
A Design Tool for Camera-based Interaction

Jerry Alan Fails, Dan R. Olsen
Computer Science Department

Brigham Young University
Provo, Utah 84602

{failsj, olsen}@cs.byu.edu

ABSTRACT
Cameras provide an appealing new input medium for
interaction. The creation of camera-based interfaces is
outside the skill-set of most programmers and completely
beyond the skills of most interface designers. Image
Processing with Crayons is a tool for creating new camera-
based interfaces using a simple painting metaphor. A
transparent layers model is used to present the designer
with all of the necessary information. Traditional machine
learning algorithms have been modified to accommodate
the rapid response time required of an interactive design
tool.
Categories & Subject Descriptors: H.1.2 [Information
Systems]: User/Machine Systems — Human factors; H.5.2
[Information Interfaces and Presentation]: User Interfaces
— interaction styles, prototyping, theory and methods;
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis — color, object recognition, tracking; I.4.9
[Image Processing and Computer Vision]: Applications;
General Terms: Algorithms, Human Factors; Keywords:
Image processing, classification, interaction, machine
learning, perceptive user interfaces.

INTRODUCTION
Myron Krueger’s VideoPlace [20] established cameras as
an interactive input medium and sparked an interest in user
interfaces that function by watching what people do rather
than requiring overt inputs by a user. Mark Weiser
popularized the notion of ubiquitous computing [32] where
computing moved into the environment as a whole rather
than residing on a desk. Hiroshi Ishii and his Tangible
Media Group [14,28,29] have pioneered demonstrations of
how computing and interaction can be embedded in
everyday things. Achieving these visions requires a much
larger range of interactive sensors than can be found on
common desktop systems.
In this work we are interested particularly in camera-based
interfaces. We chose the camera because of its ambient
nature in that it passively watches without requiring the

user to wear or carry anything special. Cameras are
currently quite cheap with their costs rapidly approaching
the cost of a keyboard and mouse. Projects such as the
Gesture Pendant [26], Light Widgets [9], finger tracking
[6], hand waving [11] and Laser Pointer Interaction [22]
have demonstrated how cameras can form the primary
sensor for an interactive behavior.
The challenge, however, is that designing camera-based
interfaces is quite difficult. Not only is sophisticated
programming required, but also the mathematics of image
processing and machine learning. These are far beyond the
skill set required for Visual Basic. In our Image Processing
with Crayons (Crayons) project we are focused on creating
interface development tools that can be placed in the hands
of ordinary designers. Since there is no extant design
community for camera-based interfaces we have made
several assumptions about the skill set such a community
might posses.

• Familiarity with visual design tools like Visual
Basic, and how they integrate with other software,

• No familiarity with image processing or machine
learning,

• An understanding that image regions must be
classified to identify the items of interest to the
interaction, but little understanding of how that
might be done.

At the heart of any camera-based interaction is a classifier
that takes an image and identifies those pixels or groups of
pixels that are of interest to the interaction. This is so
because once a programmer knows where items of interest
are found in an image, the remaining programming is very
similar to mouse-based interaction. The classifier is the
particular part of camera-based interaction that most
programmers shy away from.
Because UI designers rarely have detailed image
processing or machine learning knowledge, they must learn
these skills before even beginning to build such a classifier.
Once the knowledge of how to build the classifier has been
attained the implementation is not usually difficult,
although there are still many tricks and nuances that require
repetitive testing and alterations. Kernels, filters and
machine learning algorithm parameters can be tricky and
temperamental and generally require many modifications.
In our experience, adjustments to a manually created

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2003, April 5-10, 2003, Ft. Lauderdale, Florida, USA.
Copyright 2003 ACM 1-58113-630-7/03/0004...$5.00.

