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ABSTRACT 
Cameras provide an appealing new input medium for 
interaction.  The creation of camera-based interfaces is 
outside the skill-set of most programmers and completely 
beyond the skills of most interface designers.  Image 
Processing with Crayons is a tool for creating new camera-
based interfaces using a simple painting metaphor.  A 
transparent layers model is used to present the designer 
with all of the necessary information.  Traditional machine 
learning algorithms have been modified to accommodate 
the rapid response time required of an interactive design 
tool. 
Categories & Subject Descriptors: H.1.2 [Information 
Systems]: User/Machine Systems — Human factors; H.5.2 
[Information Interfaces and Presentation]: User Interfaces 
— interaction styles, prototyping, theory and methods; 
I.4.8 [Image Processing and Computer Vision]: Scene 
Analysis — color, object recognition, tracking; I.4.9 
[Image Processing and Computer Vision]: Applications; 
General Terms: Algorithms, Human Factors; Keywords: 
Image processing, classification, interaction, machine 
learning, perceptive user interfaces. 

INTRODUCTION 
Myron Krueger’s VideoPlace [20] established cameras as 
an interactive input medium and sparked an interest in user 
interfaces that function by watching what people do rather 
than requiring overt inputs by a user.  Mark Weiser 
popularized the notion of ubiquitous computing [32] where 
computing moved into the environment as a whole rather 
than residing on a desk.  Hiroshi Ishii and his Tangible 
Media Group [14,28,29] have pioneered demonstrations of 
how computing and interaction can be embedded in 
everyday things.  Achieving these visions requires a much 
larger range of interactive sensors than can be found on 
common desktop systems. 
In this work we are interested particularly in camera-based 
interfaces.  We chose the camera because of its ambient 
nature in that it passively watches without requiring the 

user to wear or carry anything special.  Cameras are 
currently quite cheap with their costs rapidly approaching 
the cost of a keyboard and mouse.  Projects such as the 
Gesture Pendant [26], Light Widgets [9], finger tracking 
[6], hand waving [11] and Laser Pointer Interaction [22] 
have demonstrated how cameras can form the primary 
sensor for an interactive behavior. 
The challenge, however, is that designing camera-based 
interfaces is quite difficult.  Not only is sophisticated 
programming required, but also the mathematics of image 
processing and machine learning.  These are far beyond the 
skill set required for Visual Basic.  In our Image Processing 
with Crayons (Crayons) project we are focused on creating 
interface development tools that can be placed in the hands 
of ordinary designers.  Since there is no extant design 
community for camera-based interfaces we have made 
several assumptions about the skill set such a community 
might posses.   

• Familiarity with visual design tools like Visual 
Basic, and how they integrate with other software, 

• No familiarity with image processing or machine 
learning, 

• An understanding that image regions must be 
classified to identify the items of interest to the 
interaction, but little understanding of how that 
might be done. 

