

Using MVC with Swing
Components

Jumping Ahead a Bit...

 We’re going to cover a specific architectural approach to building UI
components

 Model-View-Controller
 Classic architecture from Smalltalk 80

 Model: data structures that represent the component’s state
 View: object responsible for drawing the component
 Controller: object responsible for responding to user input

 Why talk about it now?
 Swing optionally allows a modified version of MVC as a way for

building components
 I’d like you to use this approach for Homework #2

2

Some Swing History

 Remember from earlier in class:
 To create a new component, subclass JComponent
 Implement paintComponent() to do all of the drawing for your

component

 Nice, easy way to create components
 Still works fine
 But, makes some things very hard:

 How would you implement a new look-and-feel?
 Components’ drawing code is hard coded into them.
 Even if you had a big switch statement and implemented several look

and feels, still doesn’t help you if a new look and feel comes along.

3

Some Swing History (cont’d)

 Swing has a pluggable look and feel architecture (PLAF)
 Supports Windows, Mac, GTK, plus several Java-only LAFs
 To make these easier to use, many Swing components have factored

their implementations in a slightly different way
 Separation of the underlying component data from its look and behavior

 Allows you to create just a new look-and-feel for a component and
easily plug it in to work with the core component data



4

Component Internal Architecture

5

JComponent

Model UI

Component class is what applications typically
interact with directly.

Model and UI classes are typically
“hidden” by the component, and used
internally by it.

Swing MVC Overview
 Model: custom class that contains all of the internal state of a

component
 UI: custom class that handles user input events, and painting the

component
 Subsumes both the View and Controller from the classic MVC architecture

 These two classes are loosely-coupled
 They communicate with each other through events
 E.g., when something in the model updates, it sends a ChangeEvent to

whatever UI is associated with it.
 UI then calls repaint() to tell the RepaintManager to schedule it for

redrawing.

6

Swing MVC Overview

 Application programmers typically never see the UI or the Model
classes
 Used purely as an internal implementation feature of the component

 Requires a bit of structure and boilerplate code to make things work
right.

 Resources:
 Short overview article: MVC Meets Swing, linked off class website
 Book: last chapter covers creating new Swing components using this

architecture

7

Step 1: Create Your Model Class
 Model: responsible for storing the state of your component
 Reuse an existing model if one is suitable; create your own if not
 Decide on the data structures you’ll need to track, and create getter/setter

functions
 Called Properties if they match the standard Java-style standards

 Send PropertyChangeEvents (or just ChangeEvents) when data in the model
change

 Keep a list of PropertyChangeListeners (or just ChangeListeners), and provide
methods for adding and removing listeners

 Be careful: the model should only contain core data structures, not data that’s
only about the visual presentation of that data
 Example: a Scrollbar

 Minimum, maximum, and current values are model properties (they have to do with
actual data values, not display

 Whether tick marks are shown, labels, etc., are visual properties, and don’t belong
in the model (they’re only about display, not the actual data) 8

Component Internal Architecture

9

JComponent implements ChangeListener

Model

Com
po

ne
nt

ha
s r

efe
ren

ce
 to

 m
od

el
Mod

el
se

nd
s C

ha
ng

eE
ve

nts

to
Com

po
ne

nt

In setModel() method of Component:
- Component registers itself as a ChangeListener for
 the model.

Whenever ChangeEvent is received from model:
- Component calls repaint() to cause itself to be
 redrawn.

Step 2: Create an Abstract UI
Class

 This is an abstract superclass to be shared by all LaFs for your new
component

 Always follows the same basic format:

import javax.swing.plaf.ComponentUI;

public abstract class PhotoUI extends ComponentUI {

 public static final String UI_CLASS_ID = “PhotoUI”;

}

10

Step 3: Create the Actual UI
Class

 Extend the abstract UI class
 Implement public void paint(Graphics g, JComponent c)

 Your component will automatically delegate its drawing to your UI’s
paint() method

 Implement any interfaces you need in order to respond to input
events
 Example: if your component must respond to the mouse, have your UI

class implement MouseListener

 Draw yourself correctly given your current size
 Recall that your parent component may resize you! In your painting

code, use the current size (getWidth()/getHeight()) and draw in the
space alloted to you.

 Implement a bit of boilerplate code for UI management

11

Component Internal Architecture

12

JComponent

UI implements
MouseListener,

etc.

In paint() method:
- Component is passed in to paint()
- Ask component for data that needs
 to be drawn

UI does not have a reference to the
model, but accesses it indirectly
through the Component

Component has reference to UI

MouseEvents, etc.

In installUI() method:
- UI sets itself up as mouse/keyboard/etc.
 listener for the component.
- When user events come in, UI updates
 the model by calling out to the component.

UI does not have a reference to the model,
but accesses it indirectly through the
Component.

Step 4: Create the Component
Itself

 Design the component’s external API
 These are the methods that application programmers see and use
 Many will just forward to the underlying model or the UI

 Make your component a listener for the Model’s ChangeEvents or
PropertyChangeEvents
 Generally need to call repaint() whenever the model is updated

 Send PropertyChangeEvents if the component’s internal state changes
 Other components might be listening to you--send

PropertyChangeEvents if anything component-specific changes

 Implement some boilerplate methods to register models and UIs

13

Step 4 (Example)
public class PhotoComponent extends JComponent implements ChangeListener {

 PhotoModel model;

 public PhotoComponent() {

 setModel(new PhotoModel());

 updateUI();

 }

 public setModel(PhotoModel m) {

 old = this.model;

 if (old != null) old.removeChangeListener(this);

 model = m;

 model.addChangeListener(this);

 }

 public PhotoModel getModel() {

 return model;

 }

 public void setUI(PhotoUI ui) { super.setUI(ui); }

 public void updateUI() {

 setUI((PhotoUI) UIManager.getUI(this));

 invalidate();

 }

 public String getUIClassID() { return PhotoUI.UI_CLASS_ID; }

}
14

Step 5: Register your UI with
Swing’s UIManager
 Need to tell the UIManager about the specific UI you want to use
 Typically do this early in the application’s main() routine:

public static void main(String[] args) {
 UIManager.put(PhotoUI.UI_CLASS_ID, “BasicPhotoUI”);

 // ... other stuff here ...

}

15

This string serves as the
unique token identifying all
different UIs that work as
PhotoUIs

This string names the class
that implements the specific
look-and-feel UI you want to use
in this application

Common Problems

 Exceptions at startup time
 Make sure the UIManager registration is done before you use the

component

 Components aren’t being repainted all the time
 Make sure you’re registered for change events, and are calling repaint()

whenever anything changes

 Components come up at weird sizes
 Your component should provide a miminumSize and preferredSize when

it is requested. If you don’t do this, your parent may set your size to 0

16

Step 3 (example)
public class BasicPhotoUI extends PhotoUI implements MouseListener {

 public static ComponentUI createUI(JComponent c) {

 return new BasicPhotoUI();

 }

 public void installUI(JComponent c) {

 ((PhotoComponent) c).addMouseListener(this); // we’ll handle mouse events for the Photo component

 }

 public void uninstallUI(JComponent c) {

 ((PhotoComponent) c).removeMouseListener(this);

 }

 public void paint(Graphics g, JComponent c) {

 // do painting for the component here!

 }

 // implement the various MouseListener methods...

}

17

