1. Vocabulary Matching: (15 points)
Write the number from the correct definition in the blank next to each term on the left:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>compound data type</td>
<td>1. A part of a string specified by a range of indices.</td>
</tr>
<tr>
<td>slice</td>
<td>2. A collection of key-value pairs that maps from keys to values.</td>
</tr>
<tr>
<td>traverse</td>
<td>3. A compound data type whose elements can be assigned new values.</td>
</tr>
<tr>
<td>mutable</td>
<td>4. The process of calling the function that is currently executing.</td>
</tr>
<tr>
<td>increment</td>
<td>5. Repeated execution of a set of statements using either a recursive function call or a loop.</td>
</tr>
<tr>
<td>decrement</td>
<td>6. Multiple variables that contain references to the same object.</td>
</tr>
<tr>
<td>element</td>
<td>7. To iterate through the elements of a set, performing a similar operation on each.</td>
</tr>
<tr>
<td>aliases</td>
<td>8. Any of the data types that consist of an ordered set of elements, with each element identified by an index.</td>
</tr>
<tr>
<td>sequence</td>
<td>9. A list that is an element of another list.</td>
</tr>
<tr>
<td>nested list</td>
<td>10. To increase the value of a variable by one.</td>
</tr>
<tr>
<td>clone</td>
<td>11. To decrease the value of a variable by one.</td>
</tr>
<tr>
<td>immutable type</td>
<td>12. One of the values in a list (or other sequence). The bracket operator selects an __________ of a list.</td>
</tr>
<tr>
<td>dictionary</td>
<td>13. A type in which the elements cannot be modified. Assignments to elements or slices of these types cause an error.</td>
</tr>
<tr>
<td>recursion</td>
<td>14. To create a new object that has the same value as an existing object.</td>
</tr>
<tr>
<td>iteration</td>
<td>15. A data type in which the values are made up of components, or elements, that are themselves values.</td>
</tr>
</tbody>
</table>
2. Write Code (15 points)
Write a function \texttt{return_smallest} that accepts 3 parameters (x,y,z) and returns the smallest of the three. For example, \texttt{return_smallest(7, -34, 23.8)} should return -34. Make sure that your function works for test cases such as \texttt{return_smallest(5,5,4)}.

3. Program Comprehension (3 points)
\begin{verbatim}
def n_lines(n):
 print "Line!"
 if n >= 0:
 n_lines(n-1)
\end{verbatim}

How many times will the string “Line!” be printed when \texttt{n_lines} is called with \texttt{n=4}?
Number__________

4. Write Code (2 points)
Write a function with infinite recursion named \texttt{run_forever}. Your function should have no parameters, and it should run forever when called (on an ideal computer, in a real computer it would eventually run out of memory.) You may add a print statement if you wish.
5. Robot Directions (10 points)
The following code makes the robot drive the trajectory drawn in the box to the right.

```python
def turn90degrees():
    turnRight(1, 1)

def nudge(x):
    forward(1, x)

nudge(1)
turn90degrees()
nudge(1)
nudge(2)
```

Draw the robot's trajectory when the following code is executed. Start the robot in the middle of the box and use arrow heads (as above) to indicate each movement.

```python
def turn90degrees():
    turnRight(1, 1)

def nudge(x):
    forward(1, x)

nums = [1, 2, 3, 4]

for i in nums:
    if (i % 2 == 0):
        turn90degrees()
nudge(i)
```

6. Fill in the blank (2 points)
In python, the `=` operator performs _____________________ while the `==` operator performs ____________________.
7. Python Expression Evaluation (20 points)
For this question, assume the following statements have already been entered and interpreted:

```python
a = [ True, 7, ["Cherry", "Apple","Plum"], 56, [4, 5, 6], 84 ]
b = a
c = a[0:4]
d = a[2]
d[2] = "Peach"
```

Pretend that you are the Python Interpreter (IDLE window). What do you print or return when each of the following statements are entered?

Example:
```
a[0] 
```

Result: **True**

Example:
```
a[4:6] 
```

Result: _ [[4,5,6], 84]_

1.
```
a[4][0] 
```

Result: _____________________________

2.
```
d 
```

Result: _____________________________

3.
```
c 
```

Result: _____________________________

4.
```
a[2][2] 
```

Result: _____________________________

5.
```
b[:2] 
```

Result: _____________________________

6.
```
b[-2] 
```

Result: _____________________________

7.
```
c[-2] 
```

Result: _____________________________

8.
```
print "Pumpkin %.3f" %3.1459 
```

Result: _____________________________

9.
```
(5 > 10) or (5 > 3) 
```

Result: _____________________________

10.
```
34 % 10 
```

Result: _____________________________
8. Write Code (10 points)
Write a function `changeLetter(aString, index, newLetter)` that will replace the letter stored at index in `aString` with the contents of `newLetter` and return the new string without modifying the original string! For example, `changeLetter("Python is great!", 10, "G")` will return the string "Python is Great!"

9. Write Code (5 points)
Write a function `changeValue(aList, index, newValue)` that will replace the element stored at index in `aList` with the contents of `newValue`. It should NOT return the list. For example after the following commands:

```python
a = [5, True,"Test",10]
changeValue( a, 3, "Hi!"")
```

The list `a` will be `[5, True,"Test","Hi!"]`
10. Write Code! (20 points)

Write a function called roboFlute that takes no parameters. The roboFlute function will watch each of the robot's 3 light sensors (values obtained using the getLight("loc") function and specifying a location out of the set ("left" / "right" / "center")) and play a beep that is ½ second long if a light sensor is covered. You know a light sensor is covered when the value it returns is larger than 1000. Each of the three sensors should play a different note, as follows: “left” = 800Hz, “center” = 440Hz, “right” = 220Hz. The robotFlute function should perform the above actions for 25 seconds and then return.

API Hints: beep(time_in_seconds, frequency_in_Hz), value = getLight("location")
11. Write Code! (15 points)

Write a function `reverseList(aList)` that will return a reversed copy of aList. For example, after the following:

```
a = [ 5, 10, True, "Hi!"
```

```
b = reverseList(a)
```

The list `b = ["Hi!", True, 10, 5]`, while `a = [5, 10, True, "Hi!"]`.

12. Write Code: (10 Points)

Write a function `findJ(aString)` that uses a `while` loop to find the index of the first occurrence of the letter 'J' in the `aString` parameter. The function should return the index it found. For example, `findJ("This is Jays String")` should return the number 8. Note that you should find both UPPERCASE J's and lowercase j's! If you do not find a J or a j you should return -1.
Extra Credit (1 point each)

What is the one sensor on the Scribbler that does not detect light of one form or another?

What is the decimal representation of the binary number \{ 101101\}? __________

What is the hexadecimal representation of the decimal number 34? __________

What does CSS stand for? C__________ S________________ S_______________