At the heart of any camera-based interaction is a classifier 
that takes an image and identifies those pixels or groups of 
pixels that are of interest to the interaction.  This is so 
because once a programmer knows where items of interest 
are found in an image, the remaining programming is very 
similar to mouse-based interaction.  The classifier is the 
particular part of camera-based interaction that most 
programmers shy away from. 
Because UI designers rarely have detailed image 
processing or machine learning knowledge, they must learn 
these skills before even beginning to build such a classifier.  
Once the knowledge of how to build the classifier has been 
attained the implementation is not usually difficult, 
although there are still many tricks and nuances that require 
repetitive testing and alterations.  Kernels, filters and 
machine learning algorithm parameters can be tricky and 
temperamental and generally require many modifications.  
In our experience, adjustments to a manually created 
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classifier may take weeks, if not months to finally achieve 
satisfactory results. 
It is important to note that image classifiers can be difficult 
for even knowledgeable programmers to get right.  In the 
traditional approach, a programmer must identify a set of 
features that are sufficient for the task.  Most machine 
learning algorithms assume that substantial time and 
thought will go into feature selection before the classifier 
algorithm is even invoked.  Such features may be as simple 
as the hue and saturation values for a particular pixel or 
more complicated convolution kernels for separating 
desired pixels from similar ones.  A programmer can spend 
months researching, programming and trying different 
combinations of features.  Such activities are quite beyond 
the skills of the average interface designer.  However, 
understanding the interaction problem is well within the 
capacities of an interface designer.   
Consider the example of laser-pointer interaction.  Once 
the laser spot is accurately located the remaining 
interactions are very similar to mouse interactions.  Anyone 
looking at the camera images can readily identify the key 
problem as “find that red spot.” Finding the red spot, 
however, is not trivial due to the laser overdriving the 
camera, other red objects in the field of view, and noise 
from cheap cameras.   
Similar problems arise when using hands as the input.  
Techniques such as Light Widgets [9] are founded on skin 
tracking to locate user’s hands relative to various input 
areas.  Any person can look at the image and locate the 
hands, however, the algorithms that create classifiers and 
take care of noise and other artifacts take substantial time 
to design. 
Crayons is a tool that focuses on creating such classifiers 
and exporting them in a form that is easily incorporated 
into Java programs.  Crayons is intended to aid UI 
designers who do not have detailed knowledge of image 
processing and machine learning.  It is also intended to 
greatly accelerate the efforts of knowledgeable 
programmers. 
Crayons currently uses pixel-color features to classify.  It 
uses pixel value sums for neighboring and concentric 
rectangular regions.  Many other feature types have and are 
used in other systems: pixels, texture, shape, region, 
motion, history, whole images, etc.  Although we hope 
Crayons eventually incorporates more feature types, the 
current implementation only uses pixel features.  These 
features are unable to distinguish shapes and object 
orientations like hand gestures, but do well with pixel-
based object detection like laser, hand and object tracking. 

 
Figure 1 – Classifier Design Process 

The Crayons interface design process is shown in Figure 1.  
Designing an interface with Crayons begins with gathering 
a collection of representative images of situations where 
the interaction will occur.  Because Crayons classifiers are 
trained, the selection of the images on which the training is 
to be done is important.  For example if the technique is to 
work in a variety of lighting conditions, images with such 
variety must be chosen.  If one were creating a skin tracker, 
images with a variety of skin colors are needed.  The 
sample image selection step requires some consideration 
since the training images affect the final classifier.  
Although initial thought is beneficial, it is not required 
because new images can always be inserted into the 
Crayons to aid classifier creation. 
After collecting sample images, the designer uses the 
Crayons tool to train a classifier.  The training metaphor is 
to simply paint the classification over the sample images.  
If while using a classifier a situation is discovered where it 
does not work correctly, new training images can be added 
and the designer can paint corrections on them.  The total 
number of images needed depends on its targeted 
application.  When the designer has a classifier that is 
satisfactory, the classifier is exported as a serialized Java 
object that can be easily loaded into any Java program. 
There are two primary goals for the Crayons tool: 1) to 
allow the user to create a classifier quickly, and 2) to allow 
the user to focus on the classification problem rather than 
image processing or algorithms.  Crayons is successful if it 
takes minutes rather than weeks or months to create an 
effective classifier.  For simplicity sake, we will refer to 
this as the UI principle of fast and focused — the 
fundamental UI principle of enabling the designer to 
quickly accomplish his/her task while remaining focused 
solely on that task. 
Traditional machine learning does not directly solve the 
Crayons problem.  We found in the course of this work that 
traditional machine learning makes assumptions about the 
nature of the learning problem that are not valid in the 
Crayons approach.  These assumptions and their resolution 
will be discussed later in the paper. 