classifier may take weeks, if not months to finally achieve
satisfactory results.
It is important to note that image classifiers can be difficult
for even knowledgeable programmers to get right. In the
traditional approach, a programmer must identify a set of
features that are sufficient for the task. Most machine
learning algorithms assume that substantial time and
thought will go into feature selection before the classifier
algorithm is even invoked. Such features may be as simple
as the hue and saturation values for a particular pixel or
more complicated convolution kernels for separating
desired pixels from similar ones. A programmer can spend
months researching, programming and trying different
combinations of features. Such activities are quite beyond
the skills of the average interface designer. However,
understanding the interaction problem is well within the
capacities of an interface designer.
Consider the example of laser-pointer interaction. Once
the laser spot is accurately located the remaining
interactions are very similar to mouse interactions. Anyone
looking at the camera images can readily identify the key
problem as “find that red spot.” Finding the red spot,
however, is not trivial due to the laser overdriving the
camera, other red objects in the field of view, and noise
from cheap cameras.
Similar problems arise when using hands as the input.
Techniques such as Light Widgets [9] are founded on skin
tracking to locate user’s hands relative to various input
areas. Any person can look at the image and locate the
hands, however, the algorithms that create classifiers and
take care of noise and other artifacts take substantial time
to design.
Crayons is a tool that focuses on creating such classifiers
and exporting them in a form that is easily incorporated
into Java programs. Crayons is intended to aid UI
designers who do not have detailed knowledge of image
processing and machine learning. It is also intended to
greatly accelerate the efforts of knowledgeable
programmers.
Crayons currently uses pixel-color features to classify. It
uses pixel value sums for neighboring and concentric
rectangular regions. Many other feature types have and are
used in other systems: pixels, texture, shape, region,
motion, history, whole images, etc. Although we hope
Crayons eventually incorporates more feature types, the
current implementation only uses pixel features. These
features are unable to distinguish shapes and object
orientations like hand gestures, but do well with pixel-
based object detection like laser, hand and object tracking.

Figure 1 – Classifier Design Process

The Crayons interface design process is shown in Figure 1.
Designing an interface with Crayons begins with gathering
a collection of representative images of situations where
the interaction will occur. Because Crayons classifiers are
trained, the selection of the images on which the training is
to be done is important. For example if the technique is to
work in a variety of lighting conditions, images with such
variety must be chosen. If one were creating a skin tracker,
images with a variety of skin colors are needed. The
sample image selection step requires some consideration
since the training images affect the final classifier.
Although initial thought is beneficial, it is not required
because new images can always be inserted into the
Crayons to aid classifier creation.
After collecting sample images, the designer uses the
Crayons tool to train a classifier. The training metaphor is
to simply paint the classification over the sample images.
If while using a classifier a situation is discovered where it
does not work correctly, new training images can be added
and the designer can paint corrections on them. The total
number of images needed depends on its targeted
application. When the designer has a classifier that is
satisfactory, the classifier is exported as a serialized Java
object that can be easily loaded into any Java program.
There are two primary goals for the Crayons tool: 1) to
allow the user to create a classifier quickly, and 2) to allow
the user to focus on the classification problem rather than
image processing or algorithms. Crayons is successful if it
takes minutes rather than weeks or months to create an
effective classifier. For simplicity sake, we will refer to
this as the UI principle of fast and focused — the
fundamental UI principle of enabling the designer to
quickly accomplish his/her task while remaining focused
solely on that task.
Traditional machine learning does not directly solve the
Crayons problem. We found in the course of this work that
traditional machine learning makes assumptions about the
nature of the learning problem that are not valid in the
Crayons approach. These assumptions and their resolution
will be discussed later in the paper.

Crayons Overview
The overall purpose of Crayons is to create classifiers
easily and rapidly. Crayons receives images upon which
the user does some manual classification, a classifier is
created, then feedback is displayed. The user can then
refine the classifier by adding more manual classification,
or, if the classifier is satisfactory, the user can export the
classifier.
Although the focus of this paper is on the internal
processes of Crayons, its input and output deserve some
attention. For the images (the input arrow) the system
assumes the user has already taken digital pictures and
saved them as files to import into the system, or that a
camera is set up on the machine running Crayons, so it can
capture images from it. Additional images can always be

inserted to enhance training and testing. Exporting the
classifier (the output arrow) is trivial. Since our
implementation is written in Java, our classifier is simply
serialized.

