?

- If your provider is reliable and fast, and affordably, and offers good tech-support, you may want to multi-home initially to them via some backup path (slow is better than dead).

- Eventually you’ll want to multi-home to different providers, to avoid failure modes due to one provider’s architecture decisions.
Multihomed Stub: One Link

- Downstream ISP’s routers configure default ("static") routes pointing to border router.
- Upstream ISP advertises reachability
Multihomed Stub: Multiple Links

- Use BGP to share load
- Use **private AS number** *(why is this OK?)*
- As before, upstream ISP advertises prefix
Multihomed Stub: Multiple ISPs

- Many possibilities
 - Load sharing
 - Primary-backup
 - Selective use of different ISPs
- Requires BGP, public AS number, etc.
Multihomed Transit Network

- BGP everywhere
- Incoming and outcoming traffic
- **Challenge:** balancing load on intradomain *and* egress links, given an offered traffic load
Interdomain Traffic Engineering

• The process by which a network operator configures the network to achieve
 – Traffic load balance
 – Redundancy (primary/backup), etc.

• Two tasks
 – Outbound traffic control
 – Inbound traffic control

• **Key Problems:** Predictability and Scalability
Outbound Traffic Control

• Easier to control than inbound traffic
 – *Destination-based routing*: sender determines where the packets go

• Control over **next-hop AS only**
 – Cannot control selection of the entire path

![Diagram of traffic control between Provider 1 and Provider 2]

Control with local preference
Outbound Traffic: Load Balancing

• Control routes to provider **per-prefix**
 – Assign local preference across destination prefixes
 – Change the local preference assignments over time

• Useful inputs to load balancing
 – End-to-end path performance data
 – Outbound traffic statistics per destination prefix

• **Challenge:** Getting from traffic volumes to groups of prefixes that should be assigned to each link

Premise of “intelligent route control” products.
Traffic Engineering Goals

• Predictability
 – Ensure the BGP decision process is deterministic
 – Assume that BGP updates are (relatively) stable

• Limit overhead introduced by routing changes
 – Minimize frequency of changes to routing policies
 – Limit number of prefixes affected by changes

• Limit impact on how traffic enters the network
 – Avoid new routes that might change neighbor’s mind
 – Select route with same attributes, or at least path length
Managing Scale

• Destination prefixes
 – More than 90,000 destination prefixes
 • Don’t want to have per-prefix routing policies
 – Small fraction of prefixes contribute most of the traffic
 • Focus on the small number of heavy hitters
 – Define routing policies for selected prefixes

• Routing choices
 – About 27,000 unique “routing choices”
 • Help in reducing the scale of the problem
 – Small fraction of “routing choices” contribute most traffic
 • Focus on the very small number of “routing choices”
 – Define routing policies on common attributes
Achieving Predictability

• Route prediction with static analysis
 – Helpful to know effects *before* deployment
 – Static analysis can help

Topology

BGP policy configuration

eBGP routes

BGP routing model

Offered traffic

Flow of traffic through the network
Challenges to Predictability

- For transit ISPs: effects on incoming traffic
 - Lack of coordination strikes again!
Inter-AS Negotiation

- Coordination aids predictability
 - Negotiate where to send
 - Inbound and outbound
 - Mutual benefits

- How to implement?
 - What info to exchange?
 - Protecting privacy?
 - How to prioritize choices?
 - How to prevent cheating?

Destination 1

Provider B

multiple peering points

“Hot Potato” routing

Provider A

Destination 2
Outbound: Multihoming Goals

• **Redundancy**
 – Dynamic routing will failover to backup link

• **Performance**
 – Select provider with best performance per prefix
 – Requires active probing

• **Cost**
 – Select provider per prefix over time to minimize the total financial cost
Inbound Traffic Control

• **More difficult**: no control over neighbors’ decisions.

• Three common techniques (previously discussed)
 – AS path prepending
 – Communities and local preference
 – Prefix splitting

How does today’s paper (MONET) control inbound traffic?
How many links are enough?

Akella et al., “Performance Benefits of Multihoming”, SIGCOMM 2003

Not much benefit beyond 4 ISPs

K upstream ISPs

Performance of best set of k ISPs

k (number of providers)
Problems with Multihoming in IPv4

• Routing table growth
 – Provider-based addressing
 – Advertising prefix out multiple ISPs – can’t aggregate

• Poor control over inbound traffic
 – Existing mechanisms do not allow hosts to control inbound traffic
Today’s Reading

• **Source Selectable Path Diversity via Routing Deflections**, Yang et al.

• **Main idea**: Sources can detect and react to failures more quickly than the routing protocols often can.

• Source routing is appealing, but...
 – Scaling problems
 – Routers designed to forward on destination address
Benefits

• No need for coordination across ISPs

• No need for additional machinery (simple tweaks to shortest path routing work well)
Two Key Components

• Deflection Rules
 – Needed to prevent loops when packets are deflected
 – **Simple idea:** deflect packets only to hopes that are closer to the destination
 – **Complication:** may not expose enough path diversity
 • Deflections may come straight back
Enhancement #1: Two Hops Down

• **Rule:** Packet can be forwarded to any intermediate node for which the length of the path decreases along a two-hop sequence

• **Question:** Why will this not cause loops?
• **Answer:** 2-hop sequence always decreases cost.

• **Additional cost:** Forwarding decisions also depend on incoming link
Enhancement #2: Two Hops Forward

• Same as previous rule, but remove the incoming link used to reach the node in question

• Can cause more roundabout paths
Discussion Questions

• How does it work with BGP?
• Who’s responsible for tagging packets?
• Is this enough diversity?
• Is it too much? (i.e., is latency too high?)
• Overload?
 – Opposite: Better balancing/QoS?
• Stability problems?
• Selfish behavior?
• How good is random?