Crayons Overview 
The overall purpose of Crayons is to create classifiers 
easily and rapidly.  Crayons receives images upon which 
the user does some manual classification, a classifier is 
created, then feedback is displayed. The user can then 
refine the classifier by adding more manual classification, 
or, if the classifier is satisfactory, the user can export the 
classifier. 
Although the focus of this paper is on the internal 
processes of Crayons, its input and output deserve some 
attention.  For the images (the input arrow) the system 
assumes the user has already taken digital pictures and 
saved them as files to import into the system, or that a 
camera is set up on the machine running Crayons, so it can 
capture images from it.  Additional images can always be 



inserted to enhance training and testing.  Exporting the 
classifier (the output arrow) is trivial.  Since our 
implementation is written in Java, our classifier is simply 
serialized. 

 
Figure 2 – The classification design loop 

The most interesting issues with the development of 
Crayons lie in the interactive loop displayed in Figure 2.  
To accomplish the fast and focused UI principle, this loop 
must be easy and quick to cycle through.  The cycle can be 
broken down into two components: the UI and the 
Classifier.  The UI component needs to be simple so the 
user can remain focused on the classification problem at 
hand.  The classifier creation needs to be efficient so the 
user gets feedback as quickly as possible, so they are not 
distracted from the classification problem. 

USER INTERFACE 
In designing a classifier interface there are four pieces of 
information that the designer must be able to manipulate. 

1. The set of classes or “crayons” to be recognized, 
2. The set of training images to be used and in 

particular, the current training image that the 
designer is trying to classify, 

3. The classification of pixels as defined by the 
designer (the manual classification), 

4. The classifier’s current classification of the pixels 
(the feedback). 

The primary metaphor for Crayons is painting with user-
defined classes as “crayons”.  [To emphasize the paint 
metaphor, we use the verb “paint” rather than the 
traditional “color” with crayons.]  The designer can create 
as many crayons as desired, associate a color to that 
crayon, and then paint with them over training images in 
the same fashion as a typical paint program. 
Suppose we are trying to create a hand tracker [21, 33].  
Figure 3 shows the control interface that allows the 
designer to create classes.  For the hand tracker we have 
two output classes or crayons: Skin and Background.  The 
Crayons tool always provides a “Nothing” crayon, which is 
completely transparent.  The paint layer is initialized to 
“Nothing” for every pixel.  The “Nothing” crayon can also 
be used to undo or erase errant manual classifications.  As 
previously stated, the designer can create as many classes 
or crayons as desired by giving each a name and an 
associated color. 

 
Figure 3 – Creating Class Crayons 

In order to understand the classification process, the 
designer needs to see the underlying image, the pixels 
classified by the designer, and the pixel classification of the 
currently trained classifier.  This information is provided in 
three layers where the training class layer and classifier 
feedback layer are semi-transparent.  All three of these are 
layered on top of each other, so the user can easily see how 
they coincide.  This helps the user remain focused on the 
task, and constantly reminds the user of the goal to have a 
correctly classifying classifier. 

 
Figure 4 – The Crayons User Interface 

Figure 4 shows the designer having painted some 
Background in a dark blue and some Skin in a light pink.  
Note that the user does not need to color the entire image.  
By coloring only a few pixels as in Figure 4, the classifier 
then generates its best classification for all of the pixels in 
the image.  In Figure 4, the classifier feedback is quite 
transparent and therefore hard to see unless you know what 
you are looking for.  We resolve this by allowing the user 
to control the opacity of the paint layer and the classifier 
feedback layer.  The user may want to see more of the 
underlying image, to paint with the crayons, or perhaps, 
they would just like to get an overall idea of what the 
classifier looks like.     