Figure 2 – The classification design loop

The most interesting issues with the development of
Crayons lie in the interactive loop displayed in Figure 2.
To accomplish the fast and focused UI principle, this loop
must be easy and quick to cycle through. The cycle can be
broken down into two components: the UI and the
Classifier. The UI component needs to be simple so the
user can remain focused on the classification problem at
hand. The classifier creation needs to be efficient so the
user gets feedback as quickly as possible, so they are not
distracted from the classification problem.

USER INTERFACE
In designing a classifier interface there are four pieces of
information that the designer must be able to manipulate.

1. The set of classes or “crayons” to be recognized,
2. The set of training images to be used and in

particular, the current training image that the
designer is trying to classify,

3. The classification of pixels as defined by the
designer (the manual classification),

4. The classifier’s current classification of the pixels
(the feedback).

The primary metaphor for Crayons is painting with user-
defined classes as “crayons”. [To emphasize the paint
metaphor, we use the verb “paint” rather than the
traditional “color” with crayons.] The designer can create
as many crayons as desired, associate a color to that
crayon, and then paint with them over training images in
the same fashion as a typical paint program.
Suppose we are trying to create a hand tracker [21, 33].
Figure 3 shows the control interface that allows the
designer to create classes. For the hand tracker we have
two output classes or crayons: Skin and Background. The
Crayons tool always provides a “Nothing” crayon, which is
completely transparent. The paint layer is initialized to
“Nothing” for every pixel. The “Nothing” crayon can also
be used to undo or erase errant manual classifications. As
previously stated, the designer can create as many classes
or crayons as desired by giving each a name and an
associated color.

Figure 3 – Creating Class Crayons

In order to understand the classification process, the
designer needs to see the underlying image, the pixels
classified by the designer, and the pixel classification of the
currently trained classifier. This information is provided in
three layers where the training class layer and classifier
feedback layer are semi-transparent. All three of these are
layered on top of each other, so the user can easily see how
they coincide. This helps the user remain focused on the
task, and constantly reminds the user of the goal to have a
correctly classifying classifier.

Figure 4 – The Crayons User Interface

Figure 4 shows the designer having painted some
Background in a dark blue and some Skin in a light pink.
Note that the user does not need to color the entire image.
By coloring only a few pixels as in Figure 4, the classifier
then generates its best classification for all of the pixels in
the image. In Figure 4, the classifier feedback is quite
transparent and therefore hard to see unless you know what
you are looking for. We resolve this by allowing the user
to control the opacity of the paint layer and the classifier
feedback layer. The user may want to see more of the
underlying image, to paint with the crayons, or perhaps,
they would just like to get an overall idea of what the
classifier looks like.

Figure 5 – Varying layer opacity

In the left-most image of Figure 5 it is easy to see the
training paint but the classification is obscure. In the center
image, paint and classification are all visible and one can
still see that the edges of the hand are not correctly

classified. On the right where the classifier layer is opaque
we lose information about the underlying hand image, but
it is apparent that to the left of the hand, the classifier is
making many small mistakes. The designer can correct
those mistakes by painting the noise to the left of the hand
with the Background crayon. By zooming in, the designer
can correct the edges of the hand by more carefully
painting with the Skin crayon.
The classifier design process then is to define the desired
crayons (output classes), quickly paint samples of those
classes onto one or more training images and then request a
generated classifier. The designer then views the
classification and paints corrections as necessary where the
classifier was incorrect. Once the first image is classifying
acceptably, the designer flips to the next image and paints
any necessary corrections. As the classifier improves and
is confronted with new training data it will change its
behavior. By reviewing all of the training images and
painting corrections, the trained classifier will quickly
converge, provided there are sufficient features to perform
the classification. The process can be summarized as a
paint, view, correct loop.
The following sequence of images shows the process of
paint, view, and correct.

Figure 6 – Crayons interaction process:

paint, view, correct
Figure 6 illustrates how the user initially paints very little
data, views the feedback provided by the resulting

classifier, corrects by painting additional pixels and then
iterates through the cycle. As seen in the topmost image
pair in Figure 6, only a little data can generate a classifier
that roughly learns skin and background. The classifier,
however, first over-generalizes in favor of background; so,
in the middle image pair you can see skin has been painted
where the classifier did poorly at classifying skin. The
resulting classifier shown on the right of the middle image
pair shows how the new classifier classifies the most of the
skin on the hand, but is now classifying some of the
background as skin. The classifier is corrected again, and
the resulting classifier is shown as the final image pair in
the sequence. Thus, in only a few iterations, a skin
classifier is created.