 
Figure 5 – Varying layer opacity 

In the left-most image of Figure 5 it is easy to see the 
training paint but the classification is obscure.  In the center 
image, paint and classification are all visible and one can 
still see that the edges of the hand are not correctly 



classified.  On the right where the classifier layer is opaque 
we lose information about the underlying hand image, but 
it is apparent that to the left of the hand, the classifier is 
making many small mistakes.  The designer can correct 
those mistakes by painting the noise to the left of the hand 
with the Background crayon.  By zooming in, the designer 
can correct the edges of the hand by more carefully 
painting with the Skin crayon. 
The classifier design process then is to define the desired 
crayons (output classes), quickly paint samples of those 
classes onto one or more training images and then request a 
generated classifier.  The designer then views the 
classification and paints corrections as necessary where the 
classifier was incorrect.  Once the first image is classifying 
acceptably, the designer flips to the next image and paints 
any necessary corrections.  As the classifier improves and 
is confronted with new training data it will change its 
behavior.  By reviewing all of the training images and 
painting corrections, the trained classifier will quickly 
converge, provided there are sufficient features to perform 
the classification.  The process can be summarized as a 
paint, view, correct loop. 
The following sequence of images shows the process of 
paint, view, and correct. 

 

 

 
Figure 6 – Crayons interaction process: 

paint, view, correct 
Figure 6 illustrates how the user initially paints very little 
data, views the feedback provided by the resulting 

classifier, corrects by painting additional pixels and then 
iterates through the cycle.  As seen in the topmost image 
pair in Figure 6, only a little data can generate a classifier 
that roughly learns skin and background.  The classifier, 
however, first over-generalizes in favor of background; so, 
in the middle image pair you can see skin has been painted 
where the classifier did poorly at classifying skin.  The 
resulting classifier shown on the right of the middle image 
pair shows how the new classifier classifies the most of the 
skin on the hand, but is now classifying some of the 
background as skin.  The classifier is corrected again, and 
the resulting classifier is shown as the final image pair in 
the sequence.  Thus, in only a few iterations, a skin 
classifier is created. 

CRAYONS CLASSIFIER 
The automated classifier creation is the brain of the 
Crayons tool.  It needs to be able to extract features and 
generate a classifier quickly to accomplish the “fast” in the 
fast and focused principle.  Classical machine learning 
generally has the following assumptions: 

• There is a relatively small, fixed set of carefully 
chosen features,  

• There is limited training data,  
• The classifier must amplify that limited training data 

into excellent performance on new training data,  
• Time to train the classifier is relatively unimportant 

as long as it does not take too many days. 
None of the above assumptions hold in our interactive 
situation.  UI designers do not need to know which features 
are appropriate.  Crayons insulates them from having to 
know such things.  In our current Crayons prototype there 
are about 175 features per pixel [Features will further be 
explained in their own subsection.]  To reach the breadth of 
application that we desire for this tool we project over 
1,000 features will be necessary.  For any given problem 
somewhere between three and fifteen of those features will 
actually be used, but the classifier algorithm must 
automatically make this selection.  The classifier we choose 
must therefore be able to accommodate such a large 
number of features, and/or select only the best features.   
When a designer begins to paint with Crayons on an image 
a very large number of training examples can quickly be 
generated.  With 77K pixels per image and 20 images, one 
can rapidly generate over a million training examples.  In 
practice, the number stays in the 100K example range 
because designers only paint the pixels that they need to 
correct rather than all pixels in the image.  What this 
means, however, is that designers can generate a huge 
amount of training data very quickly. Traditional machine 
learning generally focuses on the ability of a classifier to 
predict correct behavior on new data. Our experience is 
that interactive classifier training is distinctly different from 
batch-oriented machine learning test beds. If the classifier’s 
predictions for new data are wrong, the designer can 



rapidly make appropriate corrections.    By rapid feedback 
and correction the classifier is quickly (in a matter of 
minutes) focused onto the desired behavior.  The goal of 
the classifier is not to predict the designer’s intent into new 
situations but rapidly reflect that intent as expressed in 
concrete examples. 
The interactive classification loop requires that the 
classifier training be fast.  To be effective, the classifier 
must be generated from the training examples in 1-3 
seconds.  If the classifier takes minutes or hours, the 
process of ‘paint-view-correct’ is no longer interactive, and 
is much less effective as a design tool.  Training on 
200,000 examples with 150 features each in less than 3 
seconds is a serious challenge for most machine learning 
algorithms. 
Lastly, for this tool to be viable the final classifier will need 
to be able to classify 320 x 240 images in less than a fourth 
of a second.  If the resulting classifier is much slower than 
this it becomes impossible to use it to track interactive 
behavior in a meaningful way. 
With these assumptions in mind we must resolve which 
machine-learning algorithm to use to create our classifier 
and which features to extract from the training data.   