CRAYONS CLASSIFIER
The automated classifier creation is the brain of the
Crayons tool. It needs to be able to extract features and
generate a classifier quickly to accomplish the “fast” in the
fast and focused principle. Classical machine learning
generally has the following assumptions:

• There is a relatively small, fixed set of carefully
chosen features,

• There is limited training data,
• The classifier must amplify that limited training data

into excellent performance on new training data,
• Time to train the classifier is relatively unimportant

as long as it does not take too many days.
None of the above assumptions hold in our interactive
situation. UI designers do not need to know which features
are appropriate. Crayons insulates them from having to
know such things. In our current Crayons prototype there
are about 175 features per pixel [Features will further be
explained in their own subsection.] To reach the breadth of
application that we desire for this tool we project over
1,000 features will be necessary. For any given problem
somewhere between three and fifteen of those features will
actually be used, but the classifier algorithm must
automatically make this selection. The classifier we choose
must therefore be able to accommodate such a large
number of features, and/or select only the best features.
When a designer begins to paint with Crayons on an image
a very large number of training examples can quickly be
generated. With 77K pixels per image and 20 images, one
can rapidly generate over a million training examples. In
practice, the number stays in the 100K example range
because designers only paint the pixels that they need to
correct rather than all pixels in the image. What this
means, however, is that designers can generate a huge
amount of training data very quickly. Traditional machine
learning generally focuses on the ability of a classifier to
predict correct behavior on new data. Our experience is
that interactive classifier training is distinctly different from
batch-oriented machine learning test beds. If the classifier’s
predictions for new data are wrong, the designer can

rapidly make appropriate corrections. By rapid feedback
and correction the classifier is quickly (in a matter of
minutes) focused onto the desired behavior. The goal of
the classifier is not to predict the designer’s intent into new
situations but rapidly reflect that intent as expressed in
concrete examples.
The interactive classification loop requires that the
classifier training be fast. To be effective, the classifier
must be generated from the training examples in 1-3
seconds. If the classifier takes minutes or hours, the
process of ‘paint-view-correct’ is no longer interactive, and
is much less effective as a design tool. Training on
200,000 examples with 150 features each in less than 3
seconds is a serious challenge for most machine learning
algorithms.
Lastly, for this tool to be viable the final classifier will need
to be able to classify 320 x 240 images in less than a fourth
of a second. If the resulting classifier is much slower than
this it becomes impossible to use it to track interactive
behavior in a meaningful way.
With these assumptions in mind we must resolve which
machine-learning algorithm to use to create our classifier
and which features to extract from the training data.

Machine Learning
We require a machine-learning algorithm that can handle a
large number of examples with a large number of features.
The algorithm must rapidly discard irrelevant features and
produce an efficient resulting classifier. We discuss
several options and the reason why they are not viable
before settling on our algorithm of choice: decision trees.
Neural Networks [24] are a powerful and often used
machine-learning algorithm. The strength of neural
networks lies in their ability to approximate higher order
decision boundaries, their compactness, and their speed in
classification. Despite these advantages, they also have
serious drawbacks. The intrinsic fault of this algorithm is
that it will take far too long for its training to converge —
much too long to be interactive. Another drawback results
from the exponential number of feature combinations that
must be learned. The exponential number depends on the
amount of features and hidden nodes. This curse of
dimensionality problem is insurmountable because of the
number of features that IML and Crayons require.
The nearest-neighbor algorithm [5] is easy to train but
would not be effective in Crayons for a few key reasons.
First, nearest-neighbor does not discriminate among
features. Second it has serious problems in high
dimensional feature spaces of the kind needed in Crayons.
And lastly, nearest-neighbor generally has a classification
time that is linear in the number of training examples which
makes it completely unacceptable.
There are yet other ensemble techniques such as boosting
and classifier cascading that do well with feature selection,
which is a desirable characteristic. However, while