Machine Learning 
We require a machine-learning algorithm that can handle a 
large number of examples with a large number of features.  
The algorithm must rapidly discard irrelevant features and 
produce an efficient resulting classifier.  We discuss 
several options and the reason why they are not viable 
before settling on our algorithm of choice: decision trees. 
Neural Networks [24] are a powerful and often used 
machine-learning algorithm.  The strength of neural 
networks lies in their ability to approximate higher order 
decision boundaries, their compactness, and their speed in 
classification.  Despite these advantages, they also have 
serious drawbacks.  The intrinsic fault of this algorithm is 
that it will take far too long for its training to converge — 
much too long to be interactive.  Another drawback results 
from the exponential number of feature combinations that 
must be learned.  The exponential number depends on the 
amount of features and hidden nodes.  This curse of 
dimensionality problem is insurmountable because of the 
number of features that IML and Crayons require. 
The nearest-neighbor algorithm [5] is easy to train but 
would not be effective in Crayons for a few key reasons.  
First, nearest-neighbor does not discriminate among 
features.  Second it has serious problems in high 
dimensional feature spaces of the kind needed in Crayons.  
And lastly, nearest-neighbor generally has a classification 
time that is linear in the number of training examples which 
makes it completely unacceptable.  
There are yet other ensemble techniques such as boosting 
and classifier cascading that do well with feature selection, 
which is a desirable characteristic.  However, while 

boosting has shown itself to be very effective on tasks such 
as face tracing [31], its lengthy training time is prohibitive 
for interactive use in Crayons.  These ensemble techniques 
may be possible in an offline optimization of the classifier, 
but are infeasible in an interactive session. 
There are many more machine-learning algorithms, 
however, this discussion is sufficient to preface to our use 
of decision trees.  All the algorithms discussed above suffer 
from the curse of dimensionality.  When many features are 
used (100s to 1000s), their creation and execution times 
dramatically increase.  In addition, the number of training 
examples required to adequately cover such high 
dimensional feature spaces would far exceed what 
designers can produce.  With just one decision per feature 
the size of the example set must approach 2100, which is 
completely unacceptable.  We need a classifier that rapidly 
discards features and focuses on the 1-10 features that 
characterize a particular problem.   
Decision trees [23] have many appealing properties that 
coincide with the needs of Crayons.  First and foremost is 
that the decision tree algorithm is fundamentally a process 
of feature selection.  The algorithm operates by examining 
each feature and selecting a decision point for dividing the 
range of that feature.  It then computes the “impurity” of 
the result of dividing the training examples at that decision 
point.  One can think of impurity as measuring the amount 
of confusion in a given set.  A set of examples that all 
belong to one class would be pure (zero impurity).  There 
are a variety of possible impurity measures [8].  The 
feature whose partition yields the least impurity is the one 
chosen, the set is divided and the algorithm applied 
recursively to the divided subsets.  Features that do not 
provide discrimination between classes are quickly 
discarded. The simplicity of decision trees also provides 
many implementation advantages in terms of speed and 
space of the resulting classifier. 
Quinlan’s original decision tree algorithm [23] worked 
only on features that were discrete (a small number of 
choices).  Our image features do not have that property.  
Most of our features are continuous real values.  Fayyad 
and Irani [10] have shown how decision trees can be built 
using threshold values.  By selecting a threshold T for a 
given feature F we can divide the training examples into 
two sets where F<T and F>=T.  The trick is for each 
feature to select a value T that gives the lowest impurity 
(best classification improvement).  The selection of T from 
a large number of features and a large number of training 
examples is very slow to do correctly.  Even an O(N log N) 
algorithm is prohibitively slow for our interactive use. 
Our experience with Crayons has shown that selecting a 
correct threshold T for a given feature is not as important as 
selecting one that partitions the set of examples into two 
roughly equal sized subsets.  If the subsets are relatively 
equal, the height of the decision tree is always close to 
log2N, which is highly efficient, even for very large N.  We 



therefore only look at the middle twenty percent of the 
values for a given feature and find the T that has the least 
impurity for each feature F and compare the impurities of 
the divisions of all features.  This is very efficient and 
produces relatively shallow decision trees.  The resulting 
decision trees yield comparable results while being much 
more shallow than if all possible T values were tested.  
Designers make up for the lower quality of the decision 
tree with the ability to correct more rapidly.  Though the 
learning ability of the classifier is lower, designers are able 
to train a good classifier much faster.  The key is in 
optimizing designer judgment rather than classifier 
predictions. 
If desired, after a classifier is trained, both the training data 
painted by the user and the resulting classifications that the 
user has approved can be used offline to generate more 
efficient and robust classifiers.  Such offline approaches 
can take whatever time is needed and apply many 
traditional machine-learning approaches that are not 
interactively effective. 

Features 
As previously stated many different features have been 
used in the past to create visual classifiers.  Crayons 
requires a feature set that can be combined to model a 
variety of classifiers and image filters.  Rather than 
carefully select features, and various convolution filters, we 
let the decision tree algorithm form those filters by its own 
tree structure.  In other words, the DT structure used in 
Crayons will automatically combine basic features to 
simulate filters and kernels. 
The basic features for a given pixel are the red, green, blue, 
hue, saturation, and value numbers for that pixel.  A 
number of interactive techniques can be built from these 
six values, but they are not very robust to noise and are not 
sufficient for edge detection, differentiating spots from 
larger areas, and a variety of other useful behaviors. 
We introduced a wider range of features by computing the 
integral image [31] of each of these six features.  The 
integral image is a technique for computing the sum of the 
values in any rectangle of an image in constant time.  This 
technique allows us to cheaply sample multiple areas of 
differing sizes around each pixel.  This is only possible 
because of the constant time summation of these regions 
that is afforded by integral images.  These region features 
have been very effective in producing efficient face 
trackers [31].  By combining such area features the 
decision tree can emulate most noise filters, edge detectors, 
speckle removers and other image processing techniques.  
However, because the decision tree is doing this 
automatically the designer does not need to know, nor care 
about the existence of such filters. 
The areas used as features are shown in Figure 7.  For each 
of the 6 basic features we add the surrounding 8 pixels.  
We then add an area feature for that 3x3 region and the 
surrounding 8, 3x3 regions.  We then do the same thing at a 

9x9 scale and finish with the 27x27 area as a whole.  
Combinations of these features can produce a variety of 
filters at a variety of scales.  At present, we are using a total 
of around 175 features.  These features perform very well 
for a wide variety of interactive tracking needs.  

27 Pixels

9 Pixels

3 Pixels

 
Figure 7 – Area feature pattern  

There are limitations to the interactive imaging tasks that 
Crayons can support.  The current feature set cannot take 
into account image change over time or motion [7].  There 
are well known techniques for doing this, but the 
generalized feature set immediately grows to thousands.  
This is not an algorithmic problem, but it is a performance 
problem on our 2.5Ghz workstations.  Our future work 
includes features for texture recognition, blob detection and 
image moments of blobs as features. 