boosting has shown itself to be very effective on tasks such
as face tracing [31], its lengthy training time is prohibitive
for interactive use in Crayons. These ensemble techniques
may be possible in an offline optimization of the classifier,
but are infeasible in an interactive session.
There are many more machine-learning algorithms,
however, this discussion is sufficient to preface to our use
of decision trees. All the algorithms discussed above suffer
from the curse of dimensionality. When many features are
used (100s to 1000s), their creation and execution times
dramatically increase. In addition, the number of training
examples required to adequately cover such high
dimensional feature spaces would far exceed what
designers can produce. With just one decision per feature
the size of the example set must approach 2100, which is
completely unacceptable. We need a classifier that rapidly
discards features and focuses on the 1-10 features that
characterize a particular problem.
Decision trees [23] have many appealing properties that
coincide with the needs of Crayons. First and foremost is
that the decision tree algorithm is fundamentally a process
of feature selection. The algorithm operates by examining
each feature and selecting a decision point for dividing the
range of that feature. It then computes the “impurity” of
the result of dividing the training examples at that decision
point. One can think of impurity as measuring the amount
of confusion in a given set. A set of examples that all
belong to one class would be pure (zero impurity). There
are a variety of possible impurity measures [8]. The
feature whose partition yields the least impurity is the one
chosen, the set is divided and the algorithm applied
recursively to the divided subsets. Features that do not
provide discrimination between classes are quickly
discarded. The simplicity of decision trees also provides
many implementation advantages in terms of speed and
space of the resulting classifier.
Quinlan’s original decision tree algorithm [23] worked
only on features that were discrete (a small number of
choices). Our image features do not have that property.
Most of our features are continuous real values. Fayyad
and Irani [10] have shown how decision trees can be built
using threshold values. By selecting a threshold T for a
given feature F we can divide the training examples into
two sets where F<T and F>=T. The trick is for each
feature to select a value T that gives the lowest impurity
(best classification improvement). The selection of T from
a large number of features and a large number of training
examples is very slow to do correctly. Even an O(N log N)
algorithm is prohibitively slow for our interactive use.
Our experience with Crayons has shown that selecting a
correct threshold T for a given feature is not as important as
selecting one that partitions the set of examples into two
roughly equal sized subsets. If the subsets are relatively
equal, the height of the decision tree is always close to
log2N, which is highly efficient, even for very large N. We

therefore only look at the middle twenty percent of the
values for a given feature and find the T that has the least
impurity for each feature F and compare the impurities of
the divisions of all features. This is very efficient and
produces relatively shallow decision trees. The resulting
decision trees yield comparable results while being much
more shallow than if all possible T values were tested.
Designers make up for the lower quality of the decision
tree with the ability to correct more rapidly. Though the
learning ability of the classifier is lower, designers are able
to train a good classifier much faster. The key is in
optimizing designer judgment rather than classifier
predictions.
If desired, after a classifier is trained, both the training data
painted by the user and the resulting classifications that the
user has approved can be used offline to generate more
efficient and robust classifiers. Such offline approaches
can take whatever time is needed and apply many
traditional machine-learning approaches that are not
interactively effective.

Features
As previously stated many different features have been
used in the past to create visual classifiers. Crayons
requires a feature set that can be combined to model a
variety of classifiers and image filters. Rather than
carefully select features, and various convolution filters, we
let the decision tree algorithm form those filters by its own
tree structure. In other words, the DT structure used in
Crayons will automatically combine basic features to
simulate filters and kernels.
The basic features for a given pixel are the red, green, blue,
hue, saturation, and value numbers for that pixel. A
number of interactive techniques can be built from these
six values, but they are not very robust to noise and are not
sufficient for edge detection, differentiating spots from
larger areas, and a variety of other useful behaviors.
We introduced a wider range of features by computing the
integral image [31] of each of these six features. The
integral image is a technique for computing the sum of the
values in any rectangle of an image in constant time. This
technique allows us to cheaply sample multiple areas of
differing sizes around each pixel. This is only possible
because of the constant time summation of these regions
that is afforded by integral images. These region features
have been very effective in producing efficient face
trackers [31]. By combining such area features the
decision tree can emulate most noise filters, edge detectors,
speckle removers and other image processing techniques.
However, because the decision tree is doing this
automatically the designer does not need to know, nor care
about the existence of such filters.
The areas used as features are shown in Figure 7. For each
of the 6 basic features we add the surrounding 8 pixels.
We then add an area feature for that 3x3 region and the
surrounding 8, 3x3 regions. We then do the same thing at a

9x9 scale and finish with the 27x27 area as a whole.
Combinations of these features can produce a variety of
filters at a variety of scales. At present, we are using a total
of around 175 features. These features perform very well
for a wide variety of interactive tracking needs.

27 Pixels

9 Pixels

3 Pixels

Figure 7 – Area feature pattern

There are limitations to the interactive imaging tasks that
Crayons can support. The current feature set cannot take
into account image change over time or motion [7]. There
are well known techniques for doing this, but the
generalized feature set immediately grows to thousands.
This is not an algorithmic problem, but it is a performance
problem on our 2.5Ghz workstations. Our future work
includes features for texture recognition, blob detection and
image moments of blobs as features.

EVALUATION
Our original intent was to build a tool that would allow
designers to build camera-based interfaces in minutes
rather than months. To evaluate this we collected several
interactive problems that we have previously solved using
traditional programming techniques. These include
tracking a laser spot, tracking skin, tracking paper cards on
a table surface and tracking a robot car driving around on
the carpet.
For each of these problems we assembled a set of training
images and carefully hand classified each pixel into its
appropriate class for each problem. This provided us with
a “gold standard” that we could use in evaluations. We
then built a special version of Crayons that takes each
classifier that the designer generates and compares its
classifications to the manually classified gold standard and
reports a percentage of pixels that are classified the same.
We then gave each problem to briefly trained users and had
them train a classifier until it was 98% accurate relative to
the gold standard. We timed how long it took for a
designer to solve each problem to get a measure of the
effectiveness of the Crayons tool.
As can be seen in Table 1, which shows the results of this
testing, all users were able to create a valid classifier for
each of the problems in well under ten minutes. Although,
we only tried this on five different users, which is not
enough to show statistical significance, it is apparent that

the classifier creation time is going to be at least three
orders of magnitude better than a hand-programmed
approach, which could take days, weeks or months.

 Time (min:sec)
Problem Min Max Avg
Skin 3:28 7:00 5:20
Paper Cards 1:25 3:35 2:30
Car 0:27 1:28 1:02
Laser 0:11 1:56 0:39

Table 1 – Time spent creating classifier
While testing we observed that those who manually
classified a little, created a classifier, then iterated through
the interactive loop illustrated in Figure 2, were able to
create a satisfactory classifier more quickly than those who
laboriously added many pixels and training examples
between iterations. Those who tried to out-guess the
classifier generation took longer than those who let
Crayons do its work. Another observation is that because
of the simplicity of the interface, some people were
haphazard in their manual classifications. This did not
hinder them from getting a satisfactory classifier, but quite
possibly could. One last observation was that most of the
users (four of the five) said that their main focus while
creating the classifier was to see which examples were
classifying incorrectly and correctly. This was desired, as
it fulfills the fast and focused principle discussed earlier.

RELATED WORK
Image classification is an extremely difficult problem that
has been approached from many different perspectives.
Much research has been done in the area of automatic
image classification and indexing. Most of the research has
been in the area of query by image content [4,13,18,30].
Query by image content focuses on classifying the whole
image and being able to retrieve images that are similar to a
query image. It is a retrieval problem, but is very similar to
the classification problem that we face. Other systems like
Blobworld [1,3] attempt to enhance the retrieval of images
by using more localized information like local shapes and
textures. These localized shape and texture features are
more similar to what we do with Crayons, by using the area
color features.
There are some people who have also dipped into
interactive machine learning. Takagi discusses in his
survey of interactive evolutionary computing (IEC) how
different EC applications strive to exploit human
evaluation skills [27]. Scott, et al. [25] also discuss the
optimization possibilities that a human “in-the-loop” can
provide.
Of all the research that has been done, the most similar to
our work is the research done by Jaimes and Chang with
the Visual Apprentice. Their research has produced a
visual tool to help create hierarchical classifiers to find
specific scene types in video [16,17], as well as a defining
hierarchy of how to classify images in general [15]. Their
work is significant, because it contains many of the ideas

we are exploring, with the distinction that it does not have
interactive classifier feedback. We believe that by using
quickly generated classifiers, and providing rapid feedback,
the user can iterate through the classifier tuning process at
interactive speeds. This tightens the loop between the
designer and the machine learning and enables the user to
create a satisfactory classifier within minutes instead of
hours, weeks, or months.

CONCLUSION
The Crayons tool is a first step in putting sensor-based
interactions into the hands of user interface designers.
Machine-learning for interactive use is significantly
different from traditional batch-oriented training and
carries its own unique demands on the algorithms. Crayons
illustrates how IML can be used to free designers from the
knowledge of machine learning and image/signal
processing, and instead, allow them to focus on interactive
tasks.

REFERENCES
1. Belongie, S., Carson, C., Greenspan, H. and Malik, J.

“Color and texture-based image segmentation using EM
and its application to content-based image retrieval.” In
Proc. Int. Conf. Comp. Vis., 1998.

2. Buck, I., Finkelstein, A., Jacobs, C., Klein, A., Salesin,
D. H., Seims, J., Szeliski, R., and Toyama, K.
“Performance-driven hand-drawn animation.”
Proceedings of NPAR 2000 (June 2000).

3. Carson, C., Thomas, M., Belongie, S., Hellerstein, J.M.
and Malik, J. “Blobworld: A system for region-based
image indexing and retrieval.” In Proc. Int. Conf. Visual
Inf. Sys., 1999.

4. Christos Faloutsos, C., Barber, R., Flickner, M.,
Niblack, W., Petkovic, D. and Equitz, W. “Efficient and
effective querying by image content.” Journal of
Intelligent Information Systems, 3(3/4): 231-262, July
1994.

5. Cover, T., and Hart, P. “Nearest Neighbor Pattern
Classification.” IEEE Transactions on Information
Theory, 13, (1967) 21-27.

6. Crowley, J.L, Bérard, F., and Coutaz, J. “Finger
Tracking as an Input Device for Augmented Reality.”
IWAGFR ’95: Zurich, Germany (June 1995).

7. Davis, J. “Recognizing movement using motion
histograms.” MIT Media lab Technical Report #487,
March 1999.

8. Duda, R. O., Hart, P. E., and Stork, D. G., Pattern
Classification. (2001).

9. Fails, J.A., Olsen, D.R. “LightWidgets: Interacting in
Everyday Spaces.” Proceedings of IUI ’02 (San
Francisco CA, January 2002).

10. Fayyad, U.M. and Irani, K. B. “On the Handling of
Continuous-valued Attributes in Decision Tree
Generation.” Machine Learning, 8, 87-102,(1992).

11. Freeman, W., Anderson, D., Beardsley, P., et al.
“Computer vision for interactive computer graphics.”
IEEE Computer Graphics and Applications, Vol. 18,
Num 3, pages 42-53, May-June 1998.

12. Ghidary, S.S. Nakata, Y., Takamori, T. and Hattori, M.
“Head and Face Detection at Indoor Environment by
Home Robot.” Proceedings of ICEE200 (Iran, May
2000).

13. Hirata, K. and Kato, T. “Query by Visual Example—
Content-Based Image Retrieval.” Advances in Database
Technology EDBT ‘92, 3rd International Conference on
Extending Database Technology, Vienna, Austria, A.
Pirotte, C. Delobel, and G. Gottlob, eds., Lecture Notes
in Computer Science, vol. 580, Springer-Verlag, Berlin,
1992, pp. 56-71.

14. Ishii, H., and Ullmer, B. “Tangible Bits: Towards
Seamless Interfaces between People, Bits and Atoms.”
Human Factors in Computing Systems (CHI ’97).
(March 1997).

15. Jaimes, A. and Chang, S.-F. “A Conceptual Framework
for Indexing Visual Information at Multiple Levels.”
IS&T/SPIE Internet Imaging 2000, (San Jose CA,
January 2000).

16. Jaimes, A. and Chang, S.-F. “Automatic Selection of
Visual Features and Classifier.” Storage and Retrieval
for Image and Video Databases VIII, IS&T/SPIE (San
Jose CA, January 2000).

17. Jaimes, A. and Chang, S.-F. “Integrating Multiple
Classifiers in Visual Object Detectors Learned from
User Input.” Invited paper, session on Image and Video
Databases, 4th Asian Conference on Computer Vision
(ACCV 2000), Taipei, Taiwan, January 8-11, 2000.

18. Kelly, P. M. and Cannon, M. “Query by Image
Example: the CANDID Approach.” Los Alamos
National Laboratory White Paper, (1995).

19. Koller, D., Klinker, G., Rose, E., Breen, D., Whitaker,
R. and Tuceryan, M. “Real-time Vision-based Camera
Tracking for Augmented Reality Applications.”
Proceedings of the Symposium on Virtual Reality
Software and Technology (VRST-97), Lusanne,
Switzerland, Sept 1997, 87-94.

20. Krueger, M. W., Gionfriddo. T., and Hinrichsen, K.,
“VIDEOPLACE -- an artificial reality”. Human Factors
in Computing Systems, CHI '85 Conference
Proceedings, ACM Press, 1985, 35-40.

21. Hardenberg, C. and Bérard, F. “Bare-Hand Human-
Computer Interaction.” Proceedings of the ACM
Workshop on Perceptive User Interfaces (Orlando, FL,
Nov. 15-16, 2001).

22. Olsen, D.R., Nielsen, T. “Laser Pointer Interaction.”
Proceedings of CHI ’01 (Seattle WA, March 2001).

23. Quinlan, J. R. “Induction of Decision Trees.” Machine
Learning, 1(1); 81-106, (1986).

24. Rumelhart, D., Widrow, B., and Lehr, M. “The Basic
Ideas in Neural Networks.” Communications of the
ACM, 37(3), (1994), pp 87-92.

25. Scott, S., Lesh, N., Klau, G. “Investigating Human-
Computer Optimization.” Proceedings of CHI ’02
(Minneapolis MN, April 2002), pp. 155-162.

26. Starner, T., Auxier, J. and Ashbrook, D. “The Gesture
Pendant: A Self-illuminating, Wearable, Infrared
Computer Vision System for Home Automation Control
and Medical Monitoring.” International Symposium on
Wearable Computing (Atlanta GA, October 2000).

27. Takagi, H. “Interactive evolutionary computation:
fusion of the capabilities of EC optimization and human
evaluation.” Proceedings of the IEEE, Vol. 89, Issue 9,
Sep 2001, pp. 1275-1296.

28. Underkoffler, J., Ullmer, B. and Ishii, H. “Emancipated
Pixels: Real-World Graphics in the Luminous Room.”
Proceedings of SIGGRAPH ’99 (Los Angeles CA,
1999), ACM Press, 385-392.

29. Underkoffler, J. and Ishii H. “Illuminating Light: An
Optical Design Tool with a Luminous-Tangible
Interface.” Proceedings of CHI ’98 (Los Angeles CA,
April 1998).

30. Vailaya, A., Zhong, Y., and Jain, A. K. “A hierarchical
system for efficient image retrieval.” In Proc. Int. Conf.
on Patt. Recog. (August 1996).

31. Viola, P. and Jones, M. “Robust real-time object
detection.” Technical Report 2001/01, Compaq CRL,
February 2001.

32. Weiser, M. “The Computer for the 21st Century.”
Scientific American, 1991, 365(3), pp. 94-104.

33. Yang, M.H. and Ahuja, N. “Gaussian Mixture Model
for Human Skin Color and Its Application in Image and
Video Databases.” Proceedings of SPIE ’99 (San Jose
CA, Jan 1999), 458-466.

	ABSTRACT
	INTRODUCTION
	Crayons Overview

	USER INTERFACE
	CRAYONS CLASSIFIER
	Machine Learning
	Features

	EVALUATION
	RELATED WORK
	CONCLUSION
	REFERENCES