EVALUATION 
Our original intent was to build a tool that would allow 
designers to build camera-based interfaces in minutes 
rather than months.  To evaluate this we collected several 
interactive problems that we have previously solved using 
traditional programming techniques.  These include 
tracking a laser spot, tracking skin, tracking paper cards on 
a table surface and tracking a robot car driving around on 
the carpet.   
For each of these problems we assembled a set of training 
images and carefully hand classified each pixel into its 
appropriate class for each problem.  This provided us with 
a “gold standard” that we could use in evaluations.  We 
then built a special version of Crayons that takes each 
classifier that the designer generates and compares its 
classifications to the manually classified gold standard and 
reports a percentage of pixels that are classified the same.  
We then gave each problem to briefly trained users and had 
them train a classifier until it was 98% accurate relative to 
the gold standard.  We timed how long it took for a 
designer to solve each problem to get a measure of the 
effectiveness of the Crayons tool. 
As can be seen in Table 1, which shows the results of this 
testing, all users were able to create a valid classifier for 
each of the problems in well under ten minutes.  Although, 
we only tried this on five different users, which is not 
enough to show statistical significance, it is apparent that 



the classifier creation time is going to be at least three 
orders of magnitude better than a hand-programmed 
approach, which could take days, weeks or months. 

 Time (min:sec) 
Problem Min Max Avg 
Skin 3:28 7:00 5:20 
Paper Cards 1:25 3:35 2:30 
Car 0:27 1:28 1:02 
Laser 0:11 1:56 0:39 

Table 1 – Time spent creating classifier 
While testing we observed that those who manually 
classified a little, created a classifier, then iterated through 
the interactive loop illustrated in Figure 2, were able to 
create a satisfactory classifier more quickly than those who 
laboriously added many pixels and training examples 
between iterations.  Those who tried to out-guess the 
classifier generation took longer than those who let 
Crayons do its work.  Another observation is that because 
of the simplicity of the interface, some people were 
haphazard in their manual classifications.  This did not 
hinder them from getting a satisfactory classifier, but quite 
possibly could.  One last observation was that most of the 
users (four of the five) said that their main focus while 
creating the classifier was to see which examples were 
classifying incorrectly and correctly.  This was desired, as 
it fulfills the fast and focused principle discussed earlier. 

RELATED WORK 
Image classification is an extremely difficult problem that 
has been approached from many different perspectives.  
Much research has been done in the area of automatic 
image classification and indexing.  Most of the research has 
been in the area of query by image content [4,13,18,30].  
Query by image content focuses on classifying the whole 
image and being able to retrieve images that are similar to a 
query image.  It is a retrieval problem, but is very similar to 
the classification problem that we face.  Other systems like 
Blobworld [1,3] attempt to enhance the retrieval of images 
by using more localized information like local shapes and 
textures.  These localized shape and texture features are 
more similar to what we do with Crayons, by using the area 
color features. 
There are some people who have also dipped into 
interactive machine learning.  Takagi discusses in his 
survey of interactive evolutionary computing (IEC) how 
different EC applications strive to exploit human 
evaluation skills [27].  Scott, et al. [25] also discuss the 
optimization possibilities that a human “in-the-loop” can 
provide. 
Of all the research that has been done, the most similar to 
our work is the research done by Jaimes and Chang with 
the Visual Apprentice.  Their research has produced a 
visual tool to help create hierarchical classifiers to find 
specific scene types in video [16,17], as well as a defining 
hierarchy of how to classify images in general [15].  Their 
work is significant, because it contains many of the ideas 

we are exploring, with the distinction that it does not have 
interactive classifier feedback.  We believe that by using 
quickly generated classifiers, and providing rapid feedback, 
the user can iterate through the classifier tuning process at 
interactive speeds.  This tightens the loop between the 
designer and the machine learning and enables the user to 
create a satisfactory classifier within minutes instead of 
hours, weeks, or months. 

CONCLUSION 
The Crayons tool is a first step in putting sensor-based 
interactions into the hands of user interface designers.  
Machine-learning for interactive use is significantly 
different from traditional batch-oriented training and 
carries its own unique demands on the algorithms.  Crayons 
illustrates how IML can be used to free designers from the 
knowledge of machine learning and image/signal 
processing, and instead, allow them to focus on interactive 
tasks. 